organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1582-o1583

2-(4-Bromo­phen­yl)-2-oxo­ethyl 4-bromo­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology – Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology – Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 May 2011; accepted 30 May 2011; online 4 June 2011)

The asymmetric unit of the title compound, C15H10Br2O3, consists of three crystallographically independent mol­ecules (A, B and C). The phenyl rings in mol­ecules A, B and C make dihedral angles of 6.1 (3), 3.2 (2) and 54.6 (2)° to each other, respectively. In the crystal, mol­ecules are linked into two-dimensional layers parallel to the ab plane by inter­molecular C—H⋯O hydrogen bonds. The crystal structure is further stabilized by C—H⋯π inter­actions. The studied crystal is an inversion twin, the refined ratio of the twin components being 0.128 (8):0.872 (8).

Related literature

For general background to phenacyl benzoates, see: Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]); Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]). For the values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For the synthetic procedure, see: Kelly & Howard (1932[Kelly, L. T. & Howard, H. W. (1932). J. Am. Chem. Soc. 54, 4383-4385.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Br2O3

  • Mr = 398.05

  • Monoclinic, P c

  • a = 11.0483 (3) Å

  • b = 5.9079 (1) Å

  • c = 33.8550 (8) Å

  • β = 108.802 (1)°

  • V = 2091.87 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 5.82 mm−1

  • T = 100 K

  • 0.72 × 0.46 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.103, Tmax = 0.809

  • 43017 measured reflections

  • 15850 independent reflections

  • 11608 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 0.98

  • 15850 reflections

  • 542 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −1.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6614 Friedel pairs

  • Flack parameter: 0.128 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4, Cg5, and Cg6 are the centroids of the C1A–C6A, C10A–C15A, C1B–C6B, C10B–C15B, C1C–C6C and C10C–C15C benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8A—H8AA⋯O2C 0.99 2.39 3.041 (7) 122
C8A—H8AB⋯O2B 0.99 2.36 3.157 (6) 138
C5B—H5BA⋯O3Ci 0.95 2.52 3.424 (6) 159
C2C—H2CA⋯O3Aii 0.95 2.35 3.093 (7) 135
C15C—H15C⋯O2Ciii 0.95 2.52 3.408 (6) 155
C8C—H8CB⋯O3Biv 0.99 2.59 3.355 (6) 134
C1B—H1BACg1 0.95 2.85 3.567 (6) 133
C14B—H14BCg2 0.95 2.78 3.498 (5) 133
C5A—H5AACg3ii 0.95 2.75 3.401 (6) 126
C12A—H12ACg4ii 0.95 2.70 3.394 (6) 130
C5C—H5CACg4v 0.95 2.94 3.691 (6) 137
C11B—H11BCg5i 0.95 2.93 3.596 (6) 128
C2A—H2AACg6 0.95 2.83 3.425 (6) 122
Symmetry codes: (i) x+1, y-1, z; (ii) x, y+1, z; (iii) x, y-1, z; (iv) x-1, y+1, z; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenacyl benzoates are very useful intermediates for the synthesis of biologically active oxazoles, imidazoles (Huang et al., 1996) and benzoxazepine (Gandhi et al., 1995). Phenacyl benzoates can be easily photolysed in completely neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006). They are also used for identification of organic acids (Rather & Reid, 1919). Keeping this in view, we hereby report the crystal structure of 2-(4-bromophenyl)-2-oxoethyl 4-bromobenzoate of potential commercial importance.

The asymmetric unit of the tittle compound (Fig. 1), consists of three crystallographically independent molecules A, B and C. The phenyl rings (C1–C6, C10–C15) in molecules A, B and C make dihedral angles of 6.1 (3), 3.2 (2) and 54.6 (2)° to each other, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal packing is shown in Fig. 2. The intermolecular C8A—H8AA···O2B and C8A—H8AB···O2C hydrogen bonds link molecule A with molecules B and C, respectively (Table 1). The molecules are linked into two-dimensional layers parallel to the ab plane by the intermolecular C5B—H5BA···O3C, C2C—H2CA···O3A, C15C—H15C···O2C and C8C—H8CB···O3B hydrogen bonds (Table 1). In addition, C—H···π interactions (Table 1) further stabilize the crystal structure.

Related literature top

For general background on phenacyl benzoates, see: Huang et al. (1996); Gandhi et al. (1995); Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006); Rather & Reid (1919). For the values of bond lengths, see: Allen et al. (1987). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For the synthetic procedure, see: Kelly & Howard (1932).

Experimental top

The title compound was synthesized according to the method reported in the literature (Kelly & Howard, 1932). A mixture of 4-bromo benzoic acid (1.0 g, 0.0049 mol), sodium carbonate (0.579 g, 0.0054 mol) and 2-bromo-1-(4-bromophenyl)ethanone (1.50 g, 0.0054 mol) in dimethyl formamide (10 ml) was stirred at room temperature for 2 h. On cooling, the separated colourless block shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 4-bromobenzoate were collected by filtration. The compound was recrystallized from ethanol. Yield: 1.80 g, 91.37%. M.p.: 407–408 K.

Refinement top

All H atoms were positioned geometrically [C–H = 0.95 or 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The studied crystal is an inversion twin with the refined ratio of twin components being 0.128 (8):0.872 (8).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the three independent molecules with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Dashed lines represent the hydrogen bonds.
2-(4-Bromophenyl)-2-oxoethyl 4-bromobenzoate top
Crystal data top
C15H10Br2O3F(000) = 1164
Mr = 398.05Dx = 1.896 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 9925 reflections
a = 11.0483 (3) Åθ = 2.5–33.5°
b = 5.9079 (1) ŵ = 5.82 mm1
c = 33.8550 (8) ÅT = 100 K
β = 108.802 (1)°Block, colourless
V = 2091.87 (8) Å30.72 × 0.46 × 0.04 mm
Z = 6
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
15850 independent reflections
Radiation source: fine-focus sealed tube11608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 35.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1617
Tmin = 0.103, Tmax = 0.809k = 99
43017 measured reflectionsl = 5454
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0764P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
15850 reflectionsΔρmax = 1.39 e Å3
542 parametersΔρmin = 1.13 e Å3
2 restraintsAbsolute structure: Flack (1983), 6614 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.128 (8)
Crystal data top
C15H10Br2O3V = 2091.87 (8) Å3
Mr = 398.05Z = 6
Monoclinic, PcMo Kα radiation
a = 11.0483 (3) ŵ = 5.82 mm1
b = 5.9079 (1) ÅT = 100 K
c = 33.8550 (8) Å0.72 × 0.46 × 0.04 mm
β = 108.802 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
15850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
11608 reflections with I > 2σ(I)
Tmin = 0.103, Tmax = 0.809Rint = 0.050
43017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.140Δρmax = 1.39 e Å3
S = 0.98Δρmin = 1.13 e Å3
15850 reflectionsAbsolute structure: Flack (1983), 6614 Friedel pairs
542 parametersAbsolute structure parameter: 0.128 (8)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.18159 (5)0.60252 (8)0.036383 (16)0.02639 (11)
Br2A0.82436 (5)1.43958 (8)0.402087 (16)0.02523 (11)
O1A0.5680 (3)0.9675 (6)0.21033 (11)0.0223 (7)
O2A0.5031 (4)1.1995 (6)0.13989 (11)0.0278 (8)
O3A0.5118 (4)0.6926 (6)0.24696 (11)0.0259 (7)
C1A0.3424 (5)0.6872 (7)0.09101 (15)0.0199 (9)
H1AA0.35060.59920.11520.024*
C2A0.2759 (5)0.6015 (7)0.05192 (15)0.0188 (9)
H2AA0.23620.45720.04930.023*
C3A0.2679 (5)0.7291 (8)0.01649 (15)0.0197 (9)
C4A0.3201 (5)0.9442 (8)0.01975 (17)0.0235 (10)
H4AA0.31041.03290.00450.028*
C5A0.3873 (5)1.0282 (8)0.05928 (17)0.0216 (9)
H5AA0.42651.17300.06190.026*
C6A0.3973 (4)0.9012 (7)0.09495 (15)0.0175 (8)
C7A0.4720 (4)1.0006 (8)0.13636 (15)0.0185 (8)
C8A0.5071 (5)0.8420 (7)0.17317 (14)0.0196 (8)
H8AA0.42920.76760.17530.024*
H8AB0.56560.72320.16940.024*
C9A0.5619 (4)0.8729 (7)0.24557 (14)0.0167 (8)
C10A0.6243 (4)1.0141 (7)0.28312 (14)0.0162 (8)
C11A0.6732 (4)1.2286 (7)0.27958 (14)0.0172 (8)
H11A0.66611.28800.25280.021*
C12A0.7326 (5)1.3554 (8)0.31541 (16)0.0207 (9)
H12A0.76601.50150.31340.025*
C13A0.7417 (5)1.2645 (7)0.35375 (15)0.0195 (9)
C14A0.6945 (5)1.0528 (8)0.35786 (15)0.0210 (9)
H14A0.70260.99350.38470.025*
C15A0.6352 (5)0.9284 (7)0.32225 (15)0.0201 (9)
H15A0.60160.78290.32460.024*
Br1B0.53003 (5)0.07466 (9)0.054856 (16)0.02998 (12)
Br2B1.07283 (4)0.92900 (7)0.388119 (15)0.02288 (10)
O1B0.8378 (3)0.4512 (5)0.19518 (10)0.0210 (7)
O2B0.7000 (3)0.6665 (5)0.12859 (11)0.0227 (7)
O3B0.9667 (4)0.1658 (6)0.22740 (11)0.0265 (7)
C1B0.5978 (5)0.4985 (8)0.04755 (16)0.0208 (9)
H1BA0.57120.64390.05350.025*
C2B0.5533 (5)0.4158 (7)0.00704 (15)0.0214 (9)
H2BA0.49750.50330.01490.026*
C3B0.5927 (5)0.2018 (8)0.00054 (14)0.0205 (9)
C4B0.6760 (5)0.0715 (7)0.03099 (16)0.0208 (9)
H4BA0.70240.07370.02490.025*
C5B0.7197 (4)0.1557 (8)0.07135 (15)0.0192 (8)
H5BA0.77570.06800.09320.023*
C6B0.6808 (4)0.3716 (7)0.07970 (15)0.0177 (8)
C7B0.7254 (4)0.4719 (7)0.12233 (14)0.0171 (8)
C8B0.8037 (5)0.3228 (8)0.15763 (14)0.0210 (9)
H8BA0.75330.18840.16020.025*
H8BB0.88170.27040.15200.025*
C9B0.9212 (4)0.3521 (7)0.22846 (13)0.0169 (8)
C10B0.9545 (4)0.4987 (8)0.26645 (15)0.0179 (8)
C11B1.0415 (5)0.4121 (7)0.30300 (15)0.0187 (9)
H11B1.07740.26610.30280.022*
C12B1.0756 (5)0.5370 (8)0.33938 (16)0.0205 (9)
H12B1.13400.47760.36440.025*
C13B1.0231 (5)0.7509 (7)0.33885 (14)0.0177 (8)
C14B0.9370 (4)0.8397 (7)0.30301 (14)0.0160 (8)
H14B0.90180.98610.30330.019*
C15B0.9024 (4)0.7123 (7)0.26641 (14)0.0179 (8)
H15B0.84350.77150.24150.021*
Br1C0.43511 (5)1.43292 (8)0.377352 (16)0.02489 (11)
Br2C0.05174 (5)0.07320 (8)0.018770 (15)0.02514 (11)
O1C0.1123 (4)0.5932 (5)0.17085 (11)0.0219 (7)
O2C0.2506 (3)0.9773 (6)0.18127 (11)0.0228 (7)
O3C0.0252 (3)0.8552 (6)0.13377 (11)0.0226 (7)
C1C0.3297 (4)1.2443 (7)0.25390 (15)0.0195 (8)
H1CA0.33581.30740.22880.023*
C2C0.3796 (5)1.3622 (8)0.29096 (17)0.0222 (9)
H2CA0.42011.50460.29160.027*
C3C0.3688 (4)1.2664 (7)0.32701 (15)0.0184 (8)
C4C0.3121 (5)1.0557 (7)0.32713 (16)0.0206 (9)
H4CA0.30790.99200.35240.025*
C5C0.2617 (5)0.9405 (7)0.28960 (15)0.0185 (8)
H5CA0.22130.79800.28900.022*
C6C0.2706 (4)1.0347 (7)0.25272 (15)0.0177 (8)
C7C0.2193 (4)0.9178 (7)0.21081 (14)0.0178 (8)
C8C0.1289 (5)0.7231 (7)0.20783 (14)0.0213 (9)
H8CA0.16280.62430.23260.026*
H8CB0.04490.78220.20770.026*
C9C0.0324 (4)0.6806 (7)0.13537 (13)0.0180 (8)
C10C0.0191 (4)0.5316 (7)0.09875 (14)0.0163 (8)
C11C0.0566 (5)0.6070 (7)0.05980 (15)0.0189 (9)
H11C0.09460.75280.05720.023*
C12C0.0778 (5)0.4725 (8)0.02446 (15)0.0210 (9)
H12C0.13050.52420.00210.025*
C13C0.0203 (5)0.2613 (7)0.02892 (15)0.0209 (9)
C14C0.0574 (5)0.1815 (7)0.06756 (14)0.0188 (8)
H14C0.09630.03650.07000.023*
C15C0.0765 (4)0.3188 (7)0.10221 (15)0.0185 (9)
H15C0.12940.26730.12870.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0275 (3)0.0295 (2)0.0182 (2)0.0036 (2)0.0018 (2)0.00314 (18)
Br2A0.0262 (3)0.0274 (2)0.0195 (2)0.0049 (2)0.0038 (2)0.00427 (18)
O1A0.0243 (18)0.0250 (16)0.0185 (16)0.0052 (13)0.0083 (14)0.0009 (12)
O2A0.036 (2)0.0218 (16)0.0214 (17)0.0107 (15)0.0038 (15)0.0034 (13)
O3A0.036 (2)0.0206 (15)0.0210 (16)0.0059 (14)0.0085 (15)0.0007 (12)
C1A0.019 (2)0.0192 (19)0.020 (2)0.0022 (17)0.0044 (18)0.0024 (15)
C2A0.017 (2)0.0210 (19)0.016 (2)0.0030 (16)0.0025 (17)0.0029 (15)
C3A0.015 (2)0.023 (2)0.018 (2)0.0028 (16)0.0009 (17)0.0020 (16)
C4A0.022 (2)0.023 (2)0.026 (2)0.0025 (18)0.008 (2)0.0072 (17)
C5A0.015 (2)0.0174 (19)0.032 (3)0.0012 (16)0.008 (2)0.0024 (17)
C6A0.014 (2)0.0205 (19)0.018 (2)0.0003 (15)0.0047 (17)0.0018 (15)
C7A0.015 (2)0.0207 (18)0.021 (2)0.0017 (17)0.0074 (17)0.0012 (16)
C8A0.025 (2)0.0185 (19)0.0165 (19)0.0017 (17)0.0086 (18)0.0034 (15)
C9A0.015 (2)0.0181 (18)0.0169 (19)0.0030 (15)0.0045 (17)0.0017 (14)
C10A0.0127 (19)0.0179 (18)0.018 (2)0.0021 (15)0.0044 (16)0.0038 (15)
C11A0.016 (2)0.0197 (18)0.0164 (19)0.0037 (16)0.0062 (17)0.0050 (15)
C12A0.017 (2)0.0196 (19)0.027 (2)0.0009 (17)0.0081 (19)0.0021 (17)
C13A0.016 (2)0.021 (2)0.022 (2)0.0027 (17)0.0070 (18)0.0039 (16)
C14A0.019 (2)0.025 (2)0.019 (2)0.0023 (17)0.0068 (18)0.0023 (16)
C15A0.020 (2)0.0189 (19)0.021 (2)0.0010 (16)0.0066 (18)0.0040 (15)
Br1B0.0351 (3)0.0346 (3)0.0171 (2)0.0034 (2)0.0040 (2)0.00323 (18)
Br2B0.0263 (3)0.0243 (2)0.0178 (2)0.00191 (18)0.00666 (19)0.00410 (16)
O1B0.0251 (18)0.0201 (15)0.0160 (15)0.0032 (13)0.0039 (14)0.0018 (11)
O2B0.0229 (17)0.0204 (15)0.0247 (17)0.0002 (13)0.0073 (14)0.0012 (13)
O3B0.033 (2)0.0202 (15)0.0232 (17)0.0077 (14)0.0052 (15)0.0001 (13)
C1B0.018 (2)0.0156 (17)0.028 (2)0.0037 (16)0.0065 (19)0.0037 (16)
C2B0.021 (2)0.023 (2)0.018 (2)0.0008 (17)0.0031 (18)0.0022 (16)
C3B0.024 (2)0.023 (2)0.0139 (19)0.0000 (18)0.0054 (18)0.0002 (15)
C4B0.023 (2)0.0164 (19)0.025 (2)0.0001 (16)0.010 (2)0.0014 (15)
C5B0.014 (2)0.0196 (19)0.023 (2)0.0016 (16)0.0039 (18)0.0018 (16)
C6B0.014 (2)0.0167 (17)0.022 (2)0.0007 (15)0.0049 (17)0.0042 (15)
C7B0.015 (2)0.0170 (18)0.020 (2)0.0005 (15)0.0065 (17)0.0022 (15)
C8B0.020 (2)0.0216 (19)0.020 (2)0.0006 (17)0.0041 (18)0.0047 (16)
C9B0.016 (2)0.0214 (19)0.0130 (18)0.0034 (16)0.0047 (16)0.0007 (15)
C10B0.016 (2)0.0196 (18)0.020 (2)0.0002 (16)0.0085 (17)0.0002 (16)
C11B0.016 (2)0.0194 (19)0.020 (2)0.0013 (16)0.0055 (18)0.0004 (15)
C12B0.017 (2)0.021 (2)0.022 (2)0.0007 (17)0.0038 (18)0.0028 (16)
C13B0.018 (2)0.0217 (19)0.016 (2)0.0059 (16)0.0094 (17)0.0043 (15)
C14B0.013 (2)0.0193 (18)0.0159 (19)0.0026 (15)0.0051 (16)0.0025 (14)
C15B0.015 (2)0.0168 (18)0.023 (2)0.0007 (15)0.0079 (18)0.0007 (15)
Br1C0.0246 (3)0.0249 (2)0.0225 (2)0.00107 (19)0.00391 (19)0.00451 (18)
Br2C0.0315 (3)0.0247 (2)0.0194 (2)0.0009 (2)0.0084 (2)0.00358 (17)
O1C0.0286 (19)0.0186 (15)0.0163 (15)0.0008 (13)0.0042 (14)0.0003 (11)
O2C0.0203 (17)0.0306 (17)0.0189 (16)0.0016 (14)0.0082 (14)0.0037 (13)
O3C0.0191 (17)0.0242 (15)0.0227 (17)0.0028 (13)0.0045 (14)0.0009 (13)
C1C0.017 (2)0.0185 (19)0.023 (2)0.0004 (16)0.0076 (18)0.0035 (16)
C2C0.017 (2)0.0168 (18)0.034 (3)0.0022 (17)0.010 (2)0.0003 (17)
C3C0.012 (2)0.0192 (19)0.023 (2)0.0005 (15)0.0036 (17)0.0003 (16)
C4C0.022 (2)0.0190 (19)0.023 (2)0.0024 (17)0.0091 (19)0.0007 (16)
C5C0.017 (2)0.0183 (19)0.023 (2)0.0022 (16)0.0095 (18)0.0010 (15)
C6C0.0113 (19)0.0185 (19)0.023 (2)0.0027 (15)0.0059 (17)0.0017 (15)
C7C0.016 (2)0.0177 (18)0.018 (2)0.0038 (16)0.0031 (17)0.0003 (15)
C8C0.030 (3)0.0175 (19)0.019 (2)0.0013 (17)0.0105 (19)0.0002 (15)
C9C0.018 (2)0.0190 (18)0.0172 (19)0.0032 (16)0.0064 (17)0.0019 (15)
C10C0.013 (2)0.0185 (18)0.0164 (19)0.0017 (15)0.0040 (16)0.0007 (14)
C11C0.017 (2)0.0188 (19)0.019 (2)0.0008 (16)0.0029 (18)0.0036 (15)
C12C0.021 (2)0.021 (2)0.021 (2)0.0010 (17)0.0049 (18)0.0025 (16)
C13C0.018 (2)0.0196 (19)0.027 (2)0.0040 (17)0.0093 (19)0.0075 (17)
C14C0.020 (2)0.0185 (19)0.019 (2)0.0001 (16)0.0079 (18)0.0005 (15)
C15C0.018 (2)0.0147 (17)0.022 (2)0.0007 (16)0.0058 (18)0.0049 (15)
Geometric parameters (Å, º) top
Br1A—C3A1.890 (5)C6B—C7B1.489 (6)
Br2A—C13A1.902 (5)C7B—C8B1.512 (6)
O1A—C9A1.339 (5)C8B—H8BA0.9900
O1A—C8A1.428 (5)C8B—H8BB0.9900
O2A—C7A1.220 (6)C9B—C10B1.495 (6)
O3A—C9A1.208 (5)C10B—C15B1.386 (6)
C1A—C2A1.386 (7)C10B—C11B1.397 (7)
C1A—C6A1.390 (6)C11B—C12B1.380 (7)
C1A—H1AA0.9500C11B—H11B0.9500
C2A—C3A1.395 (6)C12B—C13B1.388 (6)
C2A—H2AA0.9500C12B—H12B0.9500
C3A—C4A1.385 (6)C13B—C14B1.381 (6)
C4A—C5A1.396 (7)C14B—C15B1.394 (6)
C4A—H4AA0.9500C14B—H14B0.9500
C5A—C6A1.396 (7)C15B—H15B0.9500
C5A—H5AA0.9500Br1C—C3C1.898 (5)
C6A—C7A1.499 (7)Br2C—C13C1.898 (4)
C7A—C8A1.506 (7)O1C—C9C1.344 (5)
C8A—H8AA0.9900O1C—C8C1.429 (5)
C8A—H8AB0.9900O2C—C7C1.211 (5)
C9A—C10A1.491 (6)O3C—C9C1.204 (5)
C10A—C15A1.387 (6)C1C—C2C1.385 (7)
C10A—C11A1.398 (6)C1C—C6C1.395 (6)
C11A—C12A1.396 (7)C1C—H1CA0.9500
C11A—H11A0.9500C2C—C3C1.385 (7)
C12A—C13A1.378 (7)C2C—H2CA0.9500
C12A—H12A0.9500C3C—C4C1.395 (6)
C13A—C14A1.379 (6)C4C—C5C1.390 (7)
C14A—C15A1.384 (7)C4C—H4CA0.9500
C14A—H14A0.9500C5C—C6C1.399 (6)
C15A—H15A0.9500C5C—H5CA0.9500
Br1B—C3B1.898 (5)C6C—C7C1.514 (6)
Br2B—C13B1.898 (4)C7C—C8C1.505 (6)
O1B—C9B1.339 (6)C8C—H8CA0.9900
O1B—C8B1.423 (5)C8C—H8CB0.9900
O2B—C7B1.218 (5)C9C—C10C1.489 (6)
O3B—C9B1.215 (5)C10C—C11C1.388 (6)
C1B—C2B1.388 (7)C10C—C15C1.396 (6)
C1B—C6B1.395 (6)C11C—C12C1.392 (7)
C1B—H1BA0.9500C11C—H11C0.9500
C2B—C3B1.388 (6)C12C—C13C1.386 (6)
C2B—H2BA0.9500C12C—H12C0.9500
C3B—C4B1.395 (7)C13C—C14C1.395 (7)
C4B—C5B1.387 (7)C14C—C15C1.385 (6)
C4B—H4BA0.9500C14C—H14C0.9500
C5B—C6B1.404 (6)C15C—H15C0.9500
C5B—H5BA0.9500
C9A—O1A—C8A115.1 (4)O1B—C8B—H8BB110.0
C2A—C1A—C6A120.3 (4)C7B—C8B—H8BB110.0
C2A—C1A—H1AA119.9H8BA—C8B—H8BB108.4
C6A—C1A—H1AA119.9O3B—C9B—O1B123.4 (4)
C1A—C2A—C3A119.4 (4)O3B—C9B—C10B124.1 (4)
C1A—C2A—H2AA120.3O1B—C9B—C10B112.5 (4)
C3A—C2A—H2AA120.3C15B—C10B—C11B120.1 (4)
C4A—C3A—C2A121.2 (4)C15B—C10B—C9B122.6 (4)
C4A—C3A—Br1A120.6 (4)C11B—C10B—C9B117.3 (4)
C2A—C3A—Br1A118.2 (3)C12B—C11B—C10B120.4 (4)
C3A—C4A—C5A118.8 (4)C12B—C11B—H11B119.8
C3A—C4A—H4AA120.6C10B—C11B—H11B119.8
C5A—C4A—H4AA120.6C11B—C12B—C13B118.9 (5)
C6A—C5A—C4A120.5 (4)C11B—C12B—H12B120.6
C6A—C5A—H5AA119.7C13B—C12B—H12B120.6
C4A—C5A—H5AA119.7C14B—C13B—C12B121.6 (4)
C1A—C6A—C5A119.7 (4)C14B—C13B—Br2B118.9 (3)
C1A—C6A—C7A122.5 (4)C12B—C13B—Br2B119.5 (4)
C5A—C6A—C7A117.7 (4)C13B—C14B—C15B119.3 (4)
O2A—C7A—C6A121.5 (4)C13B—C14B—H14B120.3
O2A—C7A—C8A121.9 (4)C15B—C14B—H14B120.3
C6A—C7A—C8A116.6 (4)C10B—C15B—C14B119.7 (4)
O1A—C8A—C7A109.2 (4)C10B—C15B—H15B120.1
O1A—C8A—H8AA109.8C14B—C15B—H15B120.1
C7A—C8A—H8AA109.8C9C—O1C—C8C116.0 (3)
O1A—C8A—H8AB109.8C2C—C1C—C6C121.2 (4)
C7A—C8A—H8AB109.8C2C—C1C—H1CA119.4
H8AA—C8A—H8AB108.3C6C—C1C—H1CA119.4
O3A—C9A—O1A123.9 (4)C1C—C2C—C3C118.1 (4)
O3A—C9A—C10A123.5 (4)C1C—C2C—H2CA121.0
O1A—C9A—C10A112.6 (4)C3C—C2C—H2CA121.0
C15A—C10A—C11A119.7 (4)C2C—C3C—C4C122.3 (4)
C15A—C10A—C9A119.0 (4)C2C—C3C—Br1C117.5 (3)
C11A—C10A—C9A121.3 (4)C4C—C3C—Br1C120.2 (4)
C12A—C11A—C10A119.9 (4)C5C—C4C—C3C118.8 (4)
C12A—C11A—H11A120.1C5C—C4C—H4CA120.6
C10A—C11A—H11A120.1C3C—C4C—H4CA120.6
C13A—C12A—C11A118.7 (4)C4C—C5C—C6C119.9 (4)
C13A—C12A—H12A120.6C4C—C5C—H5CA120.0
C11A—C12A—H12A120.6C6C—C5C—H5CA120.0
C12A—C13A—C14A122.2 (5)C1C—C6C—C5C119.6 (4)
C12A—C13A—Br2A117.9 (4)C1C—C6C—C7C117.5 (4)
C14A—C13A—Br2A119.9 (4)C5C—C6C—C7C122.8 (4)
C13A—C14A—C15A118.8 (4)O2C—C7C—C8C121.8 (4)
C13A—C14A—H14A120.6O2C—C7C—C6C121.4 (4)
C15A—C14A—H14A120.6C8C—C7C—C6C116.8 (4)
C14A—C15A—C10A120.6 (4)O1C—C8C—C7C111.3 (4)
C14A—C15A—H15A119.7O1C—C8C—H8CA109.4
C10A—C15A—H15A119.7C7C—C8C—H8CA109.4
C9B—O1B—C8B115.5 (3)O1C—C8C—H8CB109.4
C2B—C1B—C6B121.1 (4)C7C—C8C—H8CB109.4
C2B—C1B—H1BA119.5H8CA—C8C—H8CB108.0
C6B—C1B—H1BA119.5O3C—C9C—O1C123.7 (4)
C1B—C2B—C3B118.1 (4)O3C—C9C—C10C124.1 (4)
C1B—C2B—H2BA121.0O1C—C9C—C10C112.2 (4)
C3B—C2B—H2BA121.0C11C—C10C—C15C119.1 (4)
C2B—C3B—C4B122.0 (4)C11C—C10C—C9C118.0 (4)
C2B—C3B—Br1B120.1 (4)C15C—C10C—C9C122.9 (4)
C4B—C3B—Br1B117.9 (3)C10C—C11C—C12C121.1 (4)
C5B—C4B—C3B119.4 (4)C10C—C11C—H11C119.4
C5B—C4B—H4BA120.3C12C—C11C—H11C119.4
C3B—C4B—H4BA120.3C13C—C12C—C11C118.4 (4)
C4B—C5B—C6B119.5 (4)C13C—C12C—H12C120.8
C4B—C5B—H5BA120.2C11C—C12C—H12C120.8
C6B—C5B—H5BA120.2C12C—C13C—C14C121.9 (4)
C1B—C6B—C5B119.9 (4)C12C—C13C—Br2C118.9 (4)
C1B—C6B—C7B118.1 (4)C14C—C13C—Br2C119.2 (3)
C5B—C6B—C7B122.0 (4)C15C—C14C—C13C118.4 (4)
O2B—C7B—C6B121.4 (4)C15C—C14C—H14C120.8
O2B—C7B—C8B121.2 (4)C13C—C14C—H14C120.8
C6B—C7B—C8B117.4 (4)C14C—C15C—C10C121.0 (4)
O1B—C8B—C7B108.3 (3)C14C—C15C—H15C119.5
O1B—C8B—H8BA110.0C10C—C15C—H15C119.5
C7B—C8B—H8BA110.0
C6A—C1A—C2A—C3A2.0 (7)C8B—O1B—C9B—O3B0.5 (6)
C1A—C2A—C3A—C4A3.0 (7)C8B—O1B—C9B—C10B178.8 (4)
C1A—C2A—C3A—Br1A177.8 (4)O3B—C9B—C10B—C15B178.8 (4)
C2A—C3A—C4A—C5A3.3 (7)O1B—C9B—C10B—C15B0.5 (6)
Br1A—C3A—C4A—C5A177.6 (4)O3B—C9B—C10B—C11B1.4 (7)
C3A—C4A—C5A—C6A2.5 (7)O1B—C9B—C10B—C11B179.7 (4)
C2A—C1A—C6A—C5A1.2 (7)C15B—C10B—C11B—C12B0.5 (7)
C2A—C1A—C6A—C7A179.0 (4)C9B—C10B—C11B—C12B179.3 (4)
C4A—C5A—C6A—C1A1.5 (7)C10B—C11B—C12B—C13B0.7 (7)
C4A—C5A—C6A—C7A179.3 (4)C11B—C12B—C13B—C14B0.7 (7)
C1A—C6A—C7A—O2A169.0 (5)C11B—C12B—C13B—Br2B178.1 (4)
C5A—C6A—C7A—O2A13.2 (7)C12B—C13B—C14B—C15B0.4 (7)
C1A—C6A—C7A—C8A11.3 (6)Br2B—C13B—C14B—C15B178.4 (3)
C5A—C6A—C7A—C8A166.4 (4)C11B—C10B—C15B—C14B0.2 (6)
C9A—O1A—C8A—C7A156.4 (4)C9B—C10B—C15B—C14B179.6 (4)
O2A—C7A—C8A—O1A5.2 (6)C13B—C14B—C15B—C10B0.1 (6)
C6A—C7A—C8A—O1A175.2 (4)C6C—C1C—C2C—C3C0.3 (7)
C8A—O1A—C9A—O3A1.6 (6)C1C—C2C—C3C—C4C1.2 (7)
C8A—O1A—C9A—C10A178.6 (4)C1C—C2C—C3C—Br1C178.9 (3)
O3A—C9A—C10A—C15A5.4 (7)C2C—C3C—C4C—C5C1.7 (7)
O1A—C9A—C10A—C15A174.4 (4)Br1C—C3C—C4C—C5C178.5 (3)
O3A—C9A—C10A—C11A175.5 (4)C3C—C4C—C5C—C6C1.1 (7)
O1A—C9A—C10A—C11A4.7 (6)C2C—C1C—C6C—C5C0.2 (7)
C15A—C10A—C11A—C12A0.1 (7)C2C—C1C—C6C—C7C179.8 (4)
C9A—C10A—C11A—C12A179.2 (4)C4C—C5C—C6C—C1C0.2 (7)
C10A—C11A—C12A—C13A0.2 (7)C4C—C5C—C6C—C7C179.3 (4)
C11A—C12A—C13A—C14A0.1 (7)C1C—C6C—C7C—O2C15.1 (6)
C11A—C12A—C13A—Br2A179.5 (3)C5C—C6C—C7C—O2C164.4 (4)
C12A—C13A—C14A—C15A0.5 (7)C1C—C6C—C7C—C8C165.6 (4)
Br2A—C13A—C14A—C15A179.8 (4)C5C—C6C—C7C—C8C14.9 (6)
C13A—C14A—C15A—C10A0.5 (7)C9C—O1C—C8C—C7C78.8 (5)
C11A—C10A—C15A—C14A0.3 (7)O2C—C7C—C8C—O1C13.7 (6)
C9A—C10A—C15A—C14A178.8 (4)C6C—C7C—C8C—O1C165.6 (4)
C6B—C1B—C2B—C3B0.7 (7)C8C—O1C—C9C—O3C1.3 (6)
C1B—C2B—C3B—C4B0.9 (7)C8C—O1C—C9C—C10C178.8 (4)
C1B—C2B—C3B—Br1B177.6 (4)O3C—C9C—C10C—C11C5.2 (7)
C2B—C3B—C4B—C5B0.9 (7)O1C—C9C—C10C—C11C177.3 (4)
Br1B—C3B—C4B—C5B177.6 (4)O3C—C9C—C10C—C15C173.0 (4)
C3B—C4B—C5B—C6B0.8 (7)O1C—C9C—C10C—C15C4.5 (6)
C2B—C1B—C6B—C5B0.6 (7)C15C—C10C—C11C—C12C1.1 (7)
C2B—C1B—C6B—C7B179.5 (4)C9C—C10C—C11C—C12C177.2 (4)
C4B—C5B—C6B—C1B0.6 (7)C10C—C11C—C12C—C13C0.6 (7)
C4B—C5B—C6B—C7B179.5 (4)C11C—C12C—C13C—C14C0.0 (7)
C1B—C6B—C7B—O2B6.5 (7)C11C—C12C—C13C—Br2C178.5 (4)
C5B—C6B—C7B—O2B173.6 (4)C12C—C13C—C14C—C15C0.2 (7)
C1B—C6B—C7B—C8B173.6 (4)Br2C—C13C—C14C—C15C178.3 (3)
C5B—C6B—C7B—C8B6.3 (6)C13C—C14C—C15C—C10C0.3 (7)
C9B—O1B—C8B—C7B171.8 (4)C11C—C10C—C15C—C14C0.9 (7)
O2B—C7B—C8B—O1B0.7 (6)C9C—C10C—C15C—C14C177.3 (4)
C6B—C7B—C8B—O1B179.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4, Cg5, and Cg6 are the centroids of the C1A–C6A, C10A–C15A, C1B–C6B, C10B–C15B, C1C–C6C and C10C–C15C benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8A—H8AA···O2C0.992.393.041 (7)122
C8A—H8AB···O2B0.992.363.157 (6)138
C5B—H5BA···O3Ci0.952.523.424 (6)159
C2C—H2CA···O3Aii0.952.353.093 (7)135
C15C—H15C···O2Ciii0.952.523.408 (6)155
C8C—H8CB···O3Biv0.992.593.355 (6)134
C1B—H1BA···Cg10.952.853.567 (6)133
C14B—H14B···Cg20.952.783.498 (5)133
C5A—H5AA···Cg3ii0.952.753.401 (6)126
C12A—H12A···Cg4ii0.952.703.394 (6)130
C5C—H5CA···Cg4v0.952.943.691 (6)137
C11B—H11B···Cg5i0.952.933.596 (6)128
C2A—H2AA···Cg60.952.833.425 (6)122
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x1, y+1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H10Br2O3
Mr398.05
Crystal system, space groupMonoclinic, Pc
Temperature (K)100
a, b, c (Å)11.0483 (3), 5.9079 (1), 33.8550 (8)
β (°) 108.802 (1)
V3)2091.87 (8)
Z6
Radiation typeMo Kα
µ (mm1)5.82
Crystal size (mm)0.72 × 0.46 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.103, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
43017, 15850, 11608
Rint0.050
(sin θ/λ)max1)0.809
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.140, 0.98
No. of reflections15850
No. of parameters542
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 1.13
Absolute structureFlack (1983), 6614 Friedel pairs
Absolute structure parameter0.128 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4, Cg5, and Cg6 are the centroids of the C1A–C6A, C10A–C15A, C1B–C6B, C10B–C15B, C1C–C6C and C10C–C15C benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8A—H8AA···O2C0.99002.39003.041 (7)122.00
C8A—H8AB···O2B0.99002.36003.157 (6)138.00
C5B—H5BA···O3Ci0.95002.52003.424 (6)159.00
C2C—H2CA···O3Aii0.95002.35003.093 (7)135.00
C15C—H15C···O2Ciii0.95002.52003.408 (6)155.00
C8C—H8CB···O3Biv0.99002.59003.355 (6)134.00
C1B—H1BA···Cg10.95002.85003.567 (6)133.00
C14B—H14B···Cg20.95002.78003.498 (5)133.00
C5A—H5AA···Cg3ii0.95002.75003.401 (6)126.00
C12A—H12A···Cg4ii0.95002.70003.394 (6)130.00
C5C—H5CA···Cg4v0.95002.94003.691 (6)137.00
C11B—H11B···Cg5i0.95002.93003.596 (6)128.00
C2A—H2AA···Cg60.95002.83003.425 (6)122.00
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x1, y+1, z; (v) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian government and USM for the award of a research scholarship. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a 'Young Scientist' award. BG thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationKelly, L. T. & Howard, H. W. (1932). J. Am. Chem. Soc. 54, 4383–4385.  CrossRef CAS Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1582-o1583
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds