metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(N′-iso­propyl­­idene­benzo­hydrazidato-κ2N′,O)bis­­(pyridine-κN)nickel(II)

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China
*Correspondence e-mail: wllily315668256@yahoo.com.cn

(Received 10 June 2011; accepted 20 June 2011; online 25 June 2011)

The complex mol­ecule of the title compound, [Ni(C10H11N2O)2(C5H5N)2], has a crystallographically imposed centre of symmetry. The NiII atom is coordinated in a distorted octa­hedral geometry by the O and N atoms of two trans arranged anionic bidentate hydrazone ligands forming the equatorial plane and by the N atoms of two pyridine mol­ecules at the axial positions. In the crystal, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into columns parallel to the b axis.

Related literature

For the biological and coordination properties of aroylhydrazones, see: Ali et al. (2004[Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708-m1709.]); Carcelli et al. (1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]); Cheng et al. (1996[Cheng, P., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1996). Inorg. Chim. Acta, 248, 135-137.]); Zhang et al. (2011[Zhang, J.-M., Wang, L., Liu, J., Li, Y.-C. & Li, H.-J. (2011). Acta Cryst. E67, m537.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H11N2O)2(C5H5N)2]

  • Mr = 567.33

  • Monoclinic, C 2/c

  • a = 15.419 (5) Å

  • b = 9.242 (3) Å

  • c = 21.295 (9) Å

  • β = 109.924 (5)°

  • V = 2853.1 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 298 K

  • 0.23 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.852, Tmax = 0.919

  • 7093 measured reflections

  • 2514 independent reflections

  • 2285 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 1.10

  • 2514 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N1i 0.93 2.50 3.382 (3) 157
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones are an important class of Schiff bases compounds which has attracted much attention because of their biological activities (Carcelli et al., 1995), chemical and industrial versatility, and strong tendency to chelate to transition metals (Zhang et al., 2011; Ali et al., 2004; Cheng et al., 1996). As an extension of our work on the structural characterization of aroylhydrazone derivatives, the title compound was synthesized and its crystal structure is reported here.

In the title compound, the complex molecule has crystallographically imposed centre of symmetry (Fig. 1). The coordination polyhedron about the nickel metal is distorted octahedral, with the N, O atoms of two trans-arranged anionic bidentate hydrazone ligands at the equatorial plane and by the N atoms of two pyridine molecules occupying the axial positions. In the crystal structure, complex molecules are linked by intermolecular C—H···N hydrogen bonds (Table 1) into columns parallel to the b axis.

Related literature top

For the biological and coordination properties of aroylhydrazones, see: Ali et al. (2004); Carcelli et al. (1995); Cheng et al. (1996); Zhang et al. (2011).

Experimental top

Ethyl benzoate (6.00 g, 0.04 mol) was dissolved in ethnol (30 ml) at room temperature and heated at 363 K, followed by the addition of hydrazine hydrate (2.40 g, 0.048 mol). Subsequently, the mixture was refluxed for 9 h, and then cooled to room temperature. The crystals precipitated were collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give benzoylhydrazine. Benzoylhydrazine (3.40 g, 0.025 mol) was dissolved in ethanol (20 ml) at room temperature and heated at 363 K, followed by the addition of dimethyl ketone (1.45 g, 0.025 mol). Subsequently, the mixture was refluxed for 10 h, and then cooled to room temperature. The solid phase precipitated was collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give N'-[(E)- dimethylketone]-benzohydrazide. A mixture of N'-[(E)-dimethylketone]-benzohydrazide (0.018 g, 0.10 mmol), NiCl2.6H2O (0.024 g, 0.10 mmol), pyridine (0.0079 g, 0.10 mmol), H2O (5.00 ml) and several drop of methanol was placed in a Parr Teflon-lined stainless steel vessel (25 ml), and then the vessel was sealed and heated at 393 K for 3 d. After the mixture was slowly cooled to room temperature, red crystals suitable for X-ray analysis were obtained (yield 37%).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms,with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5U eq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry code: (A) -x, 1-y, -z.
trans-Bis(N'-isopropylidenebenzohydrazidato- κ2N',O)bis(pyridine-κN)nickel(II) top
Crystal data top
[Ni(C10H11N2O)2(C5H5N)2]F(000) = 1192
Mr = 567.33Dx = 1.321 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5423 reflections
a = 15.419 (5) Åθ = 2.6–28.5°
b = 9.242 (3) ŵ = 0.72 mm1
c = 21.295 (9) ÅT = 298 K
β = 109.924 (5)°Block, red
V = 2853.1 (18) Å30.23 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2514 independent reflections
Radiation source: fine-focus sealed tube2285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1816
Tmin = 0.852, Tmax = 0.919k = 108
7093 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0334P)2 + 2.5175P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2514 reflectionsΔρmax = 0.24 e Å3
178 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (15)
Crystal data top
[Ni(C10H11N2O)2(C5H5N)2]V = 2853.1 (18) Å3
Mr = 567.33Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.419 (5) ŵ = 0.72 mm1
b = 9.242 (3) ÅT = 298 K
c = 21.295 (9) Å0.23 × 0.14 × 0.12 mm
β = 109.924 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2514 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2285 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.919Rint = 0.019
7093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.10Δρmax = 0.24 e Å3
2514 reflectionsΔρmin = 0.32 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.00000.03337 (12)
O10.12440 (8)0.44811 (14)0.06671 (6)0.0385 (3)
N10.04126 (10)0.34430 (16)0.12653 (8)0.0393 (4)
N20.03583 (10)0.40836 (16)0.07882 (7)0.0375 (3)
N30.00804 (10)0.71169 (16)0.04278 (7)0.0383 (3)
C10.28411 (15)0.3172 (3)0.14883 (12)0.0636 (6)
H10.28650.37590.11400.076*
C20.36373 (18)0.2488 (4)0.18906 (15)0.0871 (9)
H20.41900.26190.18120.104*
C30.36080 (19)0.1624 (3)0.23998 (14)0.0788 (8)
H30.41380.11540.26680.095*
C40.27956 (18)0.1450 (3)0.25151 (12)0.0665 (7)
H40.27750.08610.28640.080*
C50.20085 (15)0.2138 (2)0.21199 (10)0.0504 (5)
H50.14620.20200.22080.061*
C60.20201 (13)0.2999 (2)0.15964 (9)0.0397 (4)
C70.11672 (12)0.37097 (18)0.11420 (9)0.0348 (4)
C80.11104 (14)0.3927 (2)0.09097 (10)0.0474 (5)
C90.11699 (18)0.3144 (3)0.15068 (13)0.0741 (8)
H9A0.14540.22170.13730.111*
H9B0.15340.36990.17070.111*
H9C0.05610.30120.18250.111*
C100.19837 (15)0.4545 (3)0.04456 (13)0.0654 (6)
H10A0.18710.49780.00710.098*
H10B0.22100.52670.06750.098*
H10C0.24340.37900.02910.098*
C110.08853 (14)0.7625 (2)0.08221 (11)0.0529 (5)
H110.14060.70460.09020.063*
C120.09888 (16)0.8958 (2)0.11177 (13)0.0646 (6)
H120.15660.92650.13970.078*
C130.02369 (17)0.9830 (2)0.09987 (12)0.0551 (6)
H130.02891.07420.11930.066*
C140.05893 (15)0.9331 (2)0.05897 (12)0.0554 (5)
H140.11150.99020.04960.066*
C150.06440 (14)0.7977 (2)0.03149 (11)0.0497 (5)
H150.12160.76480.00370.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02844 (18)0.03087 (18)0.03696 (19)0.00162 (12)0.00618 (13)0.00258 (13)
O10.0330 (6)0.0372 (7)0.0409 (7)0.0014 (5)0.0068 (5)0.0065 (6)
N10.0378 (8)0.0370 (8)0.0406 (8)0.0051 (7)0.0101 (7)0.0043 (7)
N20.0345 (8)0.0331 (8)0.0427 (8)0.0019 (6)0.0106 (7)0.0009 (6)
N30.0373 (8)0.0346 (8)0.0404 (8)0.0003 (7)0.0099 (7)0.0009 (6)
C10.0458 (12)0.0827 (17)0.0591 (14)0.0196 (12)0.0138 (10)0.0214 (12)
C20.0473 (14)0.126 (3)0.0819 (19)0.0321 (16)0.0147 (13)0.0277 (19)
C30.0627 (16)0.0872 (19)0.0689 (17)0.0342 (14)0.0003 (13)0.0178 (14)
C40.0732 (17)0.0562 (14)0.0525 (13)0.0089 (12)0.0014 (12)0.0165 (11)
C50.0527 (12)0.0444 (11)0.0458 (11)0.0008 (10)0.0061 (9)0.0033 (9)
C60.0409 (10)0.0333 (9)0.0375 (10)0.0046 (8)0.0039 (8)0.0028 (7)
C70.0371 (9)0.0268 (9)0.0354 (9)0.0020 (7)0.0059 (7)0.0035 (7)
C80.0410 (10)0.0492 (11)0.0549 (12)0.0033 (9)0.0201 (9)0.0051 (9)
C90.0614 (15)0.094 (2)0.0782 (17)0.0140 (14)0.0386 (13)0.0308 (15)
C100.0394 (11)0.0851 (17)0.0734 (16)0.0077 (12)0.0213 (11)0.0201 (14)
C110.0404 (11)0.0412 (11)0.0693 (14)0.0015 (9)0.0087 (10)0.0077 (10)
C120.0497 (13)0.0499 (13)0.0834 (17)0.0085 (10)0.0086 (12)0.0191 (12)
C130.0625 (14)0.0358 (11)0.0698 (15)0.0047 (10)0.0261 (12)0.0104 (10)
C140.0507 (12)0.0463 (12)0.0691 (14)0.0106 (10)0.0204 (11)0.0057 (11)
C150.0387 (10)0.0480 (11)0.0577 (12)0.0028 (9)0.0104 (9)0.0089 (10)
Geometric parameters (Å, º) top
Ni1—O1i2.0175 (13)C5—C61.374 (3)
Ni1—O12.0175 (13)C5—H50.9300
Ni1—N22.1148 (16)C6—C71.493 (2)
Ni1—N2i2.1148 (16)C8—C101.486 (3)
Ni1—N32.1439 (16)C8—C91.493 (3)
Ni1—N3i2.1439 (16)C9—H9A0.9600
O1—C71.275 (2)C9—H9B0.9600
N1—C71.301 (2)C9—H9C0.9600
N1—N21.404 (2)C10—H10A0.9600
N2—C81.279 (2)C10—H10B0.9600
N3—C151.325 (2)C10—H10C0.9600
N3—C111.325 (2)C11—C121.368 (3)
C1—C61.371 (3)C11—H110.9300
C1—C21.387 (3)C12—C131.363 (3)
C1—H10.9300C12—H120.9300
C2—C31.360 (4)C13—C141.356 (3)
C2—H20.9300C13—H130.9300
C3—C41.366 (4)C14—C151.372 (3)
C3—H30.9300C14—H140.9300
C4—C51.375 (3)C15—H150.9300
C4—H40.9300
O1i—Ni1—O1180.00 (9)C4—C5—H5119.6
O1i—Ni1—N2102.19 (6)C1—C6—C5118.16 (19)
O1—Ni1—N277.81 (6)C1—C6—C7119.95 (18)
O1i—Ni1—N2i77.81 (6)C5—C6—C7121.87 (18)
O1—Ni1—N2i102.19 (6)O1—C7—N1126.67 (16)
N2—Ni1—N2i180.00 (8)O1—C7—C6117.41 (16)
O1i—Ni1—N389.18 (6)N1—C7—C6115.89 (16)
O1—Ni1—N390.82 (6)N2—C8—C10120.02 (18)
N2—Ni1—N391.21 (6)N2—C8—C9123.37 (19)
N2i—Ni1—N388.79 (6)C10—C8—C9116.61 (18)
O1i—Ni1—N3i90.82 (6)C8—C9—H9A109.5
O1—Ni1—N3i89.18 (6)C8—C9—H9B109.5
N2—Ni1—N3i88.79 (6)H9A—C9—H9B109.5
N2i—Ni1—N3i91.21 (6)C8—C9—H9C109.5
N3—Ni1—N3i180.00 (8)H9A—C9—H9C109.5
C7—O1—Ni1111.61 (11)H9B—C9—H9C109.5
C7—N1—N2111.65 (14)C8—C10—H10A109.5
C8—N2—N1114.09 (16)C8—C10—H10B109.5
C8—N2—Ni1134.88 (14)H10A—C10—H10B109.5
N1—N2—Ni1110.93 (11)C8—C10—H10C109.5
C15—N3—C11116.89 (17)H10A—C10—H10C109.5
C15—N3—Ni1123.21 (13)H10B—C10—H10C109.5
C11—N3—Ni1119.90 (13)N3—C11—C12123.2 (2)
C6—C1—C2121.1 (2)N3—C11—H11118.4
C6—C1—H1119.5C12—C11—H11118.4
C2—C1—H1119.5C13—C12—C11119.3 (2)
C3—C2—C1119.8 (3)C13—C12—H12120.4
C3—C2—H2120.1C11—C12—H12120.4
C1—C2—H2120.1C14—C13—C12118.2 (2)
C2—C3—C4119.6 (2)C14—C13—H13120.9
C2—C3—H3120.2C12—C13—H13120.9
C4—C3—H3120.2C13—C14—C15119.5 (2)
C3—C4—C5120.5 (2)C13—C14—H14120.3
C3—C4—H4119.7C15—C14—H14120.3
C5—C4—H4119.7N3—C15—C14123.00 (19)
C6—C5—C4120.8 (2)N3—C15—H15118.5
C6—C5—H5119.6C14—C15—H15118.5
N2—Ni1—O1—C79.82 (11)C3—C4—C5—C60.8 (4)
N2i—Ni1—O1—C7170.18 (11)C2—C1—C6—C50.7 (4)
N3—Ni1—O1—C7100.88 (12)C2—C1—C6—C7178.0 (2)
N3i—Ni1—O1—C779.12 (12)C4—C5—C6—C11.2 (3)
C7—N1—N2—C8175.97 (16)C4—C5—C6—C7177.42 (19)
C7—N1—N2—Ni17.01 (17)Ni1—O1—C7—N110.2 (2)
O1i—Ni1—N2—C85.3 (2)Ni1—O1—C7—C6168.00 (12)
O1—Ni1—N2—C8174.7 (2)N2—N1—C7—O11.9 (2)
N3—Ni1—N2—C884.12 (19)N2—N1—C7—C6176.30 (14)
N3i—Ni1—N2—C895.88 (19)C1—C6—C7—O10.9 (3)
O1i—Ni1—N2—N1170.85 (10)C5—C6—C7—O1179.55 (17)
O1—Ni1—N2—N19.15 (10)C1—C6—C7—N1177.46 (19)
N3—Ni1—N2—N199.72 (11)C5—C6—C7—N11.2 (3)
N3i—Ni1—N2—N180.28 (11)N1—N2—C8—C10179.78 (19)
O1i—Ni1—N3—C1516.25 (16)Ni1—N2—C8—C103.7 (3)
O1—Ni1—N3—C15163.75 (16)N1—N2—C8—C90.4 (3)
N2—Ni1—N3—C1585.93 (16)Ni1—N2—C8—C9176.48 (18)
N2i—Ni1—N3—C1594.07 (16)C15—N3—C11—C121.2 (3)
O1i—Ni1—N3—C11163.18 (16)Ni1—N3—C11—C12179.37 (19)
O1—Ni1—N3—C1116.82 (16)N3—C11—C12—C131.0 (4)
N2—Ni1—N3—C1194.64 (16)C11—C12—C13—C140.2 (4)
N2i—Ni1—N3—C1185.36 (16)C12—C13—C14—C150.4 (4)
C6—C1—C2—C30.3 (5)C11—N3—C15—C140.5 (3)
C1—C2—C3—C40.7 (5)Ni1—N3—C15—C14179.99 (17)
C2—C3—C4—C50.1 (4)C13—C14—C15—N30.2 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N1ii0.932.503.382 (3)157
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C10H11N2O)2(C5H5N)2]
Mr567.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.419 (5), 9.242 (3), 21.295 (9)
β (°) 109.924 (5)
V3)2853.1 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.23 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.852, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
7093, 2514, 2285
Rint0.019
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.10
No. of reflections2514
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N1i0.932.503.382 (3)157
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of Shaanxi Province, China (2009JM2012) for financial support.

References

First citationAli, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCheng, P., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1996). Inorg. Chim. Acta, 248, 135–137.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-M., Wang, L., Liu, J., Li, Y.-C. & Li, H.-J. (2011). Acta Cryst. E67, m537.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds