metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­methyl-1,4-diazo­niabi­cyclo[2.2.2]octane tetra­chloridocuprate(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com

(Received 26 April 2011; accepted 30 May 2011; online 11 June 2011)

In the crystal structure of the title compound, (C7H15ClN2)[CuCl4], a weak inter­molecular N—H⋯Cl hydrogen bond is observed between the organic dication and the tetrahedral [CuCl4]2− anion. The organic dication is distorted, as indicated by the N—C—C—N torsion angles, which range from 16.76 (4) to 19.54 (3)°.

Related literature

For related 1,4-diaza­bicyclo­[2.2.2]octane tetra­chlorido­cuprate(II) and tetra­chloridocobaltate(II) structures, and related references therein, see: Sun & Qu (2005[Sun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360-m1362.]); Qu & Sun (2005[Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121-m2123.]). For phase transitions of ferroelectric materials, see: Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]); Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H15ClN2)[CuCl4]

  • Mr = 368.00

  • Orthorhombic, P 21 21 21

  • a = 9.878 (4) Å

  • b = 11.167 (4) Å

  • c = 12.201 (4) Å

  • V = 1345.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.59 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.465, Tmax = 0.596

  • 6091 measured reflections

  • 3072 independent reflections

  • 2865 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.01

  • 3072 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1298 Friedel pairs

  • Flack parameter: 0.006 (11)

Table 1
Selected bond lengths (Å)

Cl2—Cu1 2.2537 (8)
Cl3—Cu1 2.2539 (9)
Cl4—Cu1 2.2559 (9)
Cl5—Cu1 2.2088 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl2 0.91 2.60 3.270 (2) 131
N2—H2C⋯Cl3 0.91 2.54 3.252 (2) 136

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I), (Fig. 1), consists of protonated 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium dications and [CuCl4]2- anions. The organic dication is distorted, as indicated by the N—C—C—N torsion angles, which range from 16.76 (4) to 19.54 (3)°. In the structure of 1,4-dimethyl-1,4-diazonia[2.2.2]octane tetrachloridocuprate(II), of two independent dications one is almost undistorted with torsion angles between 0.6 (6) and 0.9 (5)°, whereas the other dication is distorted exhibiting torsion angles in the range of 5.5 (5) and 7.9 (5)° (Sun & Qu, 2005). In the isotypic cobalt(II) structure (Qu & Sun, 2005), two independent dications are slightly distorted with torsion angles range between 3.0 (4) and 8.7 (4)°. The [CuCl4]2- anion in (I) possesses typical Cu—Cl bonds and its lengths range from 2.209 (1) to 2.2559 (9) Å (Table 1), while the Cl—Cu—Cl angles range from 95.98 (4) to 132.85 (3)°. The bifurcated N—H···(Cl,Cl) hydrogen bonds (Table 2) between the organic dications and the [CuCl4]2- anions contribute to the stability of crystal packing (Fig. 2).

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance.The title compound was studied as part of our work to obtain potential ferroelectric phase transition materials. Unluckily, the compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric (Zhang et al., 2008; Ye et al., 2009).

Related literature top

For related 1,4-diazabicyclo[2.2.2]octane tetrachloridocuprate(II) and tetrachloridocobaltate(II) structures, and related references therein, see: Sun & Qu (2005); Qu & Sun (2005). For phase transitions of ferroelectric materials, see: Zhang et al. (2008); Ye et al. (2009).

Experimental top

1, 4-diazabicyclo [2.2.2]octane (5.6 g, 0.05 mol) was added in dichloromethane (20 ml) and the mixture was refluxed for 8 h. On standing for about 16 h at room temperature, the white precipitate of 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride was obtained.

The title compound was synthesized by adding a solution of 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride (1.97 g, 10 mmol) in HCl (37%, 20 ml) to a solution of CuCl2 (8 mmol) in 20 ml H2O. After a few weeks, brown hygroscopic block crystals of the title compound were obtained on slow evaporation of the solvent.

Refinement top

Positional parameters of all H atoms bonded to C and N atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with respective C—H and N—H distances of 0.97 Å and 0.91 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of a packing section of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.
1-Chloromethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridocuprate(II) top
Crystal data top
(C7H15ClN2)[CuCl4]F(000) = 740
Mr = 368.00Dx = 1.816 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4288 reflections
a = 9.878 (4) Åθ = 2.5–27.5°
b = 11.167 (4) ŵ = 2.59 mm1
c = 12.201 (4) ÅT = 293 K
V = 1345.9 (8) Å3Block, brown
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
3072 independent reflections
Radiation source: fine-focus sealed tube2865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.5°
CCD profile fitting scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.465, Tmax = 0.596l = 1515
6091 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0267P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3072 reflectionsΔρmax = 0.39 e Å3
136 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1298 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (11)
Crystal data top
(C7H15ClN2)[CuCl4]V = 1345.9 (8) Å3
Mr = 368.00Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.878 (4) ŵ = 2.59 mm1
b = 11.167 (4) ÅT = 293 K
c = 12.201 (4) Å0.30 × 0.25 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
3072 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2865 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.596Rint = 0.032
6091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.39 e Å3
S = 1.01Δρmin = 0.36 e Å3
3072 reflectionsAbsolute structure: Flack (1983), with 1298 Friedel pairs
136 parametersAbsolute structure parameter: 0.006 (11)
0 restraints
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4179 (3)1.0325 (2)0.3874 (2)0.0310 (6)
H1A0.43000.99820.31500.037*
H1B0.33851.08360.38590.037*
C20.3989 (3)0.9330 (2)0.4717 (2)0.0267 (6)
H2A0.32560.95330.52120.032*
H2B0.37600.85860.43500.032*
C30.6657 (3)1.0334 (2)0.4017 (2)0.0303 (6)
H3A0.74191.07350.43590.036*
H3B0.68441.02530.32400.036*
C40.6448 (3)0.9099 (2)0.4533 (2)0.0286 (6)
H4A0.62350.85170.39680.034*
H4B0.72690.88450.49020.034*
C50.5303 (3)1.1391 (2)0.5373 (2)0.0288 (6)
H5A0.44261.17480.55190.035*
H5B0.59981.19730.55510.035*
C60.5486 (3)1.0273 (2)0.6064 (2)0.0282 (6)
H6A0.63881.02630.63800.034*
H6B0.48341.02690.66590.034*
C70.5329 (3)0.8043 (2)0.6006 (2)0.0336 (6)
H7A0.61370.80400.64570.040*
H7B0.53820.73670.55100.040*
Cl10.39073 (9)0.78795 (7)0.68465 (6)0.0493 (2)
N10.5285 (2)0.91796 (17)0.53523 (16)0.0212 (4)
N20.5402 (2)1.10429 (17)0.41845 (17)0.0255 (4)
H2C0.54381.17160.37650.031*
Cl20.36056 (6)1.33367 (5)0.33718 (6)0.03068 (15)
Cl30.69739 (6)1.35292 (6)0.36324 (6)0.03568 (16)
Cl40.42453 (7)1.63249 (5)0.36275 (5)0.03390 (16)
Cl50.55993 (8)1.49699 (6)0.59012 (6)0.04221 (18)
Cu10.51283 (3)1.45593 (3)0.41718 (3)0.02648 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0292 (13)0.0314 (14)0.0325 (15)0.0047 (12)0.0084 (11)0.0029 (11)
C20.0233 (13)0.0228 (13)0.0339 (14)0.0040 (10)0.0025 (11)0.0032 (11)
C30.0237 (12)0.0379 (14)0.0294 (14)0.0008 (12)0.0058 (11)0.0033 (12)
C40.0255 (13)0.0314 (13)0.0289 (14)0.0070 (12)0.0048 (11)0.0014 (11)
C50.0342 (15)0.0215 (12)0.0305 (13)0.0036 (12)0.0031 (12)0.0053 (10)
C60.0338 (14)0.0260 (13)0.0248 (14)0.0091 (11)0.0016 (10)0.0047 (10)
C70.0426 (16)0.0270 (13)0.0312 (15)0.0047 (12)0.0017 (13)0.0070 (11)
Cl10.0659 (6)0.0429 (4)0.0392 (4)0.0177 (4)0.0166 (4)0.0024 (3)
N10.0226 (10)0.0194 (9)0.0217 (10)0.0025 (8)0.0004 (9)0.0012 (8)
N20.0260 (10)0.0214 (10)0.0292 (11)0.0023 (9)0.0003 (10)0.0027 (9)
Cl20.0259 (3)0.0249 (3)0.0412 (4)0.0006 (3)0.0059 (3)0.0022 (3)
Cl30.0241 (3)0.0314 (3)0.0516 (4)0.0000 (3)0.0010 (3)0.0042 (3)
Cl40.0505 (4)0.0211 (3)0.0302 (3)0.0052 (3)0.0030 (3)0.0007 (3)
Cl50.0568 (5)0.0438 (4)0.0260 (3)0.0048 (4)0.0066 (3)0.0006 (3)
Cu10.02908 (17)0.02223 (14)0.02814 (16)0.00119 (14)0.00354 (14)0.00133 (13)
Geometric parameters (Å, º) top
C1—N21.499 (3)C5—C61.518 (3)
C1—C21.526 (3)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—N11.511 (3)
C2—N11.506 (3)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
C2—H2B0.9700C7—N11.499 (3)
C3—N21.484 (3)C7—Cl11.748 (3)
C3—C41.530 (3)C7—H7A0.9700
C3—H3A0.9700C7—H7B0.9700
C3—H3B0.9700N2—H2C0.9100
C4—N11.526 (3)Cl2—Cu12.2537 (8)
C4—H4A0.9700Cl3—Cu12.2539 (9)
C4—H4B0.9700Cl4—Cu12.2559 (9)
C5—N21.504 (3)Cl5—Cu12.2088 (11)
N2—C1—C2108.56 (19)N1—C6—C5109.22 (19)
N2—C1—H1A110.0N1—C6—H6A109.8
C2—C1—H1A110.0C5—C6—H6A109.8
N2—C1—H1B110.0N1—C6—H6B109.8
C2—C1—H1B110.0C5—C6—H6B109.8
H1A—C1—H1B108.4H6A—C6—H6B108.3
N1—C2—C1108.86 (19)N1—C7—Cl1112.18 (19)
N1—C2—H2A109.9N1—C7—H7A109.2
C1—C2—H2A109.9Cl1—C7—H7A109.2
N1—C2—H2B109.9N1—C7—H7B109.2
C1—C2—H2B109.9Cl1—C7—H7B109.2
H2A—C2—H2B108.3H7A—C7—H7B107.9
N2—C3—C4108.13 (19)C7—N1—C2113.10 (19)
N2—C3—H3A110.1C7—N1—C6111.95 (19)
C4—C3—H3A110.1C2—N1—C6108.52 (19)
N2—C3—H3B110.1C7—N1—C4106.10 (19)
C4—C3—H3B110.1C2—N1—C4108.03 (19)
H3A—C3—H3B108.4C6—N1—C4108.98 (18)
N1—C4—C3108.55 (19)C3—N2—C1110.7 (2)
N1—C4—H4A110.0C3—N2—C5109.0 (2)
C3—C4—H4A110.0C1—N2—C5109.21 (19)
N1—C4—H4B110.0C3—N2—H2C109.3
C3—C4—H4B110.0C1—N2—H2C109.3
H4A—C4—H4B108.4C5—N2—H2C109.3
N2—C5—C6108.37 (19)Cl5—Cu1—Cl2132.85 (3)
N2—C5—H5A110.0Cl5—Cu1—Cl3102.39 (3)
C6—C5—H5A110.0Cl2—Cu1—Cl395.98 (4)
N2—C5—H5B110.0Cl5—Cu1—Cl4100.44 (3)
C6—C5—H5B110.0Cl2—Cu1—Cl498.27 (4)
H5A—C5—H5B108.4Cl3—Cu1—Cl4132.29 (3)
N2—C1—C2—N116.8 (3)C5—C6—N1—C468.1 (2)
N2—C3—C4—N119.5 (3)C3—C4—N1—C7167.6 (2)
N2—C5—C6—N116.8 (3)C3—C4—N1—C270.9 (2)
Cl1—C7—N1—C252.6 (2)C3—C4—N1—C646.9 (3)
Cl1—C7—N1—C670.4 (2)C4—C3—N2—C147.8 (3)
Cl1—C7—N1—C4170.83 (17)C4—C3—N2—C572.3 (2)
C1—C2—N1—C7166.0 (2)C2—C1—N2—C369.9 (3)
C1—C2—N1—C669.1 (2)C2—C1—N2—C550.1 (3)
C1—C2—N1—C448.9 (2)C6—C5—N2—C351.1 (3)
C5—C6—N1—C7174.9 (2)C6—C5—N2—C170.0 (3)
C5—C6—N1—C249.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl20.912.603.270 (2)131
N2—H2C···Cl30.912.543.252 (2)136

Experimental details

Crystal data
Chemical formula(C7H15ClN2)[CuCl4]
Mr368.00
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.878 (4), 11.167 (4), 12.201 (4)
V3)1345.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.59
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.465, 0.596
No. of measured, independent and
observed [I > 2σ(I)] reflections
6091, 3072, 2865
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.01
No. of reflections3072
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.36
Absolute structureFlack (1983), with 1298 Friedel pairs
Absolute structure parameter0.006 (11)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Cl2—Cu12.2537 (8)Cl4—Cu12.2559 (9)
Cl3—Cu12.2539 (9)Cl5—Cu12.2088 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl20.912.603.270 (2)130.6
N2—H2C···Cl30.912.543.252 (2)135.9
 

Acknowledgements

The author is grateful to the Starter Fund of Southeast University, Nanjing, China.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121–m2123.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360–m1362.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds