organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­benzoyl 4-bromobenzoate monohydrate

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 25 May 2011; accepted 8 June 2011; online 18 June 2011)

In the title compound, C14H8Br2O3·H2O, the organic and water mol­ecules both have crystallographically imposed Cs symmetry. The dihedral angle between the aromatic rings is 45.76 (11)°. In the crystal structure, inter­molecular C—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into chains parallel to the a axis. No ππ stacking inter­actions are observed in the crystal structure.

Related literature

For the crystal structure of anhydrous para-bromo­benzoic acid anhydride, see: McCammon & Trotter (1964[McCammon, C. S. & Trotter, J. (1964). Acta Cryst. 17, 1333-1334.]); Duesler et al. (1981[Duesler, E. N., Kress, R. B., Lin, C.-T., Shiau, W.-I., Paul, I. C. & Curtin, D. Y. (1981). J. Am. Chem. Soc. 103, 875-879.]). For the use of chelate ligands in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Br2O3·H2O

  • Mr = 402.04

  • Orthorhombic, P n m a

  • a = 12.6118 (3) Å

  • b = 28.2378 (7) Å

  • c = 3.8898 (1) Å

  • V = 1385.27 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.86 mm−1

  • T = 200 K

  • 0.35 × 0.12 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 1.000

  • 11620 measured reflections

  • 1728 independent reflections

  • 1519 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.093

  • S = 1.30

  • 1728 reflections

  • 98 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O90—H901⋯O2i 0.84 (1) 2.24 (2) 3.043 (6) 161 (5)
C3—H3⋯O2ii 0.95 2.58 3.211 (5) 124
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+1]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. In our efforts to synthesize a chelate ligand featuring a set of oxygen, sulfur and nitrogen as possible donor atoms, a crystalline reaction product was obtained whose crystal structure analysis revealed the unintentional synthesis of the hydrated anhydride of para-bromobenzoic acid. The crystal structure of the anhydrous anhydride is apparent in the literature (McCammon & Trotter, 1964; Duesler et al., 1981).

The asymmetric unit comprises half of the organic molecule and half of the molecule of crystal water. The least-squares planes defined by the atoms of both aromatic moieties intersect at an angle of 45.76 (11)° (Fig. 1). In the crystal structure, intermolecular C—H···O and O—-H···O hydrogen bonds can be observed (Table 1). The carbonylic O atoms of the anhydride serve as twofold acceptors for the hydrogen bonds originating from the water molecule as well as the H atom of an adjacent molecule bonded to the C atom in ortho position to the carboxylic acid functionality. A description of the C—H···O hydrogen bonds in terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) necessitates a R22(14) descriptor on the unitary level. In total, the moieties of the crystal structure are connected to chains parallel to the crystallographic a axis (Fig. 2). No ππ stacking interaction is observed. The packing of the compound in the crystal structure is shown in Fig. 3.

Related literature top

For the crystal structure of anhydrous para-bromobenzoic acid anhydride, see: McCammon & Trotter (1964); Duesler et al. (1981). For the use of chelate ligands in coordination chemistry, see: Gade (1998). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was prepared upon reacting 4-bromobenzyl chloride (2.5 mmol) with potassium thiocyanate (2.5 mmol) and dipyridin-2-ylamine (2.5 mmol) in refluxing acetone (15 ml) for two hours. Crystals suitable for the X-ray diffraction study were obtained upon free evaporation of the reaction mixture.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The H atom of the water molecule was located on a difference Fourier map and refined using a DFIX instruction (dO—H set to 0.85 Å), with Uiso(H) set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at 50% probability level. Symmetry code: (i) x, -y + 1/2, z.
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [001]. Displacement ellipsoids are drawn at 50% probability level.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [001]. Displacement ellipsoids drawn at 50% probability level.
4-Bromobenzoyl 4-bromobenzoate monohydrate top
Crystal data top
C14H8Br2O3·H2OF(000) = 784
Mr = 402.04Dx = 1.928 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4619 reflections
a = 12.6118 (3) Åθ = 2.9–28.1°
b = 28.2378 (7) ŵ = 5.86 mm1
c = 3.8898 (1) ÅT = 200 K
V = 1385.27 (6) Å3Needle, yellow
Z = 40.35 × 0.12 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1728 independent reflections
Radiation source: fine-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.825, Tmax = 1.000k = 2637
11620 measured reflectionsl = 35
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.30 w = 1/[σ2(Fo2) + (0.0068P)2 + 7.342P]
where P = (Fo2 + 2Fc2)/3
1728 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 0.69 e Å3
2 restraintsΔρmin = 0.62 e Å3
Crystal data top
C14H8Br2O3·H2OV = 1385.27 (6) Å3
Mr = 402.04Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.6118 (3) ŵ = 5.86 mm1
b = 28.2378 (7) ÅT = 200 K
c = 3.8898 (1) Å0.35 × 0.12 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1519 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.024
11620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.30Δρmax = 0.69 e Å3
1728 reflectionsΔρmin = 0.62 e Å3
98 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14551 (4)0.030824 (15)0.21724 (12)0.03488 (15)
O10.0688 (4)0.25000.0995 (14)0.0340 (11)
O20.2098 (2)0.20237 (11)0.2371 (14)0.0530 (12)
C10.1190 (3)0.20645 (15)0.1450 (12)0.0244 (9)
C20.0521 (3)0.16413 (13)0.0633 (11)0.0208 (8)
C30.0548 (3)0.16199 (14)0.1493 (11)0.0224 (8)
H30.08800.18800.26040.027*
C40.1125 (3)0.12164 (14)0.0718 (11)0.0228 (8)
H40.18540.11970.13160.027*
C50.0637 (3)0.08430 (14)0.0924 (11)0.0225 (8)
C60.0432 (3)0.08532 (14)0.1753 (12)0.0257 (9)
H60.07610.05920.28630.031*
C70.1007 (3)0.12551 (14)0.0919 (12)0.0240 (9)
H70.17440.12670.14140.029*
O900.3607 (4)0.25000.7343 (14)0.0354 (10)
H9010.329 (4)0.2690 (15)0.864 (12)0.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0490 (3)0.0237 (2)0.0319 (2)0.0150 (2)0.0019 (2)0.0033 (2)
O10.031 (2)0.027 (2)0.044 (3)0.0000.003 (2)0.000
O20.0195 (14)0.0242 (15)0.115 (4)0.0002 (13)0.028 (2)0.006 (2)
C10.0119 (17)0.0224 (19)0.039 (2)0.0004 (14)0.0018 (16)0.0024 (18)
C20.0185 (18)0.0157 (18)0.028 (2)0.0000 (15)0.0027 (16)0.0032 (16)
C30.0190 (18)0.0183 (18)0.030 (2)0.0043 (15)0.0010 (17)0.0004 (16)
C40.0207 (18)0.0215 (19)0.026 (2)0.0021 (15)0.0018 (17)0.0019 (17)
C50.032 (2)0.0164 (18)0.020 (2)0.0068 (16)0.0036 (17)0.0024 (16)
C60.032 (2)0.0169 (18)0.028 (2)0.0044 (16)0.0029 (18)0.0031 (17)
C70.0181 (18)0.0231 (19)0.031 (2)0.0034 (15)0.0022 (17)0.0018 (18)
O900.029 (2)0.044 (3)0.033 (3)0.0000.006 (2)0.000
Geometric parameters (Å, º) top
Br1—C51.893 (4)C3—H30.9500
O1—C1i1.395 (4)C4—C51.378 (6)
O1—C11.395 (4)C4—H40.9500
O2—C11.205 (5)C5—C61.387 (6)
C1—C21.497 (5)C6—C71.385 (6)
C2—C71.389 (6)C6—H60.9500
C2—C31.390 (5)C7—H70.9500
C3—C41.385 (5)O90—H9010.840 (14)
C1i—O1—C1123.7 (5)C5—C4—H4120.1
O2—C1—O1123.6 (4)C3—C4—H4120.1
O2—C1—C2121.5 (4)C4—C5—C6121.8 (4)
O1—C1—C2114.9 (3)C4—C5—Br1119.1 (3)
C7—C2—C3119.9 (4)C6—C5—Br1119.2 (3)
C7—C2—C1118.0 (4)C7—C6—C5118.1 (4)
C3—C2—C1122.0 (4)C7—C6—H6120.9
C4—C3—C2119.5 (4)C5—C6—H6120.9
C4—C3—H3120.2C6—C7—C2120.9 (4)
C2—C3—H3120.2C6—C7—H7119.5
C5—C4—C3119.7 (4)C2—C7—H7119.5
C1i—O1—C1—O22.1 (10)C2—C3—C4—C50.6 (6)
C1i—O1—C1—C2176.7 (4)C3—C4—C5—C61.8 (7)
O2—C1—C2—C735.8 (7)C3—C4—C5—Br1176.8 (3)
O1—C1—C2—C7143.1 (4)C4—C5—C6—C70.7 (7)
O2—C1—C2—C3141.8 (5)Br1—C5—C6—C7177.8 (3)
O1—C1—C2—C339.4 (6)C5—C6—C7—C21.5 (7)
C7—C2—C3—C41.5 (6)C3—C2—C7—C62.6 (7)
C1—C2—C3—C4179.0 (4)C1—C2—C7—C6179.8 (4)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H901···O2ii0.84 (1)2.24 (2)3.043 (6)161 (5)
C3—H3···O2iii0.952.583.211 (5)124
Symmetry codes: (ii) x, y+1/2, z+1; (iii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H8Br2O3·H2O
Mr402.04
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)200
a, b, c (Å)12.6118 (3), 28.2378 (7), 3.8898 (1)
V3)1385.27 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.86
Crystal size (mm)0.35 × 0.12 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11620, 1728, 1519
Rint0.024
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.093, 1.30
No. of reflections1728
No. of parameters98
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.62

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H901···O2i0.840 (14)2.24 (2)3.043 (6)161 (5)
C3—H3···O2ii0.952.583.211 (5)124
Symmetry codes: (i) x, y+1/2, z+1; (ii) x1/2, y, z+1/2.
 

Acknowledgements

The authors thank Mrs Jaci Neil-Schutte for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationDuesler, E. N., Kress, R. B., Lin, C.-T., Shiau, W.-I., Paul, I. C. & Curtin, D. Y. (1981). J. Am. Chem. Soc. 103, 875–879.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.  Google Scholar
First citationMcCammon, C. S. & Trotter, J. (1964). Acta Cryst. 17, 1333–1334.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds