organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(2,4-Di­chloro­benzyl­­idene)amino]­isoindoline-1,3-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 June 2011; accepted 14 June 2011; online 18 June 2011)

In the title compound, C15H8Cl2N2O2, the mol­ecule adopts an E configuration about the central C=N double bond. The isoindoline ring is essentially planar, with a maximum deviation of 0.019 (2) Å. The dihedral angle between the isoindoline ring and the dichloro-substituted benzene ring is 6.54 (9)°. An intra­molecular C—H⋯O hydrogen bond occurs. A short Cl⋯Cl contact of 3.4027 (9) Å is present in the crystal structure. The crystal packing is further stabilized by weak C—H⋯π inter­actions.

Related literature

For the coordination ability and biological activity of Schiff bases, see: Bhunora et al. (2011[Bhunora, S., Mugo, J., Bhaw-Luximon, A., Mapolie, S., Wyk, J. V., Darkwa, J. & Nordlander, E. (2011). Appl. Organomet. Chem. 25, 133-145.]); Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]); Sridhar et al., (2001[Sridhar, S. K., Saravanan, M. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615-625.]); Mladenova et al. (2002[Mladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J. 38, 989-999.]); Bharti et al. (2010[Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651-660.]); Tenorio et al. (2005[Tenorio, R. P., Carvalho, C. S., Pessanha, C. S. & Delima, J. G. (2005). Bioorg. Med. Chem. Lett. 15, 2575-2578.]); Liu et al. (1992[Liu, M. C., Lin, T. S. & Sartorelli, A. C. (1992). J. Med. Chem. 35, 3672-3677.]); Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]).

[Scheme 1]

Experimental

Crystal data
  • C15H8Cl2N2O2

  • Mr = 319.13

  • Monoclinic, P 21 /c

  • a = 8.0387 (8) Å

  • b = 7.6981 (8) Å

  • c = 22.2686 (19) Å

  • β = 101.828 (3)°

  • V = 1348.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.44 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.930

  • 13900 measured reflections

  • 3902 independent reflections

  • 2795 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.113

  • S = 1.07

  • 3902 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1 0.93 2.18 2.857 (2) 129
C2—H2ACg1i 0.93 2.81 3.663 (2) 153
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have been prepared from the condensation of aldehydes or ketones with amines and their coordination ability with metal ions such as copper (II), cobalt (II), iron (II) and zinc (II) (Bhunora et al., 2011; Gupta & Sutar, 2008) has been studied. Many Schiff bases have been reported to possess antibacterial (Sridhar et al.,, 2001; Mladenova et al., 2002); antifungal (Bharti et al., 2010; Tenorio et al., 2005); and antitumor activities (Liu et al., 1992; Hodnett & Dunn, 1970).

In the title compound (Fig. 1), the molecule adopts an E configuration about the central C7N1 double bond. The isoindoline ring is essentially planar, with a maximum deviation of 0.019 (2) Å for atom C8. The dihedral angle between the isoindoline ring and the dichloro-substituted phenyl ring is 6.54 (9)°. An intramolecular C—H···O hydrogen bond which generates an S(6) ring motif and a short Cl···Cl contact of 3.4027 (9) Å are present in the crystal structure. The crystal packing (Fig. 2) is further stabilized by a weak C—H···π (Table 1) interactions involving the C1–C6 ring.

Related literature top

For the coordination ability and biological activity of Schiff bases, see: Bhunora et al. (2011); Gupta & Sutar (2008); Sridhar et al., (2001); Mladenova et al. (2002); Bharti et al. (2010); Tenorio et al. (2005); Liu et al. (1992); Hodnett & Dunn (1970).

Experimental top

A mixture of 2-amino-1,3-isoindolinedione (6.15 mmol, 1.0 g) and 2,4-dichloro benzaldehyde (6.15 mmol, 1.08 g) was dissolved in an appropriate amount of ethanol-glacial acetic acid (2:1 v/v). The mixture was refluxed on water-bath for 0.5 hr to give a white colour precipitate. The solution was cooled at room temperature, filtered off, washed with ethanol and dried. The isolated product was recrystallized from chloroform-methanol (1:1 v/v)to get the new Schiff base in 80% yield.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The intramolecular C—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen atoms are omitted for clarity.
2-[(E)-(2,4-Dichlorobenzylidene)amino]isoindoline-1,3-dione top
Crystal data top
C15H8Cl2N2O2F(000) = 648
Mr = 319.13Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4526 reflections
a = 8.0387 (8) Åθ = 2.8–29.8°
b = 7.6981 (8) ŵ = 0.49 mm1
c = 22.2686 (19) ÅT = 296 K
β = 101.828 (3)°Block, colourless
V = 1348.8 (2) Å30.44 × 0.19 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3902 independent reflections
Radiation source: fine-focus sealed tube2795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1011
Tmin = 0.815, Tmax = 0.930k = 1010
13900 measured reflectionsl = 3129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.9203P]
where P = (Fo2 + 2Fc2)/3
3902 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C15H8Cl2N2O2V = 1348.8 (2) Å3
Mr = 319.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0387 (8) ŵ = 0.49 mm1
b = 7.6981 (8) ÅT = 296 K
c = 22.2686 (19) Å0.44 × 0.19 × 0.15 mm
β = 101.828 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3902 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2795 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.930Rint = 0.033
13900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
3902 reflectionsΔρmin = 0.42 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72877 (6)0.18254 (8)0.79982 (3)0.05067 (17)
Cl21.31606 (7)0.18842 (9)0.72366 (3)0.05889 (19)
O10.58896 (19)0.1209 (2)0.93934 (8)0.0566 (5)
O21.08478 (17)0.3584 (2)1.04839 (7)0.0457 (4)
N10.9657 (2)0.1599 (2)0.94538 (8)0.0374 (4)
N20.86224 (19)0.2180 (2)0.98379 (7)0.0347 (4)
C10.9387 (2)0.1149 (3)0.81141 (9)0.0337 (4)
C21.0327 (2)0.1710 (3)0.76903 (9)0.0366 (4)
H2A0.98370.24090.73610.044*
C31.2005 (2)0.1199 (3)0.77727 (9)0.0369 (4)
C41.2766 (2)0.0181 (3)0.82651 (9)0.0387 (4)
H4A1.39060.01270.83190.046*
C51.1798 (2)0.0371 (3)0.86757 (9)0.0367 (4)
H5A1.22990.10640.90050.044*
C61.0085 (2)0.0087 (3)0.86084 (8)0.0330 (4)
C70.9041 (2)0.0526 (3)0.90345 (9)0.0378 (4)
H7A0.79320.01300.89970.045*
C80.6843 (2)0.2004 (3)0.97890 (9)0.0366 (4)
C90.6452 (2)0.3000 (3)1.03100 (9)0.0339 (4)
C100.4911 (3)0.3240 (3)1.04859 (10)0.0413 (5)
H10A0.39180.27281.02710.050*
C110.4911 (3)0.4273 (3)1.09946 (10)0.0449 (5)
H11A0.38970.44581.11250.054*
C120.6395 (3)0.5040 (3)1.13147 (10)0.0491 (5)
H12A0.63560.57331.16540.059*
C130.7941 (3)0.4787 (3)1.11370 (9)0.0436 (5)
H13A0.89370.52951.13510.052*
C140.7933 (2)0.3755 (3)1.06312 (9)0.0336 (4)
C150.9360 (2)0.3247 (3)1.03399 (9)0.0338 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0330 (2)0.0650 (4)0.0558 (3)0.0135 (2)0.0131 (2)0.0105 (3)
Cl20.0444 (3)0.0766 (5)0.0621 (4)0.0071 (3)0.0259 (3)0.0224 (3)
O10.0355 (8)0.0710 (12)0.0616 (10)0.0063 (8)0.0057 (7)0.0274 (9)
O20.0290 (7)0.0587 (10)0.0490 (9)0.0036 (7)0.0069 (6)0.0061 (7)
N10.0326 (8)0.0425 (10)0.0388 (9)0.0032 (7)0.0114 (7)0.0030 (7)
N20.0294 (7)0.0386 (9)0.0368 (8)0.0007 (7)0.0082 (6)0.0035 (7)
C10.0275 (8)0.0357 (10)0.0377 (10)0.0017 (7)0.0060 (7)0.0023 (8)
C20.0338 (9)0.0388 (11)0.0370 (10)0.0015 (8)0.0066 (8)0.0031 (9)
C30.0322 (9)0.0411 (11)0.0394 (10)0.0022 (8)0.0123 (8)0.0018 (9)
C40.0279 (9)0.0432 (12)0.0446 (11)0.0031 (8)0.0068 (8)0.0020 (9)
C50.0336 (9)0.0387 (11)0.0364 (10)0.0007 (8)0.0036 (7)0.0033 (8)
C60.0319 (9)0.0342 (10)0.0331 (9)0.0018 (8)0.0071 (7)0.0024 (8)
C70.0329 (9)0.0434 (12)0.0383 (10)0.0007 (8)0.0101 (8)0.0014 (9)
C80.0293 (9)0.0395 (11)0.0408 (10)0.0015 (8)0.0065 (8)0.0010 (9)
C90.0301 (9)0.0350 (11)0.0373 (10)0.0013 (8)0.0082 (7)0.0027 (8)
C100.0322 (9)0.0433 (12)0.0499 (12)0.0011 (9)0.0116 (8)0.0036 (10)
C110.0407 (11)0.0473 (13)0.0517 (12)0.0051 (9)0.0216 (9)0.0036 (10)
C120.0541 (13)0.0529 (14)0.0445 (12)0.0032 (11)0.0198 (10)0.0054 (10)
C130.0411 (11)0.0498 (13)0.0401 (11)0.0012 (10)0.0084 (8)0.0066 (10)
C140.0309 (9)0.0348 (10)0.0354 (9)0.0017 (8)0.0077 (7)0.0029 (8)
C150.0295 (8)0.0372 (11)0.0348 (9)0.0003 (8)0.0071 (7)0.0015 (8)
Geometric parameters (Å, º) top
Cl1—C11.7338 (19)C5—H5A0.9300
Cl2—C31.7383 (19)C6—C71.467 (3)
O1—C81.209 (2)C7—H7A0.9300
O2—C151.201 (2)C8—C91.477 (3)
N1—C71.268 (3)C9—C141.385 (3)
N1—N21.384 (2)C9—C101.386 (3)
N2—C151.416 (3)C10—C111.384 (3)
N2—C81.419 (2)C10—H10A0.9300
C1—C21.393 (3)C11—C121.390 (3)
C1—C61.393 (3)C11—H11A0.9300
C2—C31.381 (3)C12—C131.393 (3)
C2—H2A0.9300C12—H12A0.9300
C3—C41.384 (3)C13—C141.377 (3)
C4—C51.384 (3)C13—H13A0.9300
C4—H4A0.9300C14—C151.482 (3)
C5—C61.399 (3)
C7—N1—N2118.18 (16)O1—C8—N2125.65 (18)
N1—N2—C15117.91 (15)O1—C8—C9129.07 (18)
N1—N2—C8130.24 (16)N2—C8—C9105.28 (16)
C15—N2—C8111.63 (15)C14—C9—C10121.44 (19)
C2—C1—C6122.02 (17)C14—C9—C8108.96 (16)
C2—C1—Cl1116.91 (15)C10—C9—C8129.59 (19)
C6—C1—Cl1121.07 (15)C11—C10—C9117.2 (2)
C3—C2—C1118.21 (18)C11—C10—H10A121.4
C3—C2—H2A120.9C9—C10—H10A121.4
C1—C2—H2A120.9C10—C11—C12121.30 (19)
C2—C3—C4121.86 (18)C10—C11—H11A119.3
C2—C3—Cl2117.88 (16)C12—C11—H11A119.3
C4—C3—Cl2120.26 (15)C11—C12—C13121.2 (2)
C5—C4—C3118.67 (18)C11—C12—H12A119.4
C5—C4—H4A120.7C13—C12—H12A119.4
C3—C4—H4A120.7C14—C13—C12117.3 (2)
C4—C5—C6121.77 (18)C14—C13—H13A121.4
C4—C5—H5A119.1C12—C13—H13A121.4
C6—C5—H5A119.1C13—C14—C9121.60 (18)
C1—C6—C5117.44 (17)C13—C14—C15129.51 (18)
C1—C6—C7120.55 (17)C9—C14—C15108.90 (17)
C5—C6—C7122.01 (18)O2—C15—N2124.69 (17)
N1—C7—C6119.80 (18)O2—C15—C14130.08 (19)
N1—C7—H7A120.1N2—C15—C14105.21 (15)
C6—C7—H7A120.1
C7—N1—N2—C15174.19 (18)N2—C8—C9—C141.7 (2)
C7—N1—N2—C811.8 (3)O1—C8—C9—C101.8 (4)
C6—C1—C2—C30.6 (3)N2—C8—C9—C10178.9 (2)
Cl1—C1—C2—C3179.66 (16)C14—C9—C10—C110.3 (3)
C1—C2—C3—C41.0 (3)C8—C9—C10—C11179.0 (2)
C1—C2—C3—Cl2179.27 (16)C9—C10—C11—C120.1 (3)
C2—C3—C4—C51.6 (3)C10—C11—C12—C130.4 (4)
Cl2—C3—C4—C5178.68 (17)C11—C12—C13—C140.2 (4)
C3—C4—C5—C60.6 (3)C12—C13—C14—C90.2 (3)
C2—C1—C6—C51.5 (3)C12—C13—C14—C15179.5 (2)
Cl1—C1—C6—C5178.73 (15)C10—C9—C14—C130.5 (3)
C2—C1—C6—C7177.96 (19)C8—C9—C14—C13178.99 (19)
Cl1—C1—C6—C71.8 (3)C10—C9—C14—C15179.29 (19)
C4—C5—C6—C10.9 (3)C8—C9—C14—C151.3 (2)
C4—C5—C6—C7178.58 (19)N1—N2—C15—O25.7 (3)
N2—N1—C7—C6178.49 (17)C8—N2—C15—O2179.2 (2)
C1—C6—C7—N1174.55 (19)N1—N2—C15—C14175.94 (16)
C5—C6—C7—N14.9 (3)C8—N2—C15—C140.8 (2)
N1—N2—C8—O13.4 (4)C13—C14—C15—O21.8 (4)
C15—N2—C8—O1177.8 (2)C9—C14—C15—O2177.9 (2)
N1—N2—C8—C9175.91 (19)C13—C14—C15—N2180.0 (2)
C15—N2—C8—C91.6 (2)C9—C14—C15—N20.3 (2)
O1—C8—C9—C14177.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.932.182.857 (2)129
C2—H2A···Cg1i0.932.813.663 (2)153
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H8Cl2N2O2
Mr319.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.0387 (8), 7.6981 (8), 22.2686 (19)
β (°) 101.828 (3)
V3)1348.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.44 × 0.19 × 0.15
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.815, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
13900, 3902, 2795
Rint0.033
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.113, 1.07
No. of reflections3902
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.932.182.857 (2)129
C2—H2A···Cg1i0.932.813.663 (2)153
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: oocw@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MA, CWO and HO thank Universiti Sains Malaysia (USM) for providing the necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. MA also thanks USM for the award of a post-doctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhunora, S., Mugo, J., Bhaw-Luximon, A., Mapolie, S., Wyk, J. V., Darkwa, J. & Nordlander, E. (2011). Appl. Organomet. Chem. 25, 133–145.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, M. C., Lin, T. S. & Sartorelli, A. C. (1992). J. Med. Chem. 35, 3672–3677.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J. 38, 989–999.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Saravanan, M. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615–625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTenorio, R. P., Carvalho, C. S., Pessanha, C. S. & Delima, J. G. (2005). Bioorg. Med. Chem. Lett. 15, 2575–2578.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds