organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1559-o1560

Ethyl 6-methyl-2-sulfanyl­­idene-4-[4-(tri­fluoro­meth­yl)phen­yl]-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and cSchool of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: nksusa@gmail.com, venugopala@ukzn.ac.za

(Received 13 May 2011; accepted 23 May 2011; online 4 June 2011)

The title compound, C15H15F3N2O2S, adopts a conformation with an intra­molecular C—H⋯π inter­action. The dihedral angles between the planes of the 4-(trifluoro­meth­yl)phenyl and ester groups with the plane of the six-membered tetra­hydro­pyrimidine ring are 81.8 (1) and 16.0 (1)°, respectively. In the crystal structure, inter­molecular N—H⋯S hydrogen bonds link pairs of mol­ecules into dimers and N—H⋯O inter­actions generate hydrogen-bonded mol­ecular chains along the crystallographic a axis.

Related literature

For applications of multi-functionalized dihydro­pyrimidines, see: Jauk et al. (2000[Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227-239.]); Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Mayer et al. (1999[Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971-974.]). For structural analysis, see: Nayak et al. (2009[Nayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2518.], 2010[Nayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205-1216.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15F3N2O2S

  • Mr = 344.36

  • Triclinic, [P \overline 1]

  • a = 7.2682 (3) Å

  • b = 9.3205 (2) Å

  • c = 12.4779 (3) Å

  • α = 74.199 (2)°

  • β = 88.092 (3)°

  • γ = 69.377 (3)°

  • V = 759.39 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.28 × 0.22 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Eos (Nova) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.932, Tmax = 0.958

  • 16986 measured reflections

  • 2982 independent reflections

  • 2670 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.05

  • 2982 reflections

  • 268 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.80 (2) 2.20 (2) 2.9868 (19) 169.8 (18)
N2—H2N⋯S1ii 0.830 (19) 2.462 (19) 3.2830 (14) 170 (2)
C14—H14⋯Cg1 0.94 (2) 2.655 (2) 3.129 (2) 112
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The synthesis of multifunctionlized dihydropyrimidone (DHPM) compounds was first reported by the Italian chemist Pietro Biginelli in 1893 (Kappe, 2000 and references therein). DHPMs have emerged as important target molecules because of their therapeutic and pharmacological properties such as anticarcinogenic (Kappe, 2000; Mayer et al., 1999) and calcium channel modulators (Jauk et al., 2000 and references therein). We have been working on this DHPMS system in view of the immense range of applications (Nayak et al.,2009; 2010). Here, we are reporting the single-crystal structure of the title compound.

The conformation of the molecule is controlled by an intra-molecular C—H···π interaction (2.655 (2) Å, Table 1) wherein the aryl hydrogen H14 is oriented towards the π electrons corresponding to the C2C3 double bond (Fig. 1). The dihedral angles between the planes of 4-trifluoromethylphenyl and ester groups (O1/C5/O2/C6/C7) with the plane of the six-membered tetrahydropyrimidine ring are 81.8 (1)° and 16.0 (1)°, respectively. The crystal structure is mainly stabilized by hydrogen bonds of centrosymmetric N—H···S dimers and N—H···O molecular chains along the crystallographic a axis (Fig. 2). The molecules are arranged as polar and hyrophobic sheets with the spacer distances of 4.673 (2)Å and 8.359 (2) Å, respectively as briefly explained in literature (Fig. 3, Nayak et al., 2009; 2010).

Related literature top

For applications of multi-functionalized dihydropyrimidines, see: Jauk et al. (2000); Kappe (2000); Mayer et al. (1999). For structural analysis, see: Nayak et al. (2009, 2010).

Experimental top

A mixture of ethylacetoacetate (0.1 mol), 4-trifluoromethylbenzaldehyde (0.1 mol) and thiourea (0.11 mol) was refluxed in 50 ml of ethanol for 2 h in the presence of concentrated hydrochloric acid as a catalyst. The reaction was monitored with thin layer chromatography and the reaction medium was quenched in ice cold water. The precipitate obtained was filtered, dried and crystallized from ethanol at room temperature to obtain the title compound.

Refinement top

All H atoms were located from difference Fourier map and refined freely with C–H and N–H distances in the range between 0.80Å and 1.0 Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure shows the atom labelling scheme with displacement ellipsoids for non-H atoms at 50% probability level, hydrogen atoms are arbitary circle. The dotted line shows the C—H···π intramolecular interactions. Cg1 denotes the center of gravity of the C2=C3 bond.
[Figure 2] Fig. 2. The molecular packing shows the molecular chain of N—H···O hydrogen bonds and N—H···S intermolecular dimers.
[Figure 3] Fig. 3. The molecular packing along the a axis with their polar and hydrophobic spacer distance (open circle represents centre of inversion).
Ethyl 6-methyl-2-sulfanylidene-4-[4-(trifluoromethyl)phenyl]-1,2,3,4- tetrahydropyrimidine-5-carboxylate top
Crystal data top
C15H15F3N2O2SZ = 2
Mr = 344.36F(000) = 356
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Melting point: 471(2) K
a = 7.2682 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3205 (2) ÅCell parameters from 467 reflections
c = 12.4779 (3) Åθ = 1.0–27.9°
α = 74.199 (2)°µ = 0.26 mm1
β = 88.092 (3)°T = 120 K
γ = 69.377 (3)°Block, colorless
V = 759.39 (5) Å30.28 × 0.22 × 0.17 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
2982 independent reflections
Radiation source: Enhance (Mo) X-ray Source2670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.932, Tmax = 0.958l = 1515
16986 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.4675P]
where P = (Fo2 + 2Fc2)/3
2982 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H15F3N2O2Sγ = 69.377 (3)°
Mr = 344.36V = 759.39 (5) Å3
Triclinic, P1Z = 2
a = 7.2682 (3) ÅMo Kα radiation
b = 9.3205 (2) ŵ = 0.26 mm1
c = 12.4779 (3) ÅT = 120 K
α = 74.199 (2)°0.28 × 0.22 × 0.17 mm
β = 88.092 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
2982 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2670 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.958Rint = 0.034
16986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085All H-atom parameters refined
S = 1.05Δρmax = 0.33 e Å3
2982 reflectionsΔρmin = 0.26 e Å3
268 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30321 (6)0.90692 (5)0.45283 (3)0.01866 (12)
O20.02059 (15)0.41096 (13)0.28311 (9)0.0192 (2)
N20.01311 (19)0.83739 (15)0.42302 (10)0.0152 (3)
N10.2762 (2)0.67834 (15)0.37360 (10)0.0152 (3)
C30.0065 (2)0.61577 (17)0.35436 (12)0.0137 (3)
O10.28789 (15)0.54256 (13)0.35999 (9)0.0202 (2)
C90.2190 (2)0.89964 (17)0.25202 (12)0.0142 (3)
C40.1317 (2)0.77821 (17)0.36488 (12)0.0139 (3)
C50.1193 (2)0.52013 (17)0.33520 (12)0.0146 (3)
C140.1469 (2)0.87476 (19)0.15166 (13)0.0179 (3)
C10.1797 (2)0.80426 (17)0.41397 (12)0.0144 (3)
C20.1916 (2)0.57285 (17)0.35621 (12)0.0139 (3)
F30.42949 (18)1.20109 (14)0.14515 (8)0.0412 (3)
C60.1217 (2)0.31314 (19)0.25754 (14)0.0189 (3)
C100.3740 (2)1.04101 (18)0.25052 (13)0.0170 (3)
F20.64945 (16)1.33939 (13)0.05806 (9)0.0389 (3)
C110.4529 (2)1.15589 (19)0.15063 (13)0.0199 (3)
C130.2264 (2)0.98893 (19)0.05111 (13)0.0202 (3)
C80.3400 (2)0.42067 (19)0.34389 (15)0.0196 (3)
C120.3786 (2)1.12940 (19)0.05093 (13)0.0198 (3)
C70.0075 (3)0.2226 (2)0.18351 (16)0.0249 (4)
F10.3667 (2)1.36503 (15)0.07403 (10)0.0514 (4)
C150.4567 (3)1.2573 (2)0.05606 (14)0.0280 (4)
H40.246 (2)0.7766 (19)0.4098 (13)0.010 (4)*
H2N0.075 (3)0.907 (2)0.4538 (15)0.016 (4)*
H1N0.393 (3)0.652 (2)0.3721 (16)0.024 (5)*
H100.424 (3)1.059 (2)0.3189 (15)0.016 (4)*
H6B0.139 (3)0.241 (2)0.3277 (15)0.016 (4)*
H140.045 (3)0.779 (2)0.1506 (15)0.023 (5)*
H130.179 (3)0.971 (2)0.0173 (16)0.024 (5)*
H6A0.251 (3)0.384 (2)0.2200 (16)0.025 (5)*
H110.557 (3)1.253 (2)0.1503 (16)0.026 (5)*
H7A0.021 (3)0.296 (3)0.1166 (18)0.034 (5)*
H7B0.054 (3)0.152 (2)0.1647 (17)0.035 (5)*
H7C0.132 (3)0.156 (3)0.2222 (18)0.037 (6)*
H8B0.292 (3)0.332 (3)0.3678 (17)0.037 (6)*
H8C0.456 (3)0.395 (3)0.3874 (19)0.042 (6)*
H8A0.367 (3)0.431 (3)0.265 (2)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0165 (2)0.0207 (2)0.0237 (2)0.00844 (16)0.00304 (15)0.01173 (16)
O20.0148 (5)0.0196 (6)0.0303 (6)0.0092 (5)0.0051 (4)0.0143 (5)
N20.0131 (6)0.0161 (6)0.0180 (6)0.0042 (5)0.0007 (5)0.0088 (5)
N10.0104 (7)0.0178 (6)0.0199 (6)0.0062 (5)0.0035 (5)0.0080 (5)
C30.0144 (7)0.0134 (7)0.0133 (7)0.0049 (6)0.0012 (5)0.0038 (5)
O10.0127 (6)0.0223 (6)0.0293 (6)0.0079 (5)0.0048 (4)0.0114 (5)
C90.0124 (7)0.0151 (7)0.0175 (7)0.0074 (6)0.0006 (6)0.0052 (6)
C40.0125 (7)0.0162 (7)0.0154 (7)0.0061 (6)0.0027 (6)0.0072 (6)
C50.0141 (7)0.0128 (7)0.0147 (7)0.0032 (6)0.0009 (6)0.0023 (5)
C140.0161 (8)0.0186 (8)0.0205 (8)0.0053 (6)0.0023 (6)0.0089 (6)
C10.0162 (7)0.0156 (7)0.0113 (7)0.0061 (6)0.0016 (5)0.0030 (5)
C20.0156 (7)0.0141 (7)0.0124 (7)0.0061 (6)0.0011 (5)0.0032 (5)
F30.0453 (7)0.0503 (7)0.0175 (5)0.0100 (6)0.0023 (5)0.0018 (5)
C60.0178 (8)0.0185 (8)0.0255 (8)0.0103 (7)0.0016 (6)0.0089 (7)
C100.0144 (7)0.0193 (8)0.0193 (8)0.0063 (6)0.0044 (6)0.0084 (6)
F20.0303 (6)0.0363 (6)0.0314 (6)0.0008 (5)0.0071 (5)0.0045 (5)
C110.0156 (8)0.0165 (8)0.0253 (8)0.0040 (6)0.0003 (6)0.0043 (6)
C130.0219 (8)0.0254 (8)0.0166 (7)0.0109 (7)0.0042 (6)0.0081 (6)
C80.0135 (8)0.0174 (8)0.0287 (9)0.0043 (6)0.0014 (7)0.0092 (7)
C120.0176 (8)0.0220 (8)0.0201 (8)0.0092 (6)0.0020 (6)0.0031 (6)
C70.0233 (9)0.0267 (9)0.0333 (10)0.0137 (8)0.0069 (7)0.0166 (8)
F10.0618 (9)0.0444 (7)0.0454 (7)0.0363 (7)0.0147 (6)0.0168 (6)
C150.0277 (9)0.0293 (9)0.0243 (9)0.0120 (8)0.0022 (7)0.0005 (7)
Geometric parameters (Å, º) top
S1—C11.6863 (15)F3—C151.334 (2)
O2—C51.3369 (18)C6—C71.502 (2)
O2—C61.4557 (18)C6—H6B0.982 (18)
N2—C11.3323 (19)C6—H6A0.98 (2)
N2—C41.4725 (18)C10—C111.385 (2)
N2—H2N0.829 (19)C10—H100.949 (18)
N1—C11.3572 (19)F2—C151.336 (2)
N1—C21.3940 (19)C11—C121.389 (2)
N1—H1N0.80 (2)C11—H110.95 (2)
C3—C21.351 (2)C13—C121.384 (2)
C3—C51.472 (2)C13—H130.946 (19)
C3—C41.506 (2)C8—H8B0.98 (2)
O1—C51.2128 (18)C8—H8C0.94 (2)
C9—C141.388 (2)C8—H8A0.99 (2)
C9—C101.396 (2)C12—C151.494 (2)
C9—C41.534 (2)C7—H7A0.95 (2)
C4—H40.988 (17)C7—H7B1.00 (2)
C14—C131.389 (2)C7—H7C0.95 (2)
C14—H140.941 (19)F1—C151.348 (2)
C2—C81.493 (2)
C5—O2—C6117.51 (12)O2—C6—H6A108.1 (11)
C1—N2—C4123.64 (13)C7—C6—H6A112.1 (11)
C1—N2—H2N119.0 (13)H6B—C6—H6A109.9 (15)
C4—N2—H2N116.5 (13)C11—C10—C9120.59 (14)
C1—N1—C2123.78 (13)C11—C10—H10120.0 (10)
C1—N1—H1N118.1 (14)C9—C10—H10119.4 (10)
C2—N1—H1N116.8 (14)C10—C11—C12119.70 (15)
C2—C3—C5125.59 (13)C10—C11—H11120.2 (12)
C2—C3—C4119.99 (13)C12—C11—H11120.1 (11)
C5—C3—C4114.30 (12)C12—C13—C14119.71 (15)
C14—C9—C10118.99 (14)C12—C13—H13119.8 (11)
C14—C9—C4122.22 (13)C14—C13—H13120.5 (11)
C10—C9—C4118.79 (13)C2—C8—H8B111.7 (12)
N2—C4—C3109.18 (12)C2—C8—H8C109.6 (13)
N2—C4—C9109.86 (11)H8B—C8—H8C108.3 (18)
C3—C4—C9113.06 (12)C2—C8—H8A110.1 (14)
N2—C4—H4106.2 (9)H8B—C8—H8A106.3 (18)
C3—C4—H4112.9 (9)H8C—C8—H8A110.7 (19)
C9—C4—H4105.4 (9)C13—C12—C11120.31 (15)
O1—C5—O2123.28 (13)C13—C12—C15120.14 (15)
O1—C5—C3123.34 (13)C11—C12—C15119.47 (15)
O2—C5—C3113.31 (12)C6—C7—H7A109.3 (12)
C9—C14—C13120.70 (15)C6—C7—H7B109.3 (12)
C9—C14—H14120.4 (11)H7A—C7—H7B109.4 (17)
C13—C14—H14118.9 (11)C6—C7—H7C109.8 (13)
N2—C1—N1116.24 (13)H7A—C7—H7C111.7 (18)
N2—C1—S1123.24 (11)H7B—C7—H7C107.3 (17)
N1—C1—S1120.50 (11)F3—C15—F2106.80 (14)
C3—C2—N1118.64 (13)F3—C15—F1106.00 (15)
C3—C2—C8128.19 (14)F2—C15—F1106.29 (15)
N1—C2—C8113.16 (13)F3—C15—C12112.93 (15)
O2—C6—C7106.10 (12)F2—C15—C12112.89 (14)
O2—C6—H6B108.8 (10)F1—C15—C12111.43 (14)
C7—C6—H6B111.6 (10)
C1—N2—C4—C332.85 (18)C5—C3—C2—N1178.91 (13)
C1—N2—C4—C991.67 (16)C4—C3—C2—N13.2 (2)
C2—C3—C4—N224.38 (18)C5—C3—C2—C82.4 (2)
C5—C3—C4—N2159.44 (12)C4—C3—C2—C8178.11 (14)
C2—C3—C4—C998.24 (16)C1—N1—C2—C315.8 (2)
C5—C3—C4—C977.94 (15)C1—N1—C2—C8163.11 (14)
C14—C9—C4—N2105.73 (15)C5—O2—C6—C7170.73 (13)
C10—C9—C4—N273.24 (16)C14—C9—C10—C111.0 (2)
C14—C9—C4—C316.51 (19)C4—C9—C10—C11177.99 (13)
C10—C9—C4—C3164.51 (13)C9—C10—C11—C120.8 (2)
C6—O2—C5—O11.3 (2)C9—C14—C13—C120.3 (2)
C6—O2—C5—C3178.35 (12)C14—C13—C12—C110.5 (2)
C2—C3—C5—O1161.70 (15)C14—C13—C12—C15176.18 (15)
C4—C3—C5—O122.4 (2)C10—C11—C12—C130.0 (2)
C2—C3—C5—O221.2 (2)C10—C11—C12—C15176.74 (15)
C4—C3—C5—O2154.72 (12)C13—C12—C15—F325.8 (2)
C10—C9—C14—C130.5 (2)C11—C12—C15—F3157.42 (15)
C4—C9—C14—C13178.50 (13)C13—C12—C15—F2147.12 (15)
C4—N2—C1—N117.6 (2)C11—C12—C15—F236.1 (2)
C4—N2—C1—S1163.99 (11)C13—C12—C15—F193.35 (19)
C2—N1—C1—N28.8 (2)C11—C12—C15—F183.40 (19)
C2—N1—C1—S1169.61 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.80 (2)2.20 (2)2.9868 (19)169.8 (18)
N2—H2N···S1ii0.830 (19)2.462 (19)3.2830 (14)170 (2)
C14—H14···Cg10.94 (2)2.655 (2)3.129 (2)112
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H15F3N2O2S
Mr344.36
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.2682 (3), 9.3205 (2), 12.4779 (3)
α, β, γ (°)74.199 (2), 88.092 (3), 69.377 (3)
V3)759.39 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.28 × 0.22 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.932, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
16986, 2982, 2670
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.05
No. of reflections2982
No. of parameters268
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.80 (2)2.20 (2)2.9868 (19)169.8 (18)
N2—H2N···S1ii0.830 (19)2.462 (19)3.2830 (14)170 (2)
C14—H14···Cg10.94 (2)2.655 (2)3.129 (2)112
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1.
 

Acknowledgements

We acknowledge funding under the DST–FIST program (Level II) for the Oxford Diffraction facility at SSCU, IISc. SKN thanks the DST, India, for a research associate fellowship and KNV is grateful to the University of KwaZulu-Natal, South Africa, for a post-doctoral fellowship.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205–1216.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1559-o1560
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds