metal-organic compounds
trans-Bis(N′-isopropylidenebenzohydrazidato-κ2N′,O)bis(pyridine-κN)nickel(II)
aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China
*Correspondence e-mail: wllily315668256@yahoo.com.cn
The complex molecule of the title compound, [Ni(C10H11N2O)2(C5H5N)2], has a crystallographically imposed centre of symmetry. The NiII atom is coordinated in a distorted octahedral geometry by the O and N atoms of two trans arranged anionic bidentate hydrazone ligands forming the equatorial plane and by the N atoms of two pyridine molecules at the axial positions. In the crystal, intermolecular C—H⋯N hydrogen bonds link the molecules into columns parallel to the b axis.
Related literature
For the biological and coordination properties of aroylhydrazones, see: Ali et al. (2004); Carcelli et al. (1995); Cheng et al. (1996); Zhang et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1996); cell SAINT (Bruker, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811024214/rz2613sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811024214/rz2613Isup2.hkl
Ethyl benzoate (6.00 g, 0.04 mol) was dissolved in ethnol (30 ml) at room temperature and heated at 363 K, followed by the addition of hydrazine hydrate (2.40 g, 0.048 mol). Subsequently, the mixture was refluxed for 9 h, and then cooled to room temperature. The crystals precipitated were collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give benzoylhydrazine. Benzoylhydrazine (3.40 g, 0.025 mol) was dissolved in ethanol (20 ml) at room temperature and heated at 363 K, followed by the addition of dimethyl ketone (1.45 g, 0.025 mol). Subsequently, the mixture was refluxed for 10 h, and then cooled to room temperature. The solid phase precipitated was collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give N'-[(E)- dimethylketone]-benzohydrazide. A mixture of N'-[(E)-dimethylketone]-benzohydrazide (0.018 g, 0.10 mmol), NiCl2.6H2O (0.024 g, 0.10 mmol), pyridine (0.0079 g, 0.10 mmol), H2O (5.00 ml) and several drop of methanol was placed in a Parr Teflon-lined stainless steel vessel (25 ml), and then the vessel was sealed and heated at 393 K for 3 d. After the mixture was slowly cooled to room temperature, red crystals suitable for X-ray analysis were obtained (yield 37%).
All H atoms were positioned geometrically and treated as riding on their parent atoms,with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5U eq(C) for methyl H atoms.
Data collection: SMART (Bruker, 1996); cell
SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C10H11N2O)2(C5H5N)2] | F(000) = 1192 |
Mr = 567.33 | Dx = 1.321 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5423 reflections |
a = 15.419 (5) Å | θ = 2.6–28.5° |
b = 9.242 (3) Å | µ = 0.72 mm−1 |
c = 21.295 (9) Å | T = 298 K |
β = 109.924 (5)° | Block, red |
V = 2853.1 (18) Å3 | 0.23 × 0.14 × 0.12 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2514 independent reflections |
Radiation source: fine-focus sealed tube | 2285 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→16 |
Tmin = 0.852, Tmax = 0.919 | k = −10→8 |
7093 measured reflections | l = −24→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0334P)2 + 2.5175P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2514 reflections | Δρmax = 0.24 e Å−3 |
178 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0113 (15) |
[Ni(C10H11N2O)2(C5H5N)2] | V = 2853.1 (18) Å3 |
Mr = 567.33 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.419 (5) Å | µ = 0.72 mm−1 |
b = 9.242 (3) Å | T = 298 K |
c = 21.295 (9) Å | 0.23 × 0.14 × 0.12 mm |
β = 109.924 (5)° |
Bruker SMART CCD area-detector diffractometer | 2514 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2285 reflections with I > 2σ(I) |
Tmin = 0.852, Tmax = 0.919 | Rint = 0.019 |
7093 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.24 e Å−3 |
2514 reflections | Δρmin = −0.32 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.5000 | 0.0000 | 0.03337 (12) | |
O1 | 0.12440 (8) | 0.44811 (14) | 0.06671 (6) | 0.0385 (3) | |
N1 | 0.04126 (10) | 0.34430 (16) | 0.12653 (8) | 0.0393 (4) | |
N2 | −0.03583 (10) | 0.40836 (16) | 0.07882 (7) | 0.0375 (3) | |
N3 | 0.00804 (10) | 0.71169 (16) | 0.04278 (7) | 0.0383 (3) | |
C1 | 0.28411 (15) | 0.3172 (3) | 0.14883 (12) | 0.0636 (6) | |
H1 | 0.2865 | 0.3759 | 0.1140 | 0.076* | |
C2 | 0.36373 (18) | 0.2488 (4) | 0.18906 (15) | 0.0871 (9) | |
H2 | 0.4190 | 0.2619 | 0.1812 | 0.104* | |
C3 | 0.36080 (19) | 0.1624 (3) | 0.23998 (14) | 0.0788 (8) | |
H3 | 0.4138 | 0.1154 | 0.2668 | 0.095* | |
C4 | 0.27956 (18) | 0.1450 (3) | 0.25151 (12) | 0.0665 (7) | |
H4 | 0.2775 | 0.0861 | 0.2864 | 0.080* | |
C5 | 0.20085 (15) | 0.2138 (2) | 0.21199 (10) | 0.0504 (5) | |
H5 | 0.1462 | 0.2020 | 0.2208 | 0.061* | |
C6 | 0.20201 (13) | 0.2999 (2) | 0.15964 (9) | 0.0397 (4) | |
C7 | 0.11672 (12) | 0.37097 (18) | 0.11420 (9) | 0.0348 (4) | |
C8 | −0.11104 (14) | 0.3927 (2) | 0.09097 (10) | 0.0474 (5) | |
C9 | −0.11699 (18) | 0.3144 (3) | 0.15068 (13) | 0.0741 (8) | |
H9A | −0.1454 | 0.2217 | 0.1373 | 0.111* | |
H9B | −0.1534 | 0.3699 | 0.1707 | 0.111* | |
H9C | −0.0561 | 0.3012 | 0.1825 | 0.111* | |
C10 | −0.19837 (15) | 0.4545 (3) | 0.04456 (13) | 0.0654 (6) | |
H10A | −0.1871 | 0.4978 | 0.0071 | 0.098* | |
H10B | −0.2210 | 0.5267 | 0.0675 | 0.098* | |
H10C | −0.2434 | 0.3790 | 0.0291 | 0.098* | |
C11 | 0.08853 (14) | 0.7625 (2) | 0.08221 (11) | 0.0529 (5) | |
H11 | 0.1406 | 0.7046 | 0.0902 | 0.063* | |
C12 | 0.09888 (16) | 0.8958 (2) | 0.11177 (13) | 0.0646 (6) | |
H12 | 0.1566 | 0.9265 | 0.1397 | 0.078* | |
C13 | 0.02369 (17) | 0.9830 (2) | 0.09987 (12) | 0.0551 (6) | |
H13 | 0.0289 | 1.0742 | 0.1193 | 0.066* | |
C14 | −0.05893 (15) | 0.9331 (2) | 0.05897 (12) | 0.0554 (5) | |
H14 | −0.1115 | 0.9902 | 0.0496 | 0.066* | |
C15 | −0.06440 (14) | 0.7977 (2) | 0.03149 (11) | 0.0497 (5) | |
H15 | −0.1216 | 0.7648 | 0.0037 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02844 (18) | 0.03087 (18) | 0.03696 (19) | 0.00162 (12) | 0.00618 (13) | 0.00258 (13) |
O1 | 0.0330 (6) | 0.0372 (7) | 0.0409 (7) | 0.0014 (5) | 0.0068 (5) | 0.0065 (6) |
N1 | 0.0378 (8) | 0.0370 (8) | 0.0406 (8) | 0.0051 (7) | 0.0101 (7) | 0.0043 (7) |
N2 | 0.0345 (8) | 0.0331 (8) | 0.0427 (8) | 0.0019 (6) | 0.0106 (7) | 0.0009 (6) |
N3 | 0.0373 (8) | 0.0346 (8) | 0.0404 (8) | −0.0003 (7) | 0.0099 (7) | 0.0009 (6) |
C1 | 0.0458 (12) | 0.0827 (17) | 0.0591 (14) | 0.0196 (12) | 0.0138 (10) | 0.0214 (12) |
C2 | 0.0473 (14) | 0.126 (3) | 0.0819 (19) | 0.0321 (16) | 0.0147 (13) | 0.0277 (19) |
C3 | 0.0627 (16) | 0.0872 (19) | 0.0689 (17) | 0.0342 (14) | −0.0003 (13) | 0.0178 (14) |
C4 | 0.0732 (17) | 0.0562 (14) | 0.0525 (13) | 0.0089 (12) | −0.0014 (12) | 0.0165 (11) |
C5 | 0.0527 (12) | 0.0444 (11) | 0.0458 (11) | 0.0008 (10) | 0.0061 (9) | 0.0033 (9) |
C6 | 0.0409 (10) | 0.0333 (9) | 0.0375 (10) | 0.0046 (8) | 0.0039 (8) | −0.0028 (7) |
C7 | 0.0371 (9) | 0.0268 (9) | 0.0354 (9) | 0.0020 (7) | 0.0059 (7) | −0.0035 (7) |
C8 | 0.0410 (10) | 0.0492 (11) | 0.0549 (12) | 0.0033 (9) | 0.0201 (9) | 0.0051 (9) |
C9 | 0.0614 (15) | 0.094 (2) | 0.0782 (17) | 0.0140 (14) | 0.0386 (13) | 0.0308 (15) |
C10 | 0.0394 (11) | 0.0851 (17) | 0.0734 (16) | 0.0077 (12) | 0.0213 (11) | 0.0201 (14) |
C11 | 0.0404 (11) | 0.0412 (11) | 0.0693 (14) | 0.0015 (9) | 0.0087 (10) | −0.0077 (10) |
C12 | 0.0497 (13) | 0.0499 (13) | 0.0834 (17) | −0.0085 (10) | 0.0086 (12) | −0.0191 (12) |
C13 | 0.0625 (14) | 0.0358 (11) | 0.0698 (15) | −0.0047 (10) | 0.0261 (12) | −0.0104 (10) |
C14 | 0.0507 (12) | 0.0463 (12) | 0.0691 (14) | 0.0106 (10) | 0.0204 (11) | −0.0057 (11) |
C15 | 0.0387 (10) | 0.0480 (11) | 0.0577 (12) | 0.0028 (9) | 0.0104 (9) | −0.0089 (10) |
Ni1—O1i | 2.0175 (13) | C5—C6 | 1.374 (3) |
Ni1—O1 | 2.0175 (13) | C5—H5 | 0.9300 |
Ni1—N2 | 2.1148 (16) | C6—C7 | 1.493 (2) |
Ni1—N2i | 2.1148 (16) | C8—C10 | 1.486 (3) |
Ni1—N3 | 2.1439 (16) | C8—C9 | 1.493 (3) |
Ni1—N3i | 2.1439 (16) | C9—H9A | 0.9600 |
O1—C7 | 1.275 (2) | C9—H9B | 0.9600 |
N1—C7 | 1.301 (2) | C9—H9C | 0.9600 |
N1—N2 | 1.404 (2) | C10—H10A | 0.9600 |
N2—C8 | 1.279 (2) | C10—H10B | 0.9600 |
N3—C15 | 1.325 (2) | C10—H10C | 0.9600 |
N3—C11 | 1.325 (2) | C11—C12 | 1.368 (3) |
C1—C6 | 1.371 (3) | C11—H11 | 0.9300 |
C1—C2 | 1.387 (3) | C12—C13 | 1.363 (3) |
C1—H1 | 0.9300 | C12—H12 | 0.9300 |
C2—C3 | 1.360 (4) | C13—C14 | 1.356 (3) |
C2—H2 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.366 (4) | C14—C15 | 1.372 (3) |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.375 (3) | C15—H15 | 0.9300 |
C4—H4 | 0.9300 | ||
O1i—Ni1—O1 | 180.00 (9) | C4—C5—H5 | 119.6 |
O1i—Ni1—N2 | 102.19 (6) | C1—C6—C5 | 118.16 (19) |
O1—Ni1—N2 | 77.81 (6) | C1—C6—C7 | 119.95 (18) |
O1i—Ni1—N2i | 77.81 (6) | C5—C6—C7 | 121.87 (18) |
O1—Ni1—N2i | 102.19 (6) | O1—C7—N1 | 126.67 (16) |
N2—Ni1—N2i | 180.00 (8) | O1—C7—C6 | 117.41 (16) |
O1i—Ni1—N3 | 89.18 (6) | N1—C7—C6 | 115.89 (16) |
O1—Ni1—N3 | 90.82 (6) | N2—C8—C10 | 120.02 (18) |
N2—Ni1—N3 | 91.21 (6) | N2—C8—C9 | 123.37 (19) |
N2i—Ni1—N3 | 88.79 (6) | C10—C8—C9 | 116.61 (18) |
O1i—Ni1—N3i | 90.82 (6) | C8—C9—H9A | 109.5 |
O1—Ni1—N3i | 89.18 (6) | C8—C9—H9B | 109.5 |
N2—Ni1—N3i | 88.79 (6) | H9A—C9—H9B | 109.5 |
N2i—Ni1—N3i | 91.21 (6) | C8—C9—H9C | 109.5 |
N3—Ni1—N3i | 180.00 (8) | H9A—C9—H9C | 109.5 |
C7—O1—Ni1 | 111.61 (11) | H9B—C9—H9C | 109.5 |
C7—N1—N2 | 111.65 (14) | C8—C10—H10A | 109.5 |
C8—N2—N1 | 114.09 (16) | C8—C10—H10B | 109.5 |
C8—N2—Ni1 | 134.88 (14) | H10A—C10—H10B | 109.5 |
N1—N2—Ni1 | 110.93 (11) | C8—C10—H10C | 109.5 |
C15—N3—C11 | 116.89 (17) | H10A—C10—H10C | 109.5 |
C15—N3—Ni1 | 123.21 (13) | H10B—C10—H10C | 109.5 |
C11—N3—Ni1 | 119.90 (13) | N3—C11—C12 | 123.2 (2) |
C6—C1—C2 | 121.1 (2) | N3—C11—H11 | 118.4 |
C6—C1—H1 | 119.5 | C12—C11—H11 | 118.4 |
C2—C1—H1 | 119.5 | C13—C12—C11 | 119.3 (2) |
C3—C2—C1 | 119.8 (3) | C13—C12—H12 | 120.4 |
C3—C2—H2 | 120.1 | C11—C12—H12 | 120.4 |
C1—C2—H2 | 120.1 | C14—C13—C12 | 118.2 (2) |
C2—C3—C4 | 119.6 (2) | C14—C13—H13 | 120.9 |
C2—C3—H3 | 120.2 | C12—C13—H13 | 120.9 |
C4—C3—H3 | 120.2 | C13—C14—C15 | 119.5 (2) |
C3—C4—C5 | 120.5 (2) | C13—C14—H14 | 120.3 |
C3—C4—H4 | 119.7 | C15—C14—H14 | 120.3 |
C5—C4—H4 | 119.7 | N3—C15—C14 | 123.00 (19) |
C6—C5—C4 | 120.8 (2) | N3—C15—H15 | 118.5 |
C6—C5—H5 | 119.6 | C14—C15—H15 | 118.5 |
N2—Ni1—O1—C7 | 9.82 (11) | C3—C4—C5—C6 | 0.8 (4) |
N2i—Ni1—O1—C7 | −170.18 (11) | C2—C1—C6—C5 | 0.7 (4) |
N3—Ni1—O1—C7 | 100.88 (12) | C2—C1—C6—C7 | −178.0 (2) |
N3i—Ni1—O1—C7 | −79.12 (12) | C4—C5—C6—C1 | −1.2 (3) |
C7—N1—N2—C8 | −175.97 (16) | C4—C5—C6—C7 | 177.42 (19) |
C7—N1—N2—Ni1 | 7.01 (17) | Ni1—O1—C7—N1 | −10.2 (2) |
O1i—Ni1—N2—C8 | −5.3 (2) | Ni1—O1—C7—C6 | 168.00 (12) |
O1—Ni1—N2—C8 | 174.7 (2) | N2—N1—C7—O1 | 1.9 (2) |
N3—Ni1—N2—C8 | 84.12 (19) | N2—N1—C7—C6 | −176.30 (14) |
N3i—Ni1—N2—C8 | −95.88 (19) | C1—C6—C7—O1 | −0.9 (3) |
O1i—Ni1—N2—N1 | 170.85 (10) | C5—C6—C7—O1 | −179.55 (17) |
O1—Ni1—N2—N1 | −9.15 (10) | C1—C6—C7—N1 | 177.46 (19) |
N3—Ni1—N2—N1 | −99.72 (11) | C5—C6—C7—N1 | −1.2 (3) |
N3i—Ni1—N2—N1 | 80.28 (11) | N1—N2—C8—C10 | −179.78 (19) |
O1i—Ni1—N3—C15 | 16.25 (16) | Ni1—N2—C8—C10 | −3.7 (3) |
O1—Ni1—N3—C15 | −163.75 (16) | N1—N2—C8—C9 | 0.4 (3) |
N2—Ni1—N3—C15 | −85.93 (16) | Ni1—N2—C8—C9 | 176.48 (18) |
N2i—Ni1—N3—C15 | 94.07 (16) | C15—N3—C11—C12 | 1.2 (3) |
O1i—Ni1—N3—C11 | −163.18 (16) | Ni1—N3—C11—C12 | −179.37 (19) |
O1—Ni1—N3—C11 | 16.82 (16) | N3—C11—C12—C13 | −1.0 (4) |
N2—Ni1—N3—C11 | 94.64 (16) | C11—C12—C13—C14 | 0.2 (4) |
N2i—Ni1—N3—C11 | −85.36 (16) | C12—C13—C14—C15 | 0.4 (4) |
C6—C1—C2—C3 | 0.3 (5) | C11—N3—C15—C14 | −0.5 (3) |
C1—C2—C3—C4 | −0.7 (5) | Ni1—N3—C15—C14 | −179.99 (17) |
C2—C3—C4—C5 | 0.1 (4) | C13—C14—C15—N3 | −0.2 (4) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N1ii | 0.93 | 2.50 | 3.382 (3) | 157 |
Symmetry code: (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C10H11N2O)2(C5H5N)2] |
Mr | 567.33 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 15.419 (5), 9.242 (3), 21.295 (9) |
β (°) | 109.924 (5) |
V (Å3) | 2853.1 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.72 |
Crystal size (mm) | 0.23 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.852, 0.919 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7093, 2514, 2285 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.078, 1.10 |
No. of reflections | 2514 |
No. of parameters | 178 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.32 |
Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N1i | 0.93 | 2.50 | 3.382 (3) | 157 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
The authors thank the National Natural Science Foundation of Shaanxi Province, China (2009JM2012) for financial support.
References
Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62. CrossRef CAS PubMed Web of Science Google Scholar
Cheng, P., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1996). Inorg. Chim. Acta, 248, 135–137. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J.-M., Wang, L., Liu, J., Li, Y.-C. & Li, H.-J. (2011). Acta Cryst. E67, m537. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones are an important class of Schiff bases compounds which has attracted much attention because of their biological activities (Carcelli et al., 1995), chemical and industrial versatility, and strong tendency to chelate to transition metals (Zhang et al., 2011; Ali et al., 2004; Cheng et al., 1996). As an extension of our work on the structural characterization of aroylhydrazone derivatives, the title compound was synthesized and its crystal structure is reported here.
In the title compound, the complex molecule has crystallographically imposed centre of symmetry (Fig. 1). The coordination polyhedron about the nickel metal is distorted octahedral, with the N, O atoms of two trans-arranged anionic bidentate hydrazone ligands at the equatorial plane and by the N atoms of two pyridine molecules occupying the axial positions. In the crystal structure, complex molecules are linked by intermolecular C—H···N hydrogen bonds (Table 1) into columns parallel to the b axis.