metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m911-m912

A second monoclinic polymorph of {bis­­[5-methyl-3-(tri­fluoro­meth­yl)pyrazol-1-yl]borato}{tris­­[5-methyl-3-(tri­fluoro­meth­yl)pyrazol-1-yl]borato}cobalt(II): a structure containing a B—H⋯Co agostic inter­action

aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854 USA
*Correspondence e-mail: DZSquared@aol.com

(Received 18 May 2011; accepted 7 June 2011; online 11 June 2011)

The title compound, [Co(C10H10BF6N4)(C15H13BF9N6)], is a polymorph of the previously reported neutral cobalt(II) complex [Stibrany & Potenza (2010[Stibrany, R. T. & Potenza, J. A. (2010). Acta Cryst. E66, m506-m507.]). Acta Cryst. E66, m506–m507], which contains one each of the monoanionic ligands, bis­[5-methyl-3-(trifluoro­meth­yl)pyrazol-1-yl]borate (Bp) and tris­[5-methyl-3-(trifluoro­meth­yl)pyrazol-1-yl]borate (Tp). A distorted octahedral coordination geometry of the CoII atom results from ligation of an H atom, which is part of an agostic B—H⋯Co inter­action [H⋯Co = 2.12 (3) Å], and by five imine N atoms, two from a Bp ligand and three from a Tp ligand. Weak intra- and inter­molecular C—F⋯π inter­actions with F⋯centroid distances ranging from 3.025 (4) to 3.605 (4) Å are observed.

Related literature

For our study of nitro­gen-containing heterocyles and their complexes with metal ions, see: Stibrany & Potenza (2006[Stibrany, R. T. & Potenza, J. A. (2006). Private Communication (reference number CCDC 631853). CCDC, Cambridge, England.], 2009a[Stibrany, R. T. & Potenza, J. A. (2009a). Acta Cryst. C65, o406-o409.],b[Stibrany, R. T. & Potenza, J. A. (2009b). J. Chem. Crystallogr. 39, 266-269.]); Stibrany et al. (1999[Stibrany, R. T., Knapp, S., Potenza, J. A. & Schugar, H. J. (1999). Inorg. Chem. 38, 132-135.], 2005[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. E61, m1904-m1906.], 2006[Stibrany, R. T., Zhang, C., Emge, T. J., Schugar, H. J., Potenza, J. A. & Knapp, S. (2006). Inorg. Chem. 45, 9713-9720.]). For a polymorph of the title compound, see: Stibrany & Potenza (2010[Stibrany, R. T. & Potenza, J. A. (2010). Acta Cryst. E66, m506-m507.]). For oxidation studies of copper and cobalt complexes utilizing the title ligand, see: Gorun et al. (2000[Gorun, S. M., Hu, Z., Stibrany, R. T. & Carpenter, G. (2000). Inorg. Chim. Acta, 297, 383-388.]). For agostic inter­actions, see: Ruman et al. (2001[Ruman, T., Ciunik, Z., Goclan, A., Lukasiewicz, M. & Wolowiec, S. (2001). Polyhedron, 20, 2965-2970.], 2002[Ruman, T., Ciunik, Z., Mazurek, J. & Wolowiec, S. (2002). Eur. J. Inorg. Chem. pp. 754-760.]); Siemer et al. (2001[Siemer, C. J., Meece, F. A., Armstrong, W. H. & Eichhorn, D. M. (2001). Polyhedron, 20, 2637-2646.]); Ghosh et al. (1998[Ghosh, P., Bonanno, J. B. & Parkin, G. (1998). J. Chem. Soc. Dalton Trans. pp. 2779-2781.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H10BF6N4)(C15H13BF9N6)]

  • Mr = 829.08

  • Monoclinic, C 2/c

  • a = 18.593 (2) Å

  • b = 12.1167 (13) Å

  • c = 30.720 (3) Å

  • β = 102.721 (2)°

  • V = 6751.1 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 298 K

  • 0.28 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.875, Tmax = 1.00

  • 32390 measured reflections

  • 7431 independent reflections

  • 5522 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.167

  • S = 1.00

  • 7431 reflections

  • 495 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N7 2.100 (3)
Co1—H21B 2.12 (3)
Co1—N9 2.124 (3)
Co1—N3 2.124 (3)
Co1—N1 2.163 (3)
Co1—N5 2.172 (3)

Table 2
Flourine inter­action geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N3/N4/C9/C8/C7, N5/N6/C14/C13/C12, N7/N8/C19/C18/C17 and N9/N10/C24/C23/C22 rings, respectively.

C—F⋯Cg C—F F⋯Cg C⋯Cg C—F⋯Cg
C1—F1⋯Cg4 1.333 (5) 3.319 (4) 3.798 (5) 100.7 (3)
C1—F2⋯Cg2i 1.331 (4) 3.341 (3) 4.565 (4) 152.6 (2)
C1—F3⋯Cg4 1.316 (5) 3.273 (3) 3.798 (5) 103.3 (3)
C11—F9⋯Cg3 1.295 (5) 3.025 (4) 3.826 (4) 119.1 (3)
C16—F10⋯Cg1 1.298 (5) 3.252 (4) 4.279 (4) 135.8 (3)
C16—F10⋯Cg2 1.298 (5) 3.208 (3) 4.061 (4) 122.8 (2)
C16—F11⋯Cg4ii 1.324 (5) 3.605 (4) 4.467 (4) 123.0 (3)
C21—F13⋯Cg1 1.321 (5) 3.373 (3) 4.346 (5) 130.3 (3)
Symmetry codes: (i) [{1\over 2}] − x, [{3\over 2}] − y, −z; (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z.

Data collection: SMART WNT/2000 (Bruker, 2000[Bruker (2000). SAINT-Plus and SMART WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SAINT-Plus and SMART WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Our long-term interest in the synthesis and applications of nitrogen-containing heterocyles, such as expanded-ring imidazoles, and their complexes with metal ions (Stibrany & Potenza, 2009a) led us to prepare the title compound (I). With pyrazole, a variety of metal complexes has been prepared, predominantly with copper (Stibrany & Potenza, 2006), including the Cu(II) complex of an unusual (dimethylamino)methane bridged bis(pyrazole) ligand formed via a DMF aminalization (Stibrany et al., 1999) and a novel binuclear µ-oxalato(1-benzylpyrazole)2(CF3SO3)2copper(II) compound resulting from the fixation of carbon dioxide (Stibrany et al., 2005). A tris(pyrazolyl)arene ligand which forms geometrically constrained metal complexes has also been prepared (Stibrany et al., 2006), as has a sterically strained trigonal-bipyramidal Cu(II) complex containing a 1-benzylpyrazole ligand (Stibrany & Potenza, 2009b). Copper and cobalt complexes utlizing the title ligand were prepared for oxidation studies (Gorun et al., 2000).

Compound (I) (Fig. 1) contains a central Co(II) ion linked to a Tp and a Bp ligand. Ligation is effected by three imine N atoms of the Tp ligand, two imine N atoms of the Bp ligand, and an H atom which participates in a two-electron, three-center B—H···Co bond. The result is a distorted octahedral coordination geometry. Compound (I) is a polymorph of a previously reported structure of the same compound (II) (Stibrany & Potenza, 2010). The present polymorph was the result of a ligand displacement reaction in which a Tp ligand was added to a preformed Co(Bp)2 complex to form (I).

A number of cobalt(II) complexes containing mixed bis (Bp)- and tris pyrazolylborates (Tp) and C—H···Co agostic interactions have been reported, with H···Co distances ranging from 2.03 Å (Ruman et al., 2002), 2.035 Å (Ruman et al., 2001) to 2.334 Å (Siemer et al., 2001). The H···Co distance in (I), 2.12 (3) Å, lies between these two extremes. Infrared spectral results also support the existence of an agostic 2-electron, 3-center bond in (I). B—H stretching vibrations for BH2 groups in which one of the H atoms is involved in a 2-electron, 3-center bond with a metal ion typically lie in the range 2100–2500 cm-1, with the lower value corresponding to the agostic interaction (Ghosh et al., 1998). In (I), IR bands at 2570 and 2492 cm-1 are assigned as free B—H stretching vibrations, while the band at 2217 cm-1 is assigned to the bound B—H group.

The coordination geometries of both polymorphs are similar: in both, the largest deviations from octahedral symmetry are found with the H—Co—N angles associated with the bound hydrogen atom. The polymorphs differ fundamentally in the behavior of the trifluoromethyl groups. In the first polymorph, the molecules formed layers linked by intermolecular C—H···F hydrogen bonds in such a way as to form chains along the a cell direction. In contrast, the current polymorph exhibits no such hydrogen bonds; rather PLATON (Spek, 2009) reveals six intramolecular and two intermolecular C—F···Cg interactions (Table 2).

Related literature top

For our study of nitrogen-containing heterocyles and their complexes with metal ions, see: Stibrany & Potenza (2006, 2009a,b); Stibrany et al. (1999, 2005, 2006). For a polymorph of the title compound, see: Stibrany & Potenza (2010). For oxidation studies of copper and cobalt complexes utilizing the title ligand, see: Gorun et al. (2000). For agostic interactions, see: Ruman et al. (2001, 2002); Siemer et al. (2001); Ghosh et al. (1998).

Experimental top

Both Tp and Bp ligands were prepared as previously reported (Gorun et al., 2000). To a flask containing 10 ml of acetonitrile, 60 mg of Co(Bp)2 (0.088 mmol) was disssolved to give a red-purple solution. Then 44 mg of KTp (0.088 mmol) was added and the mixture was allowed to stir for 10 min. giving little color change. The mixture was filtered to remove any solids and yielded a clear red-purple solution, which was left to evaporate slowly. Upon evaporation, a major dichroic red-orange phase (compound (I)) was separated mechanically and characterized. IR (KBr pellet, cm-1); 2570(Tp, B—H, w), 2492(Bp, B—H, w), 2217(Bp, B—H···Co, w), 1471(s), 1262(s), 1163(s), 1126(s), 1002(s), 800(m), 650(m).

Refinement top

Hydrogen atoms of the methyl groups were located on difference Fiourier maps and were restrained. H atoms of the pyrrole fragments were positioned geometrically using a riding model, with C—H = 0.98 Å for methyl H atoms, 0.95 Å for pyrrole H atoms, and with Uiso(H) = 1.2 Ueq(C). B—H hydrogen atom coordinates and isotropic displacement parameters were refined.

Computing details top

Data collection: SMART WNT/2000 (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 35% probability level. H atoms are shown as spheres of arbitrary radius.
{Bis[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]borato}{tris[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]borato}cobalt(II) top
Crystal data top
[Co(C10H10BF6N4)(C15H13BF9N6)]F(000) = 3320
Mr = 829.08Dx = 1.631 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 910 reflections
a = 18.593 (2) Åθ = 2.2–22.4°
b = 12.1167 (13) ŵ = 0.63 mm1
c = 30.720 (3) ÅT = 298 K
β = 102.721 (2)°Prism, orange-red
V = 6751.1 (13) Å30.28 × 0.24 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
7431 independent reflections
Radiation source: fine-focus sealed tube5522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 2323
Tmin = 0.875, Tmax = 1.00k = 1515
32390 measured reflectionsl = 3839
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0985P)2 + 6.350P]
where P = (Fo2 + 2Fc2)/3
7431 reflections(Δ/σ)max = 0.001
495 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Co(C10H10BF6N4)(C15H13BF9N6)]V = 6751.1 (13) Å3
Mr = 829.08Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.593 (2) ŵ = 0.63 mm1
b = 12.1167 (13) ÅT = 298 K
c = 30.720 (3) Å0.28 × 0.24 × 0.12 mm
β = 102.721 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7431 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
5522 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 1.00Rint = 0.032
32390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.69 e Å3
7431 reflectionsΔρmin = 0.32 e Å3
495 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.28653 (2)0.88792 (3)0.876253 (13)0.04318 (14)
F10.2096 (2)1.0806 (3)0.97276 (12)0.1186 (11)
F20.16548 (16)0.9517 (3)1.00620 (9)0.1087 (10)
F30.15337 (14)0.9479 (3)0.93573 (9)0.1045 (9)
F40.34590 (19)1.0689 (3)0.81275 (12)0.1270 (12)
F50.4369 (3)1.0278 (4)0.78800 (13)0.178 (2)
F60.4449 (3)1.1573 (3)0.83096 (17)0.1721 (19)
F70.15694 (15)0.6605 (3)0.85333 (12)0.1158 (11)
F80.18416 (17)0.4977 (2)0.84101 (12)0.1135 (10)
F90.1996 (2)0.6240 (3)0.79751 (10)0.1371 (14)
F100.38793 (14)0.7600 (3)0.81139 (9)0.1108 (11)
F110.33643 (17)0.6704 (3)0.75392 (12)0.1122 (10)
F120.38456 (17)0.8212 (3)0.74664 (13)0.1245 (12)
F130.36640 (15)1.1157 (2)0.93361 (10)0.1001 (9)
F140.36229 (18)1.2527 (3)0.89093 (12)0.1275 (12)
F150.3115 (2)1.2626 (3)0.94472 (13)0.1412 (14)
N10.30398 (14)0.8830 (2)0.94819 (8)0.0483 (6)
N20.36749 (14)0.8317 (2)0.96912 (8)0.0500 (6)
N30.40019 (15)0.9216 (2)0.88139 (9)0.0533 (6)
N40.44793 (14)0.8664 (2)0.91406 (9)0.0520 (6)
N50.30701 (14)0.7122 (2)0.88605 (9)0.0488 (6)
N60.37587 (15)0.6891 (2)0.91109 (8)0.0509 (6)
N70.25381 (13)0.8603 (2)0.80721 (8)0.0482 (6)
N80.18320 (13)0.8959 (2)0.79314 (9)0.0502 (6)
N90.24139 (13)1.0495 (2)0.87252 (8)0.0483 (6)
N100.17078 (13)1.0446 (2)0.84856 (8)0.0476 (6)
C10.2001 (2)0.9716 (4)0.97340 (14)0.0728 (10)
C20.2703 (2)0.9112 (3)0.98080 (11)0.0546 (8)
C30.3116 (2)0.8782 (3)1.02190 (12)0.0673 (10)
H30.29970.88821.04950.081*
C40.3728 (2)0.8286 (3)1.01390 (11)0.0605 (8)
C50.4365 (3)0.7800 (4)1.04622 (13)0.0868 (13)
H5A0.44740.70841.03600.130*
H5B0.42440.77331.07490.130*
H5C0.47880.82711.04860.130*
C60.4145 (3)1.0583 (4)0.82312 (17)0.0884 (13)
C70.4429 (2)0.9846 (3)0.86181 (13)0.0643 (9)
C80.5164 (2)0.9703 (4)0.88129 (15)0.0771 (11)
H80.55641.00470.87340.093*
C90.51825 (19)0.8952 (3)0.91462 (14)0.0681 (10)
C100.5832 (2)0.8483 (6)0.94721 (19)0.1079 (18)
H10A0.57910.86560.97710.162*
H10B0.62780.87970.94180.162*
H10C0.58420.76970.94360.162*
C110.2065 (2)0.6009 (3)0.83940 (14)0.0686 (10)
C120.2820 (2)0.6161 (3)0.86740 (11)0.0561 (8)
C130.3333 (2)0.5337 (3)0.87903 (13)0.0668 (9)
H130.32860.46030.87000.080*
C140.3926 (2)0.5815 (3)0.90657 (12)0.0630 (9)
C150.4641 (3)0.5313 (4)0.92941 (17)0.0940 (14)
H15A0.50400.57580.92410.141*
H15B0.46790.45830.91790.141*
H15C0.46650.52730.96090.141*
C160.3460 (2)0.7703 (4)0.77177 (13)0.0711 (10)
C170.27437 (18)0.8250 (3)0.77033 (11)0.0553 (8)
C180.2182 (2)0.8380 (3)0.73323 (12)0.0637 (9)
H180.21880.81970.70390.076*
C190.16104 (19)0.8835 (3)0.74851 (11)0.0583 (8)
C200.0860 (2)0.9147 (4)0.72326 (14)0.0837 (13)
H20A0.05290.85390.72320.126*
H20B0.08780.93290.69310.126*
H20C0.06890.97750.73720.126*
C210.3222 (2)1.1949 (3)0.91380 (15)0.0767 (11)
C220.25220 (19)1.1548 (3)0.88547 (11)0.0553 (8)
C230.1893 (2)1.2165 (3)0.86992 (13)0.0632 (9)
H230.18301.29150.87420.076*
C240.13797 (19)1.1441 (3)0.84681 (11)0.0546 (8)
C250.0598 (2)1.1627 (4)0.82443 (15)0.0764 (11)
H25A0.05051.13220.79490.115*
H25B0.04981.24050.82270.115*
H25C0.02841.12750.84120.115*
B10.4190 (2)0.7788 (3)0.94208 (12)0.0532 (8)
B20.1443 (2)0.9287 (3)0.83098 (13)0.0528 (8)
H1B0.4671 (19)0.741 (3)0.9652 (12)0.060 (9)*
H21B0.1701 (18)0.870 (3)0.8601 (12)0.055 (9)*
H22B0.085 (2)0.929 (3)0.8187 (12)0.061 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0438 (2)0.0430 (2)0.0410 (2)0.00260 (16)0.00549 (15)0.00325 (16)
F10.143 (3)0.0821 (18)0.145 (3)0.0403 (18)0.063 (2)0.0102 (18)
F20.1070 (19)0.156 (3)0.0809 (17)0.0325 (19)0.0585 (15)0.0171 (17)
F30.0719 (15)0.173 (3)0.0713 (16)0.0321 (17)0.0217 (13)0.0014 (17)
F40.103 (2)0.150 (3)0.122 (3)0.007 (2)0.0127 (19)0.072 (2)
F50.238 (5)0.208 (5)0.111 (3)0.051 (4)0.089 (3)0.060 (3)
F60.196 (4)0.096 (2)0.207 (5)0.045 (3)0.007 (3)0.055 (3)
F70.0792 (17)0.095 (2)0.161 (3)0.0026 (15)0.0009 (18)0.042 (2)
F80.110 (2)0.0618 (14)0.163 (3)0.0306 (14)0.018 (2)0.0054 (16)
F90.129 (3)0.192 (4)0.0765 (19)0.080 (2)0.0068 (17)0.014 (2)
F100.0732 (15)0.178 (3)0.0759 (16)0.0625 (18)0.0036 (13)0.0179 (17)
F110.108 (2)0.093 (2)0.137 (3)0.0313 (16)0.0305 (18)0.0323 (18)
F120.100 (2)0.135 (3)0.162 (3)0.0265 (19)0.080 (2)0.032 (2)
F130.0914 (17)0.0696 (15)0.113 (2)0.0057 (13)0.0352 (15)0.0066 (13)
F140.115 (2)0.119 (2)0.135 (3)0.054 (2)0.002 (2)0.019 (2)
F150.136 (3)0.120 (2)0.144 (3)0.008 (2)0.020 (2)0.084 (2)
N10.0522 (14)0.0476 (13)0.0450 (13)0.0039 (11)0.0104 (11)0.0029 (11)
N20.0582 (15)0.0491 (14)0.0400 (13)0.0015 (12)0.0047 (11)0.0040 (11)
N30.0535 (15)0.0562 (15)0.0500 (14)0.0023 (12)0.0106 (12)0.0088 (12)
N40.0429 (13)0.0603 (16)0.0512 (15)0.0009 (11)0.0065 (11)0.0004 (12)
N50.0528 (14)0.0433 (13)0.0492 (14)0.0012 (11)0.0088 (11)0.0015 (11)
N60.0626 (16)0.0455 (14)0.0437 (13)0.0090 (12)0.0097 (12)0.0072 (11)
N70.0433 (13)0.0543 (14)0.0451 (13)0.0074 (11)0.0058 (10)0.0027 (11)
N80.0422 (13)0.0571 (15)0.0476 (14)0.0037 (11)0.0022 (10)0.0063 (11)
N90.0477 (13)0.0472 (14)0.0454 (13)0.0040 (11)0.0007 (11)0.0004 (11)
N100.0440 (13)0.0531 (14)0.0448 (13)0.0069 (11)0.0076 (10)0.0010 (11)
C10.083 (3)0.081 (3)0.062 (2)0.013 (2)0.034 (2)0.001 (2)
C20.068 (2)0.0515 (18)0.0476 (17)0.0029 (15)0.0201 (15)0.0016 (13)
C30.092 (3)0.069 (2)0.0425 (17)0.002 (2)0.0194 (17)0.0003 (16)
C40.077 (2)0.058 (2)0.0428 (17)0.0026 (17)0.0049 (16)0.0010 (14)
C50.102 (3)0.105 (3)0.0439 (19)0.014 (3)0.005 (2)0.006 (2)
C60.095 (3)0.085 (3)0.095 (3)0.012 (3)0.041 (3)0.022 (3)
C70.068 (2)0.063 (2)0.065 (2)0.0081 (17)0.0233 (17)0.0013 (17)
C80.063 (2)0.088 (3)0.087 (3)0.020 (2)0.032 (2)0.005 (2)
C90.0462 (18)0.085 (3)0.073 (2)0.0031 (17)0.0143 (16)0.015 (2)
C100.042 (2)0.167 (5)0.107 (4)0.002 (3)0.001 (2)0.011 (4)
C110.081 (3)0.053 (2)0.071 (2)0.0135 (18)0.016 (2)0.0053 (17)
C120.075 (2)0.0457 (17)0.0487 (17)0.0050 (16)0.0167 (16)0.0002 (14)
C130.093 (3)0.0423 (17)0.065 (2)0.0041 (18)0.017 (2)0.0015 (16)
C140.086 (3)0.0514 (18)0.0540 (19)0.0207 (18)0.0209 (18)0.0124 (15)
C150.109 (3)0.079 (3)0.091 (3)0.045 (3)0.015 (3)0.013 (2)
C160.069 (2)0.084 (3)0.064 (2)0.020 (2)0.0221 (19)0.001 (2)
C170.0560 (18)0.060 (2)0.0492 (17)0.0090 (15)0.0106 (14)0.0003 (15)
C180.068 (2)0.075 (2)0.0458 (18)0.0087 (19)0.0090 (16)0.0024 (16)
C190.0547 (18)0.069 (2)0.0460 (17)0.0036 (16)0.0002 (14)0.0044 (15)
C200.062 (2)0.115 (4)0.063 (2)0.016 (2)0.0099 (18)0.011 (2)
C210.085 (3)0.050 (2)0.085 (3)0.009 (2)0.003 (2)0.003 (2)
C220.067 (2)0.0434 (16)0.0527 (18)0.0017 (15)0.0069 (15)0.0021 (14)
C230.077 (2)0.0462 (17)0.068 (2)0.0150 (17)0.0185 (18)0.0057 (16)
C240.0571 (18)0.0566 (18)0.0516 (18)0.0141 (15)0.0153 (14)0.0050 (14)
C250.060 (2)0.084 (3)0.087 (3)0.023 (2)0.020 (2)0.017 (2)
B10.055 (2)0.057 (2)0.0445 (18)0.0105 (17)0.0045 (15)0.0072 (16)
B20.0422 (18)0.060 (2)0.056 (2)0.0015 (16)0.0101 (15)0.0080 (17)
Geometric parameters (Å, º) top
Co1—N72.100 (3)C2—C31.384 (5)
Co1—H21B2.12 (3)C3—C41.356 (5)
Co1—N92.124 (3)C3—H30.9300
Co1—N32.124 (3)C4—C51.489 (5)
Co1—N12.163 (3)C5—H5A0.9600
Co1—N52.172 (3)C5—H5B0.9600
F1—C11.333 (5)C5—H5C0.9600
F2—C11.331 (4)C6—C71.487 (6)
F3—C11.316 (5)C7—C81.376 (6)
F4—C61.252 (6)C8—C91.365 (6)
F5—C61.293 (6)C8—H80.9300
F6—C61.325 (6)C9—C101.500 (6)
F7—C111.315 (5)C10—H10A0.9600
F8—C111.322 (4)C10—H10B0.9600
F9—C111.295 (5)C10—H10C0.9600
F10—C161.298 (5)C11—C121.487 (5)
F11—C161.324 (5)C12—C131.373 (5)
F12—C161.317 (5)C13—C141.363 (6)
F13—C211.321 (5)C13—H130.9300
F14—C211.331 (5)C14—C151.490 (6)
F15—C211.303 (5)C15—H15A0.9600
N1—C21.337 (4)C15—H15B0.9600
N1—N21.364 (4)C15—H15C0.9600
N2—C41.358 (4)C16—C171.480 (5)
N2—B11.538 (5)C17—C181.375 (5)
N3—C71.337 (4)C18—C191.368 (5)
N3—N41.360 (4)C18—H180.9300
N4—C91.350 (4)C19—C201.488 (5)
N4—B11.538 (5)C20—H20A0.9600
N5—C121.335 (4)C20—H20B0.9600
N5—N61.370 (4)C20—H20C0.9600
N6—C141.354 (4)C21—C221.480 (5)
N6—B11.547 (5)C22—C231.381 (5)
N7—C171.343 (4)C23—C241.373 (5)
N7—N81.359 (3)C23—H230.9300
N8—C191.350 (4)C24—C251.483 (5)
N8—B21.551 (5)C25—H25A0.9600
N9—C221.338 (4)C25—H25B0.9600
N9—N101.358 (3)C25—H25C0.9600
N10—C241.347 (4)B1—H1B1.11 (3)
N10—B21.546 (5)B2—H21B1.16 (3)
C1—C21.471 (5)B2—H22B1.08 (4)
N7—Co1—H21B72.2 (9)C9—C10—H10A109.5
N7—Co1—N993.97 (10)C9—C10—H10B109.5
H21B—Co1—N973.4 (9)H10A—C10—H10B109.5
N7—Co1—N399.66 (10)C9—C10—H10C109.5
H21B—Co1—N3169.7 (9)H10A—C10—H10C109.5
N9—Co1—N3101.63 (10)H10B—C10—H10C109.5
N7—Co1—N1166.50 (10)F9—C11—F7106.3 (4)
H21B—Co1—N198.7 (9)F9—C11—F8106.2 (4)
N9—Co1—N192.81 (10)F7—C11—F8105.0 (4)
N3—Co1—N190.37 (10)F9—C11—C12115.0 (3)
N7—Co1—N589.25 (10)F7—C11—C12112.6 (3)
H21B—Co1—N593.9 (9)F8—C11—C12111.2 (3)
N9—Co1—N5165.12 (10)N5—C12—C13111.5 (3)
N3—Co1—N592.12 (10)N5—C12—C11123.5 (3)
N1—Co1—N581.32 (10)C13—C12—C11125.0 (3)
C2—N1—N2105.2 (3)C14—C13—C12105.9 (3)
C2—N1—Co1140.2 (2)C14—C13—H13127.1
N2—N1—Co1114.44 (18)C12—C13—H13127.1
C4—N2—N1110.6 (3)N6—C14—C13107.4 (3)
C4—N2—B1128.4 (3)N6—C14—C15123.2 (4)
N1—N2—B1120.8 (2)C13—C14—C15129.4 (4)
C7—N3—N4104.9 (3)C14—C15—H15A109.5
C7—N3—Co1139.2 (2)C14—C15—H15B109.5
N4—N3—Co1115.93 (19)H15A—C15—H15B109.5
C9—N4—N3110.8 (3)C14—C15—H15C109.5
C9—N4—B1129.0 (3)H15A—C15—H15C109.5
N3—N4—B1120.0 (2)H15B—C15—H15C109.5
C12—N5—N6104.9 (3)F10—C16—F12107.6 (4)
C12—N5—Co1139.6 (2)F10—C16—F11107.4 (4)
N6—N5—Co1113.09 (19)F12—C16—F11103.1 (3)
C14—N6—N5110.3 (3)F10—C16—C17114.9 (3)
C14—N6—B1129.7 (3)F12—C16—C17112.0 (3)
N5—N6—B1119.7 (2)F11—C16—C17111.0 (4)
C17—N7—N8105.5 (2)N7—C17—C18110.9 (3)
C17—N7—Co1146.1 (2)N7—C17—C16122.6 (3)
N8—N7—Co1108.39 (18)C18—C17—C16126.2 (3)
C19—N8—N7110.2 (3)C19—C18—C17105.5 (3)
C19—N8—B2134.5 (3)C19—C18—H18127.2
N7—N8—B2114.9 (2)C17—C18—H18127.2
C22—N9—N10105.5 (2)N8—C19—C18107.9 (3)
C22—N9—Co1146.2 (2)N8—C19—C20122.8 (3)
N10—N9—Co1108.18 (18)C18—C19—C20129.3 (3)
C24—N10—N9111.0 (3)C19—C20—H20A109.5
C24—N10—B2133.8 (3)C19—C20—H20B109.5
N9—N10—B2115.2 (2)H20A—C20—H20B109.5
F3—C1—F2106.9 (4)C19—C20—H20C109.5
F3—C1—F1105.5 (4)H20A—C20—H20C109.5
F2—C1—F1106.2 (3)H20B—C20—H20C109.5
F3—C1—C2114.7 (3)F15—C21—F13107.5 (4)
F2—C1—C2110.7 (3)F15—C21—F14104.3 (4)
F1—C1—C2112.2 (4)F13—C21—F14105.2 (4)
N1—C2—C3110.6 (3)F15—C21—C22112.3 (4)
N1—C2—C1123.9 (3)F13—C21—C22114.2 (3)
C3—C2—C1125.4 (3)F14—C21—C22112.6 (4)
C4—C3—C2106.4 (3)N9—C22—C23110.6 (3)
C4—C3—H3126.8N9—C22—C21122.9 (3)
C2—C3—H3126.8C23—C22—C21126.4 (3)
C3—C4—N2107.1 (3)C24—C23—C22105.8 (3)
C3—C4—C5129.1 (3)C24—C23—H23127.1
N2—C4—C5123.8 (3)C22—C23—H23127.1
C4—C5—H5A109.5N10—C24—C23107.1 (3)
C4—C5—H5B109.5N10—C24—C25123.0 (3)
H5A—C5—H5B109.5C23—C24—C25129.9 (3)
C4—C5—H5C109.5C24—C25—H25A109.5
H5A—C5—H5C109.5C24—C25—H25B109.5
H5B—C5—H5C109.5H25A—C25—H25B109.5
F4—C6—F5108.3 (5)C24—C25—H25C109.5
F4—C6—F6108.8 (5)H25A—C25—H25C109.5
F5—C6—F6102.0 (4)H25B—C25—H25C109.5
F4—C6—C7115.3 (4)N4—B1—N2110.5 (3)
F5—C6—C7111.9 (5)N4—B1—N6109.8 (3)
F6—C6—C7109.6 (5)N2—B1—N6109.0 (3)
N3—C7—C8111.4 (3)N4—B1—H1B108.1 (18)
N3—C7—C6124.1 (4)N2—B1—H1B109.6 (18)
C8—C7—C6124.5 (4)N6—B1—H1B109.8 (18)
C9—C8—C7105.6 (3)N10—B2—N8109.2 (3)
C9—C8—H8127.2N10—B2—H21B104.2 (17)
C7—C8—H8127.2N8—B2—H21B103.6 (17)
N4—C9—C8107.4 (3)N10—B2—H22B110.1 (19)
N4—C9—C10123.0 (4)N8—B2—H22B110.1 (19)
C8—C9—C10129.6 (4)H21B—B2—H22B119 (3)
N7—Co1—N1—C278.5 (5)N4—N3—C7—C80.1 (4)
H21B—Co1—N1—C232.0 (10)Co1—N3—C7—C8179.3 (3)
N9—Co1—N1—C241.6 (3)N4—N3—C7—C6178.6 (4)
N3—Co1—N1—C2143.3 (3)Co1—N3—C7—C62.2 (7)
N5—Co1—N1—C2124.6 (3)F4—C6—C7—N38.4 (7)
N7—Co1—N1—N297.9 (4)F5—C6—C7—N3116.0 (5)
H21B—Co1—N1—N2144.4 (9)F6—C6—C7—N3131.6 (5)
N9—Co1—N1—N2142.0 (2)F4—C6—C7—C8173.3 (5)
N3—Co1—N1—N240.3 (2)F5—C6—C7—C862.3 (7)
N5—Co1—N1—N251.8 (2)F6—C6—C7—C850.1 (6)
C2—N1—N2—C40.2 (3)N3—C7—C8—C90.4 (5)
Co1—N1—N2—C4177.8 (2)C6—C7—C8—C9178.8 (4)
C2—N1—N2—B1175.2 (3)N3—N4—C9—C80.5 (4)
Co1—N1—N2—B12.4 (3)B1—N4—C9—C8175.0 (3)
N7—Co1—N3—C749.1 (4)N3—N4—C9—C10179.7 (4)
H21B—Co1—N3—C713 (5)B1—N4—C9—C104.8 (6)
N9—Co1—N3—C747.0 (4)C7—C8—C9—N40.5 (5)
N1—Co1—N3—C7140.0 (4)C7—C8—C9—C10179.7 (5)
N5—Co1—N3—C7138.7 (4)N6—N5—C12—C131.3 (4)
N7—Co1—N3—N4131.7 (2)Co1—N5—C12—C13158.4 (3)
H21B—Co1—N3—N4168 (5)N6—N5—C12—C11176.0 (3)
N9—Co1—N3—N4132.1 (2)Co1—N5—C12—C1124.4 (5)
N1—Co1—N3—N439.2 (2)F9—C11—C12—N586.5 (5)
N5—Co1—N3—N442.1 (2)F7—C11—C12—N535.4 (5)
C7—N3—N4—C90.3 (4)F8—C11—C12—N5152.9 (3)
Co1—N3—N4—C9179.2 (2)F9—C11—C12—C1396.6 (5)
C7—N3—N4—B1175.7 (3)F7—C11—C12—C13141.5 (4)
Co1—N3—N4—B14.8 (4)F8—C11—C12—C1324.0 (5)
N7—Co1—N5—C1230.5 (3)N5—C12—C13—C140.5 (4)
H21B—Co1—N5—C1241.5 (10)C11—C12—C13—C14176.7 (3)
N9—Co1—N5—C1272.2 (5)N5—N6—C14—C131.3 (4)
N3—Co1—N5—C12130.2 (3)B1—N6—C14—C13172.8 (3)
N1—Co1—N5—C12139.8 (3)N5—N6—C14—C15179.5 (4)
N7—Co1—N5—N6128.0 (2)B1—N6—C14—C156.4 (6)
H21B—Co1—N5—N6159.9 (9)C12—C13—C14—N60.5 (4)
N9—Co1—N5—N6129.3 (4)C12—C13—C14—C15179.6 (4)
N3—Co1—N5—N628.4 (2)N8—N7—C17—C180.3 (4)
N1—Co1—N5—N661.7 (2)Co1—N7—C17—C18176.5 (3)
C12—N5—N6—C141.6 (3)N8—N7—C17—C16174.5 (3)
Co1—N5—N6—C14164.2 (2)Co1—N7—C17—C168.7 (7)
C12—N5—N6—B1173.2 (3)F10—C16—C17—N70.7 (6)
Co1—N5—N6—B121.0 (3)F12—C16—C17—N7123.9 (4)
H21B—Co1—N7—C17156.8 (10)F11—C16—C17—N7121.4 (4)
N9—Co1—N7—C17132.1 (4)F10—C16—C17—C18174.6 (4)
N3—Co1—N7—C1729.6 (4)F12—C16—C17—C1862.2 (6)
N1—Co1—N7—C17107.9 (5)F11—C16—C17—C1852.5 (5)
N5—Co1—N7—C1762.4 (4)N7—C17—C18—C190.1 (4)
H21B—Co1—N7—N826.5 (10)C16—C17—C18—C19174.6 (4)
N9—Co1—N7—N844.6 (2)N7—N8—C19—C180.6 (4)
N3—Co1—N7—N8147.1 (2)B2—N8—C19—C18171.6 (4)
N1—Co1—N7—N875.4 (5)N7—N8—C19—C20179.7 (4)
N5—Co1—N7—N8120.8 (2)B2—N8—C19—C207.5 (6)
C17—N7—N8—C190.5 (4)C17—C18—C19—N80.4 (4)
Co1—N7—N8—C19177.6 (2)C17—C18—C19—C20179.5 (4)
C17—N7—N8—B2173.4 (3)N10—N9—C22—C230.1 (4)
Co1—N7—N8—B28.5 (3)Co1—N9—C22—C23175.9 (3)
N7—Co1—N9—C22134.0 (4)N10—N9—C22—C21178.1 (3)
H21B—Co1—N9—C22155.9 (10)Co1—N9—C22—C212.3 (6)
N3—Co1—N9—C2233.3 (4)F15—C21—C22—N9137.6 (4)
N1—Co1—N9—C2257.6 (4)F13—C21—C22—N914.9 (6)
N5—Co1—N9—C22123.8 (5)F14—C21—C22—N9105.1 (4)
N7—Co1—N9—N1050.21 (19)F15—C21—C22—C2340.3 (6)
H21B—Co1—N9—N1019.8 (10)F13—C21—C22—C23163.0 (4)
N3—Co1—N9—N10150.93 (18)F14—C21—C22—C2377.1 (5)
N1—Co1—N9—N10118.11 (19)N9—C22—C23—C240.6 (4)
N5—Co1—N9—N1051.9 (5)C21—C22—C23—C24177.5 (4)
C22—N9—N10—C240.5 (3)N9—N10—C24—C230.8 (4)
Co1—N9—N10—C24177.1 (2)B2—N10—C24—C23178.0 (3)
C22—N9—N10—B2178.2 (3)N9—N10—C24—C25177.5 (3)
Co1—N9—N10—B20.6 (3)B2—N10—C24—C250.3 (6)
N2—N1—C2—C30.1 (4)C22—C23—C24—N100.8 (4)
Co1—N1—C2—C3176.5 (3)C22—C23—C24—C25177.3 (4)
N2—N1—C2—C1178.3 (3)C9—N4—B1—N2121.5 (4)
Co1—N1—C2—C15.1 (6)N3—N4—B1—N263.3 (4)
F3—C1—C2—N134.6 (5)C9—N4—B1—N6118.2 (4)
F2—C1—C2—N1155.7 (4)N3—N4—B1—N657.0 (4)
F1—C1—C2—N185.9 (5)C4—N2—B1—N4124.1 (3)
F3—C1—C2—C3147.2 (4)N1—N2—B1—N461.4 (4)
F2—C1—C2—C326.2 (6)C4—N2—B1—N6115.1 (3)
F1—C1—C2—C392.3 (5)N1—N2—B1—N659.4 (4)
N1—C2—C3—C40.3 (4)C14—N6—B1—N4112.3 (4)
C1—C2—C3—C4178.1 (4)N5—N6—B1—N474.1 (3)
C2—C3—C4—N20.4 (4)C14—N6—B1—N2126.5 (3)
C2—C3—C4—C5178.7 (4)N5—N6—B1—N247.1 (4)
N1—N2—C4—C30.3 (4)C24—N10—B2—N8111.9 (4)
B1—N2—C4—C3174.6 (3)N9—N10—B2—N871.0 (3)
N1—N2—C4—C5178.7 (4)C19—N8—B2—N10109.7 (4)
B1—N2—C4—C56.3 (6)N7—N8—B2—N1078.3 (3)

Experimental details

Crystal data
Chemical formula[Co(C10H10BF6N4)(C15H13BF9N6)]
Mr829.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.593 (2), 12.1167 (13), 30.720 (3)
β (°) 102.721 (2)
V3)6751.1 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.28 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.875, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
32390, 7431, 5522
Rint0.032
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.167, 1.00
No. of reflections7431
No. of parameters495
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.32

Computer programs: SMART WNT/2000 (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—N72.100 (3)Co1—N32.124 (3)
Co1—H21B2.12 (3)Co1—N12.163 (3)
Co1—N92.124 (3)Co1—N52.172 (3)
Flourine interaction geometry (Å, °) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N3/N4/C9/C8/C7, N5/N6/C14/C13/C12, N7/N8/C19/C18/C17 and N9/N10/C24/C23/C22 rings, respectively.
C—F···CgC—FF···CgC···CgC—F···Cg
C1—F1···Cg41.333 (5)3.319 (4)3.798 (5)100.7 (3)
C1—F2···Cg2i1.331 (4)3.341 (3)4.565 (4)152.6 (2)
C1—F3···Cg41.316 (5)3.273 (3)3.798 (5)103.3 (3)
C11—F9···Cg31.295 (5)3.025 (4)3.826 (4)119.1 (3)
C16—F10···Cg11.298 (5)3.252 (4)4.279 (4)135.8 (3)
C16—F10···Cg21.298 (5)3.208 (3)4.061 (4)122.8 (2)
C16—F11···Cg4ii1.324 (5)3.605 (4)4.467 (4)123.0 (3)
C21—F13···Cg11.321 (5)3.373 (3)4.346 (5)130.3 (3)
Symmetry codes: (i) 1/2-x, 3/2-y, -z; (ii) 1/2-x, 1/2+y, 1/2-z.
 

Acknowledgements

Any acknowledgements?

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SAINT-Plus and SMART WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhosh, P., Bonanno, J. B. & Parkin, G. (1998). J. Chem. Soc. Dalton Trans. pp. 2779–2781.  Web of Science CSD CrossRef Google Scholar
First citationGorun, S. M., Hu, Z., Stibrany, R. T. & Carpenter, G. (2000). Inorg. Chim. Acta, 297, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuman, T., Ciunik, Z., Goclan, A., Lukasiewicz, M. & Wolowiec, S. (2001). Polyhedron, 20, 2965–2970.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuman, T., Ciunik, Z., Mazurek, J. & Wolowiec, S. (2002). Eur. J. Inorg. Chem. pp. 754–760.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemer, C. J., Meece, F. A., Armstrong, W. H. & Eichhorn, D. M. (2001). Polyhedron, 20, 2637–2646.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Knapp, S., Potenza, J. A. & Schugar, H. J. (1999). Inorg. Chem. 38, 132–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2006). Private Communication (reference number CCDC 631853). CCDC, Cambridge, England.  Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2009a). Acta Cryst. C65, o406–o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2009b). J. Chem. Crystallogr. 39, 266–269.  Web of Science CSD CrossRef CAS Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2010). Acta Cryst. E66, m506–m507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. E61, m1904–m1906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T., Zhang, C., Emge, T. J., Schugar, H. J., Potenza, J. A. & Knapp, S. (2006). Inorg. Chem. 45, 9713–9720.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m911-m912
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds