organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1745-o1746

(2E)-3-(1,3-Di­phenyl-1H-pyrazol-4-yl)-1-phenyl­prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology, Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 June 2011; accepted 15 June 2011; online 18 June 2011)

In the title compound, C24H18N2O, the pyrazole ring is essentially planar [maximum deviation = 0.004 (1) Å] and makes dihedral angles of 18.07 (4), 48.60 (4) and 9.13 (5)° with the phenyl rings. In the crystal, adjacent mol­ecules are connected via inter­molecular C—H⋯O hydrogen bonds, forming dimers. Furthermore, the crystal structure is stabilized by weak C—H⋯π and ππ inter­actions, with centroid–centroid distances of 3.6808 (5) Å.

Related literature

For applications of pyrazoles, see: Patel et al. (2004[Patel, M. V., Bell, R., Majest, S., Henry, R. & Kolasa, T. (2004). J. Org. Chem. 69, 7058-7065.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Vijesh et al. (2010[Vijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460-5464.]); Sharma et al. (2010[Sharma, P. K., Kumar, S., Kumar, P., Kaushik, P., Kaushik, D., Dhingra, Y. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 2650-2655.]); Rostom et al. (2003[Rostom, S. A. F., Shalaby, M. A. & El-Demellawy, M. A. (2003). Eur. J. Med. Chem. 38,, 959-974.]); Ghorab et al. (2010[Ghorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171-178.]); Amnekar & Bhusari (2010[Amnekar, N. D. & Bhusari, K. P. (2010). Eur. J. Med. Chem. 45, 149-159.]). For the synthetic procedure, see: Sharma et al. (2010[Sharma, P. K., Kumar, S., Kumar, P., Kaushik, P., Kaushik, D., Dhingra, Y. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 2650-2655.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O

  • Mr = 350.40

  • Triclinic, [P \overline 1]

  • a = 8.1027 (2) Å

  • b = 9.3157 (2) Å

  • c = 12.9634 (3) Å

  • α = 73.630 (1)°

  • β = 74.713 (1)°

  • γ = 74.820 (1)°

  • V = 886.83 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.66 × 0.23 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.988

  • 27273 measured reflections

  • 7371 independent reflections

  • 6190 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.04

  • 7371 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C20–C25 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.95 2.27 3.2019 (11) 167
C15—H15ACg2ii 0.95 2.81 3.6171 (9) 143
C2—H2ACg3iii 0.95 2.63 3.4304 (9) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles are a novel class of heterocyclic compounds possessing wide variety of applications in the agrochemical and pharmaceutical industries (Patel et al., 2004). Derivatives of pyrazoles are found to show good antibacterial (Isloor et al., 2009; Vijesh et al., 2010), anti-inflammatory (Sharma et al., 2010), analgesic (Rostom et al., 2003), anticancer, radioprotective (Ghorab et al., 2010) and anti-convulsant activities (Amnekar et al., 2010). Prompted by these diverse activities of pyrazole derivatives, we have synthesized the title compound to study its crystal structure.

In the title compound (Fig. 1), the pyrazole (N1/N2/C10–C12) group is essentially planar, with a maximum deviation of 0.004 (1) Å for atom C12, and makes dihedral angles of 18.07 (4)°, 48.60 (4)° and 9.13 (5)° with the adjacent C1–C6, C13–C18) and C19–C24 phenyl rings, respectively.

In the crystal structure (Fig. 2), adjacent molecules are connected via intermolecular C12—H12A···O1 (Table 1) hydrogen bonds forming dimers. Furthermore, the crystal structure is stabilized by weak ππ interactions between the pyrazole (N1/N2/C10–C12) and phenyl (C19–C24) rings [Cg···Cg = 3.6808 (5) Å; -x, 2-y, 1-z] and C—H···π (Table 1) interactions, involving the centroids of the C20–C25 (Cg2) and C13–C18 (Cg3) rings.

Related literature top

For applications of pyrazoles, see: Patel et al. (2004); Isloor et al. (2009); Vijesh et al. (2010); Sharma et al. (2010); Rostom et al. (2003); Ghorab et al. (2010); Amnekar et al. (2010). For the synthetic procedure, see: Sharma et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a cold stirred mixture of methanol (20 ml) and sodium hydroxide (12.09 mmol) was added acetophenone (4.03 mmol). The reaction mixture was stirred for 10 min. To this solution was added formyl pyrazole (4.03 mmol) followed by tetrahydrofuran (30 ml). The solution was further stirred for 2 h at 0 °C and then at room temperature for 5 h. It was then poured into ice cold water. The resulting solution was neutralized with diluted HCl. The solid that separated out was filtered, washed with water, dried and crystallized from ethanol. Yield: 1.15 g, 81.5 %. M. p.: 406–408 K (Sharma et al., 2010).

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.95 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
(2E)-3-(1,3-Diphenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one top
Crystal data top
C24H18N2OZ = 2
Mr = 350.40F(000) = 368
Triclinic, P1Dx = 1.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1027 (2) ÅCell parameters from 9964 reflections
b = 9.3157 (2) Åθ = 2.3–34.3°
c = 12.9634 (3) ŵ = 0.08 mm1
α = 73.630 (1)°T = 100 K
β = 74.713 (1)°Block, colourless
γ = 74.820 (1)°0.66 × 0.23 × 0.16 mm
V = 886.83 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7371 independent reflections
Radiation source: fine-focus sealed tube6190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 34.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.949, Tmax = 0.988k = 1414
27273 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.1576P]
where P = (Fo2 + 2Fc2)/3
7371 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C24H18N2Oγ = 74.820 (1)°
Mr = 350.40V = 886.83 (4) Å3
Triclinic, P1Z = 2
a = 8.1027 (2) ÅMo Kα radiation
b = 9.3157 (2) ŵ = 0.08 mm1
c = 12.9634 (3) ÅT = 100 K
α = 73.630 (1)°0.66 × 0.23 × 0.16 mm
β = 74.713 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6190 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.988Rint = 0.024
27273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
7371 reflectionsΔρmin = 0.30 e Å3
244 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62674 (8)0.29923 (7)0.35790 (5)0.02264 (13)
N10.05079 (9)0.77669 (8)0.50245 (5)0.01568 (12)
N20.12324 (9)0.77040 (8)0.42026 (5)0.01623 (12)
C10.70994 (10)0.10968 (9)0.21010 (6)0.01851 (14)
H1A0.77010.07800.26900.022*
C20.75836 (11)0.02845 (9)0.12812 (7)0.02144 (15)
H2A0.85140.05840.13120.026*
C30.67086 (12)0.07414 (10)0.04162 (7)0.02281 (16)
H3A0.70290.01770.01370.027*
C40.53661 (12)0.20236 (11)0.03622 (7)0.02424 (16)
H4A0.47810.23450.02350.029*
C50.48746 (11)0.28408 (10)0.11820 (7)0.02067 (15)
H5A0.39530.37160.11420.025*
C60.57315 (10)0.23783 (8)0.20632 (6)0.01585 (13)
C70.52409 (10)0.31976 (8)0.29762 (6)0.01587 (13)
C80.35228 (10)0.42396 (9)0.31234 (6)0.01641 (13)
H8A0.27080.42900.26980.020*
C90.31000 (10)0.51223 (9)0.38577 (6)0.01634 (13)
H9A0.39740.50300.42510.020*
C100.14917 (10)0.61871 (8)0.41212 (6)0.01493 (12)
C110.00317 (10)0.67559 (8)0.36519 (6)0.01476 (12)
C120.11129 (10)0.68879 (8)0.49939 (6)0.01588 (13)
H12A0.18580.67700.54810.019*
C130.04028 (10)0.65220 (8)0.26639 (6)0.01507 (12)
C140.08119 (10)0.67017 (9)0.16654 (6)0.01730 (13)
H14A0.19200.68900.16400.021*
C150.04095 (11)0.66063 (9)0.07101 (6)0.02009 (14)
H15A0.12400.67310.00370.024*
C160.12143 (12)0.63272 (10)0.07439 (7)0.02177 (15)
H16A0.14980.62710.00920.026*
C170.24183 (11)0.61317 (9)0.17338 (7)0.02090 (15)
H17A0.35180.59280.17580.025*
C180.20240 (10)0.62324 (9)0.26905 (6)0.01804 (14)
H18A0.28580.61040.33620.022*
C190.14395 (10)0.87250 (9)0.57610 (6)0.01661 (13)
C200.29759 (11)0.97422 (9)0.55476 (7)0.01987 (14)
H20A0.33940.98000.49150.024*
C210.38932 (12)1.06744 (10)0.62720 (7)0.02283 (16)
H21A0.49491.13620.61360.027*
C220.32750 (12)1.06055 (10)0.71912 (8)0.02431 (17)
H22A0.39061.12410.76840.029*
C230.17285 (12)0.96010 (12)0.73845 (8)0.02685 (18)
H23A0.12950.95650.80070.032*
C240.08031 (11)0.86448 (11)0.66779 (7)0.02333 (16)
H24A0.02450.79490.68200.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0202 (3)0.0266 (3)0.0242 (3)0.0010 (2)0.0109 (2)0.0099 (2)
N10.0156 (3)0.0183 (3)0.0144 (3)0.0022 (2)0.0034 (2)0.0065 (2)
N20.0160 (3)0.0189 (3)0.0151 (3)0.0022 (2)0.0045 (2)0.0059 (2)
C10.0177 (3)0.0176 (3)0.0184 (3)0.0004 (2)0.0047 (2)0.0039 (2)
C20.0221 (4)0.0182 (3)0.0214 (3)0.0009 (3)0.0033 (3)0.0062 (3)
C30.0245 (4)0.0245 (4)0.0203 (3)0.0032 (3)0.0022 (3)0.0103 (3)
C40.0233 (4)0.0310 (4)0.0191 (3)0.0001 (3)0.0069 (3)0.0093 (3)
C50.0184 (3)0.0238 (4)0.0193 (3)0.0014 (3)0.0069 (3)0.0066 (3)
C60.0149 (3)0.0161 (3)0.0163 (3)0.0012 (2)0.0042 (2)0.0042 (2)
C70.0152 (3)0.0157 (3)0.0169 (3)0.0017 (2)0.0048 (2)0.0040 (2)
C80.0144 (3)0.0171 (3)0.0183 (3)0.0010 (2)0.0046 (2)0.0056 (2)
C90.0148 (3)0.0180 (3)0.0166 (3)0.0020 (2)0.0041 (2)0.0050 (2)
C100.0144 (3)0.0158 (3)0.0152 (3)0.0024 (2)0.0035 (2)0.0046 (2)
C110.0151 (3)0.0156 (3)0.0140 (3)0.0028 (2)0.0035 (2)0.0036 (2)
C120.0152 (3)0.0180 (3)0.0153 (3)0.0025 (2)0.0036 (2)0.0054 (2)
C130.0157 (3)0.0149 (3)0.0151 (3)0.0014 (2)0.0049 (2)0.0042 (2)
C140.0170 (3)0.0189 (3)0.0161 (3)0.0016 (2)0.0040 (2)0.0054 (2)
C150.0225 (3)0.0214 (3)0.0162 (3)0.0002 (3)0.0047 (3)0.0076 (3)
C160.0265 (4)0.0213 (3)0.0207 (3)0.0010 (3)0.0099 (3)0.0087 (3)
C170.0226 (4)0.0206 (3)0.0231 (4)0.0050 (3)0.0104 (3)0.0048 (3)
C180.0180 (3)0.0190 (3)0.0182 (3)0.0039 (2)0.0060 (3)0.0037 (2)
C190.0165 (3)0.0183 (3)0.0160 (3)0.0045 (2)0.0007 (2)0.0070 (2)
C200.0200 (3)0.0191 (3)0.0196 (3)0.0020 (3)0.0025 (3)0.0065 (3)
C210.0220 (4)0.0198 (3)0.0249 (4)0.0023 (3)0.0004 (3)0.0089 (3)
C220.0237 (4)0.0251 (4)0.0257 (4)0.0073 (3)0.0036 (3)0.0140 (3)
C230.0239 (4)0.0377 (5)0.0240 (4)0.0064 (3)0.0012 (3)0.0182 (3)
C240.0198 (4)0.0321 (4)0.0212 (4)0.0022 (3)0.0038 (3)0.0143 (3)
Geometric parameters (Å, º) top
O1—C71.2305 (9)C11—C131.4742 (10)
N1—C121.3508 (10)C12—H12A0.9500
N1—N21.3661 (8)C13—C181.3985 (11)
N1—C191.4232 (9)C13—C141.4016 (11)
N2—C111.3325 (10)C14—C151.3921 (10)
C1—C21.3906 (11)C14—H14A0.9500
C1—C61.3995 (11)C15—C161.3939 (12)
C1—H1A0.9500C15—H15A0.9500
C2—C31.3904 (12)C16—C171.3903 (13)
C2—H2A0.9500C16—H16A0.9500
C3—C41.3883 (13)C17—C181.3926 (11)
C3—H3A0.9500C17—H17A0.9500
C4—C51.3935 (11)C18—H18A0.9500
C4—H4A0.9500C19—C241.3918 (11)
C5—C61.3989 (11)C19—C201.3930 (11)
C5—H5A0.9500C20—C211.3936 (11)
C6—C71.4978 (10)C20—H20A0.9500
C7—C81.4742 (11)C21—C221.3892 (13)
C8—C91.3496 (10)C21—H21A0.9500
C8—H8A0.9500C22—C231.3885 (14)
C9—C101.4416 (10)C22—H22A0.9500
C9—H9A0.9500C23—C241.3937 (12)
C10—C121.3886 (10)C23—H23A0.9500
C10—C111.4305 (10)C24—H24A0.9500
C12—N1—N2111.99 (6)N1—C12—H12A126.2
C12—N1—C19127.99 (6)C10—C12—H12A126.2
N2—N1—C19119.98 (6)C18—C13—C14119.08 (7)
C11—N2—N1105.17 (6)C18—C13—C11120.35 (7)
C2—C1—C6120.43 (7)C14—C13—C11120.39 (7)
C2—C1—H1A119.8C15—C14—C13120.62 (7)
C6—C1—H1A119.8C15—C14—H14A119.7
C3—C2—C1120.10 (7)C13—C14—H14A119.7
C3—C2—H2A119.9C14—C15—C16119.86 (8)
C1—C2—H2A119.9C14—C15—H15A120.1
C4—C3—C2119.96 (7)C16—C15—H15A120.1
C4—C3—H3A120.0C17—C16—C15119.82 (7)
C2—C3—H3A120.0C17—C16—H16A120.1
C3—C4—C5120.16 (8)C15—C16—H16A120.1
C3—C4—H4A119.9C16—C17—C18120.51 (7)
C5—C4—H4A119.9C16—C17—H17A119.7
C4—C5—C6120.30 (7)C18—C17—H17A119.7
C4—C5—H5A119.8C17—C18—C13120.11 (7)
C6—C5—H5A119.8C17—C18—H18A119.9
C5—C6—C1119.04 (7)C13—C18—H18A119.9
C5—C6—C7122.63 (7)C24—C19—C20120.83 (7)
C1—C6—C7118.34 (6)C24—C19—N1119.87 (7)
O1—C7—C8121.76 (7)C20—C19—N1119.30 (7)
O1—C7—C6119.81 (7)C19—C20—C21119.29 (8)
C8—C7—C6118.43 (6)C19—C20—H20A120.4
C9—C8—C7120.44 (7)C21—C20—H20A120.4
C9—C8—H8A119.8C22—C21—C20120.50 (8)
C7—C8—H8A119.8C22—C21—H21A119.7
C8—C9—C10128.27 (7)C20—C21—H21A119.7
C8—C9—H9A115.9C23—C22—C21119.52 (8)
C10—C9—H9A115.9C23—C22—H22A120.2
C12—C10—C11103.95 (6)C21—C22—H22A120.2
C12—C10—C9123.14 (7)C22—C23—C24120.88 (8)
C11—C10—C9132.89 (7)C22—C23—H23A119.6
N2—C11—C10111.32 (6)C24—C23—H23A119.6
N2—C11—C13117.90 (6)C19—C24—C23118.96 (8)
C10—C11—C13130.69 (7)C19—C24—H24A120.5
N1—C12—C10107.56 (6)C23—C24—H24A120.5
C12—N1—N2—C110.28 (8)C11—C10—C12—N10.79 (8)
C19—N1—N2—C11178.30 (7)C9—C10—C12—N1178.05 (7)
C6—C1—C2—C30.03 (13)N2—C11—C13—C1847.06 (10)
C1—C2—C3—C40.94 (13)C10—C11—C13—C18136.80 (8)
C2—C3—C4—C51.00 (14)N2—C11—C13—C14128.07 (8)
C3—C4—C5—C60.15 (14)C10—C11—C13—C1448.06 (11)
C4—C5—C6—C10.76 (12)C18—C13—C14—C150.52 (11)
C4—C5—C6—C7179.03 (8)C11—C13—C14—C15174.68 (7)
C2—C1—C6—C50.82 (12)C13—C14—C15—C160.10 (12)
C2—C1—C6—C7178.98 (7)C14—C15—C16—C170.59 (12)
C5—C6—C7—O1162.50 (8)C15—C16—C17—C180.85 (12)
C1—C6—C7—O117.72 (11)C16—C17—C18—C130.43 (12)
C5—C6—C7—C817.37 (11)C14—C13—C18—C170.26 (11)
C1—C6—C7—C8162.41 (7)C11—C13—C18—C17174.95 (7)
O1—C7—C8—C96.89 (12)C12—N1—C19—C2410.42 (12)
C6—C7—C8—C9172.98 (7)N2—N1—C19—C24171.91 (7)
C7—C8—C9—C10179.26 (7)C12—N1—C19—C20169.10 (8)
C8—C9—C10—C12171.25 (8)N2—N1—C19—C208.57 (11)
C8—C9—C10—C117.21 (14)C24—C19—C20—C210.83 (12)
N1—N2—C11—C100.25 (8)N1—C19—C20—C21179.65 (7)
N1—N2—C11—C13176.60 (6)C19—C20—C21—C220.74 (13)
C12—C10—C11—N20.66 (9)C20—C21—C22—C230.16 (13)
C9—C10—C11—N2178.01 (8)C21—C22—C23—C241.00 (14)
C12—C10—C11—C13175.68 (8)C20—C19—C24—C230.02 (13)
C9—C10—C11—C135.65 (14)N1—C19—C24—C23179.53 (8)
N2—N1—C12—C100.70 (9)C22—C23—C24—C190.91 (14)
C19—N1—C12—C10178.53 (7)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C20–C25 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.952.273.2019 (11)167
C15—H15A···Cg2ii0.952.813.6171 (9)143
C2—H2A···Cg3iii0.952.633.4304 (9)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC24H18N2O
Mr350.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1027 (2), 9.3157 (2), 12.9634 (3)
α, β, γ (°)73.630 (1), 74.713 (1), 74.820 (1)
V3)886.83 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.66 × 0.23 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.949, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
27273, 7371, 6190
Rint0.024
(sin θ/λ)max1)0.794
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.04
No. of reflections7371
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C20–C25 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.952.273.2019 (11)167
C15—H15A···Cg2ii0.952.813.6171 (9)143
C2—H2A···Cg3iii0.952.633.4304 (9)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a Young Scientist's award.

References

First citationAmnekar, N. D. & Bhusari, K. P. (2010). Eur. J. Med. Chem. 45, 149–159.  Web of Science PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatel, M. V., Bell, R., Majest, S., Henry, R. & Kolasa, T. (2004). J. Org. Chem. 69, 7058–7065.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRostom, S. A. F., Shalaby, M. A. & El-Demellawy, M. A. (2003). Eur. J. Med. Chem. 38,, 959–974.  CrossRef Google Scholar
First citationSharma, P. K., Kumar, S., Kumar, P., Kaushik, P., Kaushik, D., Dhingra, Y. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 2650–2655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460–5464.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1745-o1746
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds