metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(bi­cyclo­[2.2.1]hept-5-ene-2-carboxyl­ato)-1κ2O,O′;4κ2O,O′-di-μ2-chlorido-1:2κ2Cl;3:4κ2Cl-octa­methyl-1κ2C,2κ2C,3κ2C,4κ2C-di-μ3-oxido-1:2:3κ3O;2:3:4κ3O-tetra­tin(IV)

aDepartment of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, People's Republic of China
*Correspondence e-mail: lh198854@163.com

(Received 6 June 2011; accepted 16 June 2011; online 25 June 2011)

In the title compound, [Sn4(CH3)8(C8H9O2)2Cl2O2], the tetra­nuclear complex mol­ecule has crystallographically imposed inversion symmetry. The coordination polyhedron about the two central Sn atoms is distorted trigonal–bipyramidal, whilst the two peripheral metal atoms bonded to the carboxyl­ate groups have a distorted octa­hedral coordination geometry. In the crystal, mol­ecules are connected by long Sn⋯O contacts [3.139 (11) Å], forming chains along [011].

Related literature

For the biological activity of organotin compounds, see: Dubey & Roy (2003[Dubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.]). For a related structure, see: Li et al. (2006[Li, F.-H., Yin, H.-D., Sun, L., Zhao, Q. & Liu, W.-L. (2006). Acta Cryst. E62, m1117-m1118.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(CH3)8(C8H9O2)2Cl2O2]

  • Mr = 972.24

  • Triclinic, [P \overline 1]

  • a = 9.3685 (12) Å

  • b = 9.8651 (13) Å

  • c = 9.9103 (15) Å

  • α = 109.779 (2)°

  • β = 96.340 (1)°

  • γ = 97.204 (1)°

  • V = 843.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 298 K

  • 0.13 × 0.11 × 0.05 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.687, Tmax = 0.860

  • 4366 measured reflections

  • 2915 independent reflections

  • 1818 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.130

  • S = 1.02

  • 2915 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, organotin compounds have attracted more and more attention due to their wide range of industrial applications and biological activities (Dubey & Roy, 2003). As a part of our ongoing investigations in this field, we have synthesized the title compound and present its crystal structure here.

The tetranuclear complex molecule of the title compound (Fig. 1) has crystallographically imposed inversion symmetry. The tin atoms have two different coordination modes, one atom (Sn2) is coordinated in a distorted trigonal-bipyramidal geometry by one µ3oxo oxygen atom and two methyl groups forming the equatorial plane, and by an µ3oxo oxygen atom and the chloride anion at the apices; the other tin metal (Sn1) has a distorted octahedral coordination geometry, with three O atoms and one Cl atom in equatorial positions and the axial position occupied by two methyl groups. The Sn—O bond distances involving the carboxylate group (Sn1—O2 = 2.115 (8) Å; Sn1—O3 = 2.699 (9) Å) are comparable to those found in a related organotin carboxylate (Li et al., 2006). The shortest Sn···Sn separation within the Sn4 core is 3.2898 (10) Å. In the crystal structure, complex molecules are connected by long Sn···O interaction (Sn1···O3i = 3.139 (11) Å; symmetry code: (i) 1-x, -y, 1-z) into one-dimensional chains parallel to the [011] direction (Fig. 2).

Related literature top

For the biological activity of organotin compounds, see: Dubey & Roy (2003). For a related structure, see: Li et al. (2006).

Experimental top

The reaction was carried out under a nitrogen atmosphere. Bicyclo[2.2.1]heptane-2-carboxylic acid (1 mmol) and sodium ethoxide (1 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask After stirring the solution for 30 min, dimethyltin dichloride (2 mmol) was added and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from a solution of diethyl ether to yield colourless crystals of the title compound suitable for X-ray analysis (yield: 76%). Anal. Calcd (%) for C24H42Cl2O6Sn4 (Mr = 972.33): C, 29.65; H, 4.35. Found (%): C, 29.47; H, 4.52.

Refinement top

The H atoms were positioned geometrically, with C—H = 0.93–0.98 Å, and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for the methyl groups.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry code: (A) 1-x, 1-y, 2-z.
[Figure 2] Fig. 2. View of the one-dimensional chain structure in the title compound.
Bis(bicyclo[2.2.1]hept-5-ene-2-carboxylato)- 1κ2O,O';4κ2O,O'-di-µ2-chlorido- 1:2κ2Cl;3:4κ2Cl-octamethyl- 1κ2C,2κ2C,3κ2C,4κ2C-di-µ3-oxido- 1:2:3κ3O;2:3:4κ3O-tetratin(IV) top
Crystal data top
[Sn4(CH3)8(C8H9O2)2Cl2O2]Z = 1
Mr = 972.24F(000) = 468
Triclinic, P1Dx = 1.914 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3685 (12) ÅCell parameters from 1509 reflections
b = 9.8651 (13) Åθ = 2.2–25.2°
c = 9.9103 (15) ŵ = 3.12 mm1
α = 109.779 (2)°T = 298 K
β = 96.340 (1)°Block, colourless
γ = 97.204 (1)°0.13 × 0.11 × 0.05 mm
V = 843.5 (2) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2915 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 611
Tmin = 0.687, Tmax = 0.860k = 1110
4366 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
2915 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Sn4(CH3)8(C8H9O2)2Cl2O2]γ = 97.204 (1)°
Mr = 972.24V = 843.5 (2) Å3
Triclinic, P1Z = 1
a = 9.3685 (12) ÅMo Kα radiation
b = 9.8651 (13) ŵ = 3.12 mm1
c = 9.9103 (15) ÅT = 298 K
α = 109.779 (2)°0.13 × 0.11 × 0.05 mm
β = 96.340 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2915 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1818 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.860Rint = 0.024
4366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.02Δρmax = 0.86 e Å3
2915 reflectionsΔρmin = 0.64 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.52583 (8)0.20738 (8)0.72575 (8)0.0642 (3)
Sn20.34860 (7)0.52430 (7)0.91708 (7)0.0541 (2)
Cl10.2281 (3)0.7487 (4)1.0584 (3)0.0893 (9)
O10.5103 (6)0.3891 (6)0.8952 (6)0.0567 (16)
O20.3315 (9)0.2563 (10)0.6371 (9)0.104 (3)
O30.3517 (12)0.0621 (12)0.4673 (11)0.123 (3)
C10.2708 (19)0.160 (2)0.5170 (19)0.126 (6)
C20.114 (2)0.312 (2)0.436 (2)0.147 (7)
H20.12410.40260.52050.177*
C30.1132 (19)0.168 (2)0.4573 (18)0.137 (6)
H30.05080.16320.52940.164*
C40.042 (2)0.057 (2)0.3123 (19)0.152 (7)
H4A0.10410.01440.27730.183*
H4B0.05020.00650.32110.183*
C50.017 (2)0.135 (2)0.2080 (19)0.139 (6)
H50.04520.08540.11280.166*
C60.183 (2)0.175 (2)0.223 (2)0.156 (7)
H60.24250.12420.16210.187*
C70.226 (2)0.295 (2)0.337 (2)0.153 (7)
H70.31220.36040.35430.183*
C80.0092 (18)0.277 (2)0.3130 (18)0.140 (6)
H8A0.00470.35240.27020.168*
H8B0.10290.26570.34460.168*
C90.6728 (14)0.2796 (14)0.6114 (13)0.101 (4)
H9A0.70450.38330.65750.152*
H9B0.62620.25760.51340.152*
H9C0.75560.23110.61060.152*
C100.4421 (14)0.0339 (13)0.7839 (13)0.095 (4)
H10A0.43650.06890.88570.142*
H10B0.50480.03790.76390.142*
H10C0.34640.00940.72890.142*
C110.4013 (13)0.6224 (13)0.7674 (12)0.086 (3)
H11A0.32940.68050.75520.129*
H11B0.40310.54790.67560.129*
H11C0.49540.68370.80280.129*
C120.1694 (12)0.3767 (14)0.9197 (13)0.098 (4)
H12A0.18570.27860.87430.147*
H12B0.08340.39100.86760.147*
H12C0.15670.39281.01840.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0789 (5)0.0509 (5)0.0573 (5)0.0212 (4)0.0060 (4)0.0105 (4)
Sn20.0483 (4)0.0559 (5)0.0558 (4)0.0153 (3)0.0009 (3)0.0177 (3)
Cl10.0721 (18)0.088 (2)0.092 (2)0.0425 (15)0.0049 (15)0.0080 (17)
O10.057 (4)0.052 (4)0.056 (4)0.028 (3)0.001 (3)0.009 (3)
O20.113 (7)0.093 (7)0.090 (6)0.043 (5)0.023 (5)0.013 (5)
O30.142 (9)0.113 (9)0.091 (7)0.039 (7)0.028 (6)0.016 (6)
C10.132 (14)0.121 (14)0.103 (12)0.041 (11)0.031 (10)0.023 (11)
C20.154 (17)0.134 (17)0.121 (15)0.047 (13)0.017 (13)0.009 (12)
C30.163 (16)0.124 (15)0.108 (13)0.021 (12)0.021 (11)0.036 (12)
C40.157 (16)0.137 (16)0.131 (15)0.024 (12)0.027 (12)0.022 (14)
C50.146 (16)0.137 (16)0.108 (13)0.033 (12)0.038 (11)0.028 (12)
C60.147 (17)0.154 (18)0.122 (15)0.036 (13)0.005 (12)0.002 (13)
C70.150 (17)0.141 (18)0.132 (16)0.020 (13)0.001 (14)0.012 (14)
C80.141 (14)0.138 (16)0.124 (14)0.065 (11)0.025 (11)0.025 (12)
C90.125 (11)0.091 (10)0.084 (9)0.025 (8)0.029 (8)0.019 (8)
C100.109 (10)0.075 (9)0.093 (9)0.009 (7)0.003 (7)0.028 (7)
C110.105 (9)0.084 (9)0.086 (8)0.034 (7)0.019 (7)0.044 (7)
C120.080 (8)0.089 (9)0.111 (10)0.002 (7)0.009 (7)0.026 (8)
Geometric parameters (Å, º) top
Sn1—O12.034 (6)C4—C51.49 (2)
Sn1—C102.075 (11)C4—H4A0.9700
Sn1—C92.082 (11)C4—H4B0.9700
Sn1—O22.115 (8)C5—C81.51 (2)
Sn1—O32.699 (9)C5—C61.54 (2)
Sn1—Cl1i2.848 (3)C5—H50.9800
Sn2—O1i2.010 (5)C6—C71.31 (2)
Sn2—C122.088 (11)C6—H60.9300
Sn2—C112.096 (10)C7—H70.9300
Sn2—O12.122 (6)C8—H8A0.9700
Sn2—Cl12.649 (3)C8—H8B0.9700
Sn2—Sn2i3.2898 (12)C9—H9A0.9600
Cl1—Sn1i2.848 (3)C9—H9B0.9600
O1—Sn2i2.010 (5)C9—H9C0.9600
O2—C11.262 (16)C10—H10A0.9600
O3—C11.300 (18)C10—H10B0.9600
C1—C31.55 (2)C10—H10C0.9600
C2—C81.494 (19)C11—H11A0.9600
C2—C71.50 (2)C11—H11B0.9600
C2—C31.51 (2)C11—H11C0.9600
C2—H20.9800C12—H12A0.9600
C3—C41.50 (2)C12—H12B0.9600
C3—H30.9800C12—H12C0.9600
O1—Sn1—C10104.6 (4)C1—C3—H3108.7
O1—Sn1—C9105.3 (4)C5—C4—C3108.8 (15)
C10—Sn1—C9145.7 (5)C5—C4—H4A109.9
O1—Sn1—O281.2 (3)C3—C4—H4A109.9
C10—Sn1—O2100.6 (4)C5—C4—H4B109.9
C9—Sn1—O2100.3 (5)C3—C4—H4B109.9
O1—Sn1—O3131.8 (3)H4A—C4—H4B108.3
C10—Sn1—O385.5 (4)C4—C5—C898.8 (15)
C9—Sn1—O387.1 (4)C4—C5—C688.3 (13)
O2—Sn1—O350.6 (3)C8—C5—C697.7 (14)
O1—Sn1—Cl1i74.13 (16)C4—C5—H5121.6
C10—Sn1—Cl1i86.0 (3)C8—C5—H5121.6
C9—Sn1—Cl1i86.2 (4)C6—C5—H5121.6
O2—Sn1—Cl1i155.3 (3)C7—C6—C5107.2 (18)
O3—Sn1—Cl1i154.0 (3)C7—C6—H6126.4
O1i—Sn2—C12114.6 (4)C5—C6—H6126.4
O1i—Sn2—C11111.7 (4)C6—C7—C2109.9 (18)
C12—Sn2—C11133.2 (5)C6—C7—H7125.0
O1i—Sn2—O174.5 (3)C2—C7—H7125.0
C12—Sn2—O199.8 (4)C2—C8—C5102.3 (14)
C11—Sn2—O198.5 (4)C2—C8—H8A111.3
O1i—Sn2—Cl179.31 (17)C5—C8—H8A111.3
C12—Sn2—Cl191.0 (4)C2—C8—H8B111.3
C11—Sn2—Cl191.0 (3)C5—C8—H8B111.3
O1—Sn2—Cl1153.80 (17)H8A—C8—H8B109.2
O1i—Sn2—Sn2i38.43 (16)Sn1—C9—H9A109.5
C12—Sn2—Sn2i111.3 (4)Sn1—C9—H9B109.5
C11—Sn2—Sn2i108.8 (3)H9A—C9—H9B109.5
O1—Sn2—Sn2i36.06 (15)Sn1—C9—H9C109.5
Cl1—Sn2—Sn2i117.74 (7)H9A—C9—H9C109.5
Sn2—Cl1—Sn1i81.42 (7)H9B—C9—H9C109.5
Sn2i—O1—Sn1125.1 (3)Sn1—C10—H10A109.5
Sn2i—O1—Sn2105.5 (3)Sn1—C10—H10B109.5
Sn1—O1—Sn2129.3 (3)H10A—C10—H10B109.5
C1—O2—Sn1113.3 (10)Sn1—C10—H10C109.5
C1—O3—Sn183.5 (8)H10A—C10—H10C109.5
O2—C1—O3112.1 (13)H10B—C10—H10C109.5
O2—C1—C3117.7 (16)Sn2—C11—H11A109.5
O3—C1—C3130.1 (15)Sn2—C11—H11B109.5
C8—C2—C792.7 (16)H11A—C11—H11B109.5
C8—C2—C3102.9 (15)Sn2—C11—H11C109.5
C7—C2—C396.9 (16)H11A—C11—H11C109.5
C8—C2—H2119.7H11B—C11—H11C109.5
C7—C2—H2119.7Sn2—C12—H12A109.5
C3—C2—H2119.7Sn2—C12—H12B109.5
C4—C3—C2103.5 (14)H12A—C12—H12B109.5
C4—C3—C1118.3 (17)Sn2—C12—H12C109.5
C2—C3—C1108.7 (15)H12A—C12—H12C109.5
C4—C3—H3108.7H12B—C12—H12C109.5
C2—C3—H3108.7
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Sn4(CH3)8(C8H9O2)2Cl2O2]
Mr972.24
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.3685 (12), 9.8651 (13), 9.9103 (15)
α, β, γ (°)109.779 (2), 96.340 (1), 97.204 (1)
V3)843.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.13 × 0.11 × 0.05
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.687, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
4366, 2915, 1818
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.02
No. of reflections2915
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.64

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author thanks the National Natural Science Foundation of China (20971096) for financial support.

References

First citationDubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationLi, F.-H., Yin, H.-D., Sun, L., Zhao, Q. & Liu, W.-L. (2006). Acta Cryst. E62, m1117–m1118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds