organic compounds
4-Bromobenzoyl 4-bromobenzoate monohydrate
aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
In the title compound, C14H8Br2O3·H2O, the organic and water molecules both have crystallographically imposed Cs symmetry. The dihedral angle between the aromatic rings is 45.76 (11)°. In the intermolecular C—H⋯O and O—H⋯O hydrogen bonds link the molecules into chains parallel to the a axis. No π–π stacking interactions are observed in the crystal structure.
Related literature
For the para-bromobenzoic acid anhydride, see: McCammon & Trotter (1964); Duesler et al. (1981). For the use of chelate ligands in coordination chemistry, see: Gade (1998). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).
of anhydrousExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811022264/rz2605sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811022264/rz2605Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811022264/rz2605Isup3.cdx
Supporting information file. DOI: 10.1107/S1600536811022264/rz2605Isup4.cml
The compound was prepared upon reacting 4-bromobenzyl chloride (2.5 mmol) with potassium thiocyanate (2.5 mmol) and dipyridin-2-ylamine (2.5 mmol) in refluxing acetone (15 ml) for two hours. Crystals suitable for the X-ray diffraction study were obtained upon free evaporation of the reaction mixture.
Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the
in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The H atom of the water molecule was located on a difference Fourier map and refined using a DFIX instruction (dO—H set to 0.85 Å), with Uiso(H) set to 1.5Ueq(O).Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C14H8Br2O3·H2O | F(000) = 784 |
Mr = 402.04 | Dx = 1.928 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 4619 reflections |
a = 12.6118 (3) Å | θ = 2.9–28.1° |
b = 28.2378 (7) Å | µ = 5.86 mm−1 |
c = 3.8898 (1) Å | T = 200 K |
V = 1385.27 (6) Å3 | Needle, yellow |
Z = 4 | 0.35 × 0.12 × 0.05 mm |
Bruker APEXII CCD diffractometer | 1728 independent reflections |
Radiation source: fine-focus sealed tube | 1519 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −16→16 |
Tmin = 0.825, Tmax = 1.000 | k = −26→37 |
11620 measured reflections | l = −3→5 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.30 | w = 1/[σ2(Fo2) + (0.0068P)2 + 7.342P] where P = (Fo2 + 2Fc2)/3 |
1728 reflections | (Δ/σ)max < 0.001 |
98 parameters | Δρmax = 0.69 e Å−3 |
2 restraints | Δρmin = −0.62 e Å−3 |
C14H8Br2O3·H2O | V = 1385.27 (6) Å3 |
Mr = 402.04 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 12.6118 (3) Å | µ = 5.86 mm−1 |
b = 28.2378 (7) Å | T = 200 K |
c = 3.8898 (1) Å | 0.35 × 0.12 × 0.05 mm |
Bruker APEXII CCD diffractometer | 1728 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1519 reflections with I > 2σ(I) |
Tmin = 0.825, Tmax = 1.000 | Rint = 0.024 |
11620 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 2 restraints |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.30 | Δρmax = 0.69 e Å−3 |
1728 reflections | Δρmin = −0.62 e Å−3 |
98 parameters |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.14551 (4) | 0.030824 (15) | −0.21724 (12) | 0.03488 (15) | |
O1 | 0.0688 (4) | 0.2500 | 0.0995 (14) | 0.0340 (11) | |
O2 | 0.2098 (2) | 0.20237 (11) | 0.2371 (14) | 0.0530 (12) | |
C1 | 0.1190 (3) | 0.20645 (15) | 0.1450 (12) | 0.0244 (9) | |
C2 | 0.0521 (3) | 0.16413 (13) | 0.0633 (11) | 0.0208 (8) | |
C3 | −0.0548 (3) | 0.16199 (14) | 0.1493 (11) | 0.0224 (8) | |
H3 | −0.0880 | 0.1880 | 0.2604 | 0.027* | |
C4 | −0.1125 (3) | 0.12164 (14) | 0.0718 (11) | 0.0228 (8) | |
H4 | −0.1854 | 0.1197 | 0.1316 | 0.027* | |
C5 | −0.0637 (3) | 0.08430 (14) | −0.0924 (11) | 0.0225 (8) | |
C6 | 0.0432 (3) | 0.08532 (14) | −0.1753 (12) | 0.0257 (9) | |
H6 | 0.0761 | 0.0592 | −0.2863 | 0.031* | |
C7 | 0.1007 (3) | 0.12551 (14) | −0.0919 (12) | 0.0240 (9) | |
H7 | 0.1744 | 0.1267 | −0.1414 | 0.029* | |
O90 | 0.3607 (4) | 0.2500 | 0.7343 (14) | 0.0354 (10) | |
H901 | 0.329 (4) | 0.2690 (15) | 0.864 (12) | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0490 (3) | 0.0237 (2) | 0.0319 (2) | −0.0150 (2) | −0.0019 (2) | −0.0033 (2) |
O1 | 0.031 (2) | 0.027 (2) | 0.044 (3) | 0.000 | −0.003 (2) | 0.000 |
O2 | 0.0195 (14) | 0.0242 (15) | 0.115 (4) | 0.0002 (13) | −0.028 (2) | 0.006 (2) |
C1 | 0.0119 (17) | 0.0224 (19) | 0.039 (2) | −0.0004 (14) | −0.0018 (16) | 0.0024 (18) |
C2 | 0.0185 (18) | 0.0157 (18) | 0.028 (2) | 0.0000 (15) | −0.0027 (16) | 0.0032 (16) |
C3 | 0.0190 (18) | 0.0183 (18) | 0.030 (2) | 0.0043 (15) | −0.0010 (17) | −0.0004 (16) |
C4 | 0.0207 (18) | 0.0215 (19) | 0.026 (2) | −0.0021 (15) | 0.0018 (17) | 0.0019 (17) |
C5 | 0.032 (2) | 0.0164 (18) | 0.020 (2) | −0.0068 (16) | −0.0036 (17) | 0.0024 (16) |
C6 | 0.032 (2) | 0.0169 (18) | 0.028 (2) | 0.0044 (16) | 0.0029 (18) | −0.0031 (17) |
C7 | 0.0181 (18) | 0.0231 (19) | 0.031 (2) | 0.0034 (15) | 0.0022 (17) | 0.0018 (18) |
O90 | 0.029 (2) | 0.044 (3) | 0.033 (3) | 0.000 | 0.006 (2) | 0.000 |
Br1—C5 | 1.893 (4) | C3—H3 | 0.9500 |
O1—C1i | 1.395 (4) | C4—C5 | 1.378 (6) |
O1—C1 | 1.395 (4) | C4—H4 | 0.9500 |
O2—C1 | 1.205 (5) | C5—C6 | 1.387 (6) |
C1—C2 | 1.497 (5) | C6—C7 | 1.385 (6) |
C2—C7 | 1.389 (6) | C6—H6 | 0.9500 |
C2—C3 | 1.390 (5) | C7—H7 | 0.9500 |
C3—C4 | 1.385 (5) | O90—H901 | 0.840 (14) |
C1i—O1—C1 | 123.7 (5) | C5—C4—H4 | 120.1 |
O2—C1—O1 | 123.6 (4) | C3—C4—H4 | 120.1 |
O2—C1—C2 | 121.5 (4) | C4—C5—C6 | 121.8 (4) |
O1—C1—C2 | 114.9 (3) | C4—C5—Br1 | 119.1 (3) |
C7—C2—C3 | 119.9 (4) | C6—C5—Br1 | 119.2 (3) |
C7—C2—C1 | 118.0 (4) | C7—C6—C5 | 118.1 (4) |
C3—C2—C1 | 122.0 (4) | C7—C6—H6 | 120.9 |
C4—C3—C2 | 119.5 (4) | C5—C6—H6 | 120.9 |
C4—C3—H3 | 120.2 | C6—C7—C2 | 120.9 (4) |
C2—C3—H3 | 120.2 | C6—C7—H7 | 119.5 |
C5—C4—C3 | 119.7 (4) | C2—C7—H7 | 119.5 |
C1i—O1—C1—O2 | 2.1 (10) | C2—C3—C4—C5 | −0.6 (6) |
C1i—O1—C1—C2 | −176.7 (4) | C3—C4—C5—C6 | 1.8 (7) |
O2—C1—C2—C7 | −35.8 (7) | C3—C4—C5—Br1 | −176.8 (3) |
O1—C1—C2—C7 | 143.1 (4) | C4—C5—C6—C7 | −0.7 (7) |
O2—C1—C2—C3 | 141.8 (5) | Br1—C5—C6—C7 | 177.8 (3) |
O1—C1—C2—C3 | −39.4 (6) | C5—C6—C7—C2 | −1.5 (7) |
C7—C2—C3—C4 | −1.5 (6) | C3—C2—C7—C6 | 2.6 (7) |
C1—C2—C3—C4 | −179.0 (4) | C1—C2—C7—C6 | −179.8 (4) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O90—H901···O2ii | 0.84 (1) | 2.24 (2) | 3.043 (6) | 161 (5) |
C3—H3···O2iii | 0.95 | 2.58 | 3.211 (5) | 124 |
Symmetry codes: (ii) x, −y+1/2, z+1; (iii) x−1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H8Br2O3·H2O |
Mr | 402.04 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 200 |
a, b, c (Å) | 12.6118 (3), 28.2378 (7), 3.8898 (1) |
V (Å3) | 1385.27 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.86 |
Crystal size (mm) | 0.35 × 0.12 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.825, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11620, 1728, 1519 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.093, 1.30 |
No. of reflections | 1728 |
No. of parameters | 98 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.69, −0.62 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O90—H901···O2i | 0.840 (14) | 2.24 (2) | 3.043 (6) | 161 (5) |
C3—H3···O2ii | 0.95 | 2.58 | 3.211 (5) | 124 |
Symmetry codes: (i) x, −y+1/2, z+1; (ii) x−1/2, y, −z+1/2. |
Acknowledgements
The authors thank Mrs Jaci Neil-Schutte for helpful discussions.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA. Google Scholar
Duesler, E. N., Kress, R. B., Lin, C.-T., Shiau, W.-I., Paul, I. C. & Curtin, D. Y. (1981). J. Am. Chem. Soc. 103, 875–879. CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH. Google Scholar
McCammon, C. S. & Trotter, J. (1964). Acta Cryst. 17, 1333–1334. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. In our efforts to synthesize a chelate ligand featuring a set of oxygen, sulfur and nitrogen as possible donor atoms, a crystalline reaction product was obtained whose crystal structure analysis revealed the unintentional synthesis of the hydrated anhydride of para-bromobenzoic acid. The crystal structure of the anhydrous anhydride is apparent in the literature (McCammon & Trotter, 1964; Duesler et al., 1981).
The asymmetric unit comprises half of the organic molecule and half of the molecule of crystal water. The least-squares planes defined by the atoms of both aromatic moieties intersect at an angle of 45.76 (11)° (Fig. 1). In the crystal structure, intermolecular C—H···O and O—-H···O hydrogen bonds can be observed (Table 1). The carbonylic O atoms of the anhydride serve as twofold acceptors for the hydrogen bonds originating from the water molecule as well as the H atom of an adjacent molecule bonded to the C atom in ortho position to the carboxylic acid functionality. A description of the C—H···O hydrogen bonds in terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) necessitates a R22(14) descriptor on the unitary level. In total, the moieties of the crystal structure are connected to chains parallel to the crystallographic a axis (Fig. 2). No π–π stacking interaction is observed. The packing of the compound in the crystal structure is shown in Fig. 3.