metal-organic compounds
1-Chloromethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridocuprate(II)
aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com
In the 7H15ClN2)[CuCl4], a weak intermolecular N—H⋯Cl hydrogen bond is observed between the organic dication and the tetrahedral [CuCl4]2− anion. The organic dication is distorted, as indicated by the N—C—C—N torsion angles, which range from 16.76 (4) to 19.54 (3)°.
of the title compound, (CRelated literature
For related 1,4-diazabicyclo[2.2.2]octane tetrachloridocuprate(II) and tetrachloridocobaltate(II) structures, and related references therein, see: Sun & Qu (2005); Qu & Sun (2005). For phase transitions of ferroelectric materials, see: Zhang et al. (2008); Ye et al. (2009).
Experimental
Crystal data
|
|
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811020782/si2354sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020782/si2354Isup2.hkl
1, 4-diazabicyclo [2.2.2]octane (5.6 g, 0.05 mol) was added in dichloromethane (20 ml) and the mixture was refluxed for 8 h. On standing for about 16 h at room temperature, the white precipitate of 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride was obtained.
The title compound was synthesized by adding a solution of 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride (1.97 g, 10 mmol) in HCl (37%, 20 ml) to a solution of CuCl2 (8 mmol) in 20 ml H2O. After a few weeks, brown hygroscopic block crystals of the title compound were obtained on slow evaporation of the solvent.
Positional parameters of all H atoms bonded to C and N atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with respective C—H and N—H distances of 0.97 Å and 0.91 Å and with Uiso(H) = 1.2Ueq(C, N).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C7H15ClN2)[CuCl4] | F(000) = 740 |
Mr = 368.00 | Dx = 1.816 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4288 reflections |
a = 9.878 (4) Å | θ = 2.5–27.5° |
b = 11.167 (4) Å | µ = 2.59 mm−1 |
c = 12.201 (4) Å | T = 293 K |
V = 1345.9 (8) Å3 | Block, brown |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Rigaku Mercury2 diffractometer | 3072 independent reflections |
Radiation source: fine-focus sealed tube | 2865 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
CCD profile fitting scans | h = −12→12 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −14→14 |
Tmin = 0.465, Tmax = 0.596 | l = −15→15 |
6091 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.0267P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3072 reflections | Δρmax = 0.39 e Å−3 |
136 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Absolute structure: Flack (1983), with 1298 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.006 (11) |
(C7H15ClN2)[CuCl4] | V = 1345.9 (8) Å3 |
Mr = 368.00 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.878 (4) Å | µ = 2.59 mm−1 |
b = 11.167 (4) Å | T = 293 K |
c = 12.201 (4) Å | 0.30 × 0.25 × 0.20 mm |
Rigaku Mercury2 diffractometer | 3072 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2865 reflections with I > 2σ(I) |
Tmin = 0.465, Tmax = 0.596 | Rint = 0.032 |
6091 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.055 | Δρmax = 0.39 e Å−3 |
S = 1.01 | Δρmin = −0.36 e Å−3 |
3072 reflections | Absolute structure: Flack (1983), with 1298 Friedel pairs |
136 parameters | Absolute structure parameter: 0.006 (11) |
0 restraints |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4179 (3) | 1.0325 (2) | 0.3874 (2) | 0.0310 (6) | |
H1A | 0.4300 | 0.9982 | 0.3150 | 0.037* | |
H1B | 0.3385 | 1.0836 | 0.3859 | 0.037* | |
C2 | 0.3989 (3) | 0.9330 (2) | 0.4717 (2) | 0.0267 (6) | |
H2A | 0.3256 | 0.9533 | 0.5212 | 0.032* | |
H2B | 0.3760 | 0.8586 | 0.4350 | 0.032* | |
C3 | 0.6657 (3) | 1.0334 (2) | 0.4017 (2) | 0.0303 (6) | |
H3A | 0.7419 | 1.0735 | 0.4359 | 0.036* | |
H3B | 0.6844 | 1.0253 | 0.3240 | 0.036* | |
C4 | 0.6448 (3) | 0.9099 (2) | 0.4533 (2) | 0.0286 (6) | |
H4A | 0.6235 | 0.8517 | 0.3968 | 0.034* | |
H4B | 0.7269 | 0.8845 | 0.4902 | 0.034* | |
C5 | 0.5303 (3) | 1.1391 (2) | 0.5373 (2) | 0.0288 (6) | |
H5A | 0.4426 | 1.1748 | 0.5519 | 0.035* | |
H5B | 0.5998 | 1.1973 | 0.5551 | 0.035* | |
C6 | 0.5486 (3) | 1.0273 (2) | 0.6064 (2) | 0.0282 (6) | |
H6A | 0.6388 | 1.0263 | 0.6380 | 0.034* | |
H6B | 0.4834 | 1.0269 | 0.6659 | 0.034* | |
C7 | 0.5329 (3) | 0.8043 (2) | 0.6006 (2) | 0.0336 (6) | |
H7A | 0.6137 | 0.8040 | 0.6457 | 0.040* | |
H7B | 0.5382 | 0.7367 | 0.5510 | 0.040* | |
Cl1 | 0.39073 (9) | 0.78795 (7) | 0.68465 (6) | 0.0493 (2) | |
N1 | 0.5285 (2) | 0.91796 (17) | 0.53523 (16) | 0.0212 (4) | |
N2 | 0.5402 (2) | 1.10429 (17) | 0.41845 (17) | 0.0255 (4) | |
H2C | 0.5438 | 1.1716 | 0.3765 | 0.031* | |
Cl2 | 0.36056 (6) | 1.33367 (5) | 0.33718 (6) | 0.03068 (15) | |
Cl3 | 0.69739 (6) | 1.35292 (6) | 0.36324 (6) | 0.03568 (16) | |
Cl4 | 0.42453 (7) | 1.63249 (5) | 0.36275 (5) | 0.03390 (16) | |
Cl5 | 0.55993 (8) | 1.49699 (6) | 0.59012 (6) | 0.04221 (18) | |
Cu1 | 0.51283 (3) | 1.45593 (3) | 0.41718 (3) | 0.02648 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0292 (13) | 0.0314 (14) | 0.0325 (15) | −0.0047 (12) | −0.0084 (11) | 0.0029 (11) |
C2 | 0.0233 (13) | 0.0228 (13) | 0.0339 (14) | −0.0040 (10) | −0.0025 (11) | −0.0032 (11) |
C3 | 0.0237 (12) | 0.0379 (14) | 0.0294 (14) | 0.0008 (12) | 0.0058 (11) | 0.0033 (12) |
C4 | 0.0255 (13) | 0.0314 (13) | 0.0289 (14) | 0.0070 (12) | 0.0048 (11) | 0.0014 (11) |
C5 | 0.0342 (15) | 0.0215 (12) | 0.0305 (13) | −0.0036 (12) | 0.0031 (12) | −0.0053 (10) |
C6 | 0.0338 (14) | 0.0260 (13) | 0.0248 (14) | −0.0091 (11) | 0.0016 (10) | −0.0047 (10) |
C7 | 0.0426 (16) | 0.0270 (13) | 0.0312 (15) | −0.0047 (12) | −0.0017 (13) | 0.0070 (11) |
Cl1 | 0.0659 (6) | 0.0429 (4) | 0.0392 (4) | −0.0177 (4) | 0.0166 (4) | 0.0024 (3) |
N1 | 0.0226 (10) | 0.0194 (9) | 0.0217 (10) | −0.0025 (8) | −0.0004 (9) | −0.0012 (8) |
N2 | 0.0260 (10) | 0.0214 (10) | 0.0292 (11) | −0.0023 (9) | −0.0003 (10) | 0.0027 (9) |
Cl2 | 0.0259 (3) | 0.0249 (3) | 0.0412 (4) | −0.0006 (3) | −0.0059 (3) | −0.0022 (3) |
Cl3 | 0.0241 (3) | 0.0314 (3) | 0.0516 (4) | 0.0000 (3) | −0.0010 (3) | −0.0042 (3) |
Cl4 | 0.0505 (4) | 0.0211 (3) | 0.0302 (3) | 0.0052 (3) | −0.0030 (3) | −0.0007 (3) |
Cl5 | 0.0568 (5) | 0.0438 (4) | 0.0260 (3) | 0.0048 (4) | −0.0066 (3) | −0.0006 (3) |
Cu1 | 0.02908 (17) | 0.02223 (14) | 0.02814 (16) | 0.00119 (14) | −0.00354 (14) | −0.00133 (13) |
C1—N2 | 1.499 (3) | C5—C6 | 1.518 (3) |
C1—C2 | 1.526 (3) | C5—H5A | 0.9700 |
C1—H1A | 0.9700 | C5—H5B | 0.9700 |
C1—H1B | 0.9700 | C6—N1 | 1.511 (3) |
C2—N1 | 1.506 (3) | C6—H6A | 0.9700 |
C2—H2A | 0.9700 | C6—H6B | 0.9700 |
C2—H2B | 0.9700 | C7—N1 | 1.499 (3) |
C3—N2 | 1.484 (3) | C7—Cl1 | 1.748 (3) |
C3—C4 | 1.530 (3) | C7—H7A | 0.9700 |
C3—H3A | 0.9700 | C7—H7B | 0.9700 |
C3—H3B | 0.9700 | N2—H2C | 0.9100 |
C4—N1 | 1.526 (3) | Cl2—Cu1 | 2.2537 (8) |
C4—H4A | 0.9700 | Cl3—Cu1 | 2.2539 (9) |
C4—H4B | 0.9700 | Cl4—Cu1 | 2.2559 (9) |
C5—N2 | 1.504 (3) | Cl5—Cu1 | 2.2088 (11) |
N2—C1—C2 | 108.56 (19) | N1—C6—C5 | 109.22 (19) |
N2—C1—H1A | 110.0 | N1—C6—H6A | 109.8 |
C2—C1—H1A | 110.0 | C5—C6—H6A | 109.8 |
N2—C1—H1B | 110.0 | N1—C6—H6B | 109.8 |
C2—C1—H1B | 110.0 | C5—C6—H6B | 109.8 |
H1A—C1—H1B | 108.4 | H6A—C6—H6B | 108.3 |
N1—C2—C1 | 108.86 (19) | N1—C7—Cl1 | 112.18 (19) |
N1—C2—H2A | 109.9 | N1—C7—H7A | 109.2 |
C1—C2—H2A | 109.9 | Cl1—C7—H7A | 109.2 |
N1—C2—H2B | 109.9 | N1—C7—H7B | 109.2 |
C1—C2—H2B | 109.9 | Cl1—C7—H7B | 109.2 |
H2A—C2—H2B | 108.3 | H7A—C7—H7B | 107.9 |
N2—C3—C4 | 108.13 (19) | C7—N1—C2 | 113.10 (19) |
N2—C3—H3A | 110.1 | C7—N1—C6 | 111.95 (19) |
C4—C3—H3A | 110.1 | C2—N1—C6 | 108.52 (19) |
N2—C3—H3B | 110.1 | C7—N1—C4 | 106.10 (19) |
C4—C3—H3B | 110.1 | C2—N1—C4 | 108.03 (19) |
H3A—C3—H3B | 108.4 | C6—N1—C4 | 108.98 (18) |
N1—C4—C3 | 108.55 (19) | C3—N2—C1 | 110.7 (2) |
N1—C4—H4A | 110.0 | C3—N2—C5 | 109.0 (2) |
C3—C4—H4A | 110.0 | C1—N2—C5 | 109.21 (19) |
N1—C4—H4B | 110.0 | C3—N2—H2C | 109.3 |
C3—C4—H4B | 110.0 | C1—N2—H2C | 109.3 |
H4A—C4—H4B | 108.4 | C5—N2—H2C | 109.3 |
N2—C5—C6 | 108.37 (19) | Cl5—Cu1—Cl2 | 132.85 (3) |
N2—C5—H5A | 110.0 | Cl5—Cu1—Cl3 | 102.39 (3) |
C6—C5—H5A | 110.0 | Cl2—Cu1—Cl3 | 95.98 (4) |
N2—C5—H5B | 110.0 | Cl5—Cu1—Cl4 | 100.44 (3) |
C6—C5—H5B | 110.0 | Cl2—Cu1—Cl4 | 98.27 (4) |
H5A—C5—H5B | 108.4 | Cl3—Cu1—Cl4 | 132.29 (3) |
N2—C1—C2—N1 | −16.8 (3) | C5—C6—N1—C4 | 68.1 (2) |
N2—C3—C4—N1 | −19.5 (3) | C3—C4—N1—C7 | −167.6 (2) |
N2—C5—C6—N1 | −16.8 (3) | C3—C4—N1—C2 | 70.9 (2) |
Cl1—C7—N1—C2 | −52.6 (2) | C3—C4—N1—C6 | −46.9 (3) |
Cl1—C7—N1—C6 | 70.4 (2) | C4—C3—N2—C1 | −47.8 (3) |
Cl1—C7—N1—C4 | −170.83 (17) | C4—C3—N2—C5 | 72.3 (2) |
C1—C2—N1—C7 | −166.0 (2) | C2—C1—N2—C3 | 69.9 (3) |
C1—C2—N1—C6 | 69.1 (2) | C2—C1—N2—C5 | −50.1 (3) |
C1—C2—N1—C4 | −48.9 (2) | C6—C5—N2—C3 | −51.1 (3) |
C5—C6—N1—C7 | −174.9 (2) | C6—C5—N2—C1 | 70.0 (3) |
C5—C6—N1—C2 | −49.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···Cl2 | 0.91 | 2.60 | 3.270 (2) | 131 |
N2—H2C···Cl3 | 0.91 | 2.54 | 3.252 (2) | 136 |
Experimental details
Crystal data | |
Chemical formula | (C7H15ClN2)[CuCl4] |
Mr | 368.00 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 9.878 (4), 11.167 (4), 12.201 (4) |
V (Å3) | 1345.9 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.59 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.465, 0.596 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6091, 3072, 2865 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.055, 1.01 |
No. of reflections | 3072 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.36 |
Absolute structure | Flack (1983), with 1298 Friedel pairs |
Absolute structure parameter | 0.006 (11) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···Cl2 | 0.91 | 2.60 | 3.270 (2) | 130.6 |
N2—H2C···Cl3 | 0.91 | 2.54 | 3.252 (2) | 135.9 |
Acknowledgements
The author is grateful to the Starter Fund of Southeast University, Nanjing, China.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121–m2123. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360–m1362. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I), (Fig. 1), consists of protonated 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium dications and [CuCl4]2- anions. The organic dication is distorted, as indicated by the N—C—C—N torsion angles, which range from 16.76 (4) to 19.54 (3)°. In the structure of 1,4-dimethyl-1,4-diazonia[2.2.2]octane tetrachloridocuprate(II), of two independent dications one is almost undistorted with torsion angles between 0.6 (6) and 0.9 (5)°, whereas the other dication is distorted exhibiting torsion angles in the range of 5.5 (5) and 7.9 (5)° (Sun & Qu, 2005). In the isotypic cobalt(II) structure (Qu & Sun, 2005), two independent dications are slightly distorted with torsion angles range between 3.0 (4) and 8.7 (4)°. The [CuCl4]2- anion in (I) possesses typical Cu—Cl bonds and its lengths range from 2.209 (1) to 2.2559 (9) Å (Table 1), while the Cl—Cu—Cl angles range from 95.98 (4) to 132.85 (3)°. The bifurcated N—H···(Cl,Cl) hydrogen bonds (Table 2) between the organic dications and the [CuCl4]2- anions contribute to the stability of crystal packing (Fig. 2).
The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance.The title compound was studied as part of our work to obtain potential ferroelectric phase transition materials. Unluckily, the compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric (Zhang et al., 2008; Ye et al., 2009).