metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m953-m954

Poly[di-μ-chlorido-μ-(1,2,3,9-tetra­hydro­pyrrolo­[2,1-b]quinazolin-9-one-κ2N:O)-mercury(II)]

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and bInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
*Correspondence e-mail: kk_turgunov@rambler.ru

(Received 24 May 2011; accepted 10 June 2011; online 18 June 2011)

In the crystal structure of the title two-dimensional network, [HgCl2(C11H10N2O)]n, the asymmetric unit consists of HgCl2 dumbbells and one mol­ecule of the quinazoline unit. Pseudo-octa­hedrally coordinated HgII cations are chloride-bridged via a crystallographic inversion centre leading to different Hg—Cl bonds (short and long) and linked by other Cl atoms via translation along the a axis. The quinazoline ligands connect the Hg—Cl—Hg—Cl chains by N and O atoms along the b axis, forming the two-dimensional network structure. The crystal structure is stabilized by weak non-classical C—H⋯Cl hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid distances = 3.942 (4) and 3.621 (4) Å].

Related literature

For the synthesis of the ligand, see: Chatterjee & Ganguly (1968[Chatterjee, A. & Ganguly, M. G. (1968). Phytochemistry, 7, 307-311.]). For the crystal structure of the ligand, see: Turgunov et al. (1995[Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Aripov, Kh. N. (1995). Chem. Nat. Compd, 31, 714-718.]). For the crystal structure of the pure octa­hedral HgII ion and halide-bridged complex, see: Hu et al. (2007[Hu, C., Kalf, I. & Englert, U. (2007). CrystEngComm, 9, 603-610.]). For the crystal structure of a HgII complex with asymmetric Hg—Cl bonds, see: Batten et al. (2002[Batten, S. R., Harris, A. R., Murray, K. S. & Smith, J. P. (2002). Cryst. Growth Des. 2, 87-89.]); Hu et al. (2007[Hu, C., Kalf, I. & Englert, U. (2007). CrystEngComm, 9, 603-610.]); Merkens et al. (2010[Merkens, C., Kalf, I. & Englert, U. (2010). Z. Anorg. Allg. Chem. 636, 681-684.]). For a general review of halide-bridged chain and crosslinking polymers, see: Englert (2010[Englert, U. (2010). Coord. Chem. Rev. 254, 537-554.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C11H10N2O)]

  • Mr = 457.70

  • Monoclinic, P 21 /n

  • a = 7.7275 (11) Å

  • b = 9.4705 (13) Å

  • c = 16.729 (2) Å

  • β = 101.416 (2)°

  • V = 1200.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.25 mm−1

  • T = 130 K

  • 0.21 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen.]) Tmin = 0.167, Tmax = 0.417

  • 13274 measured reflections

  • 3014 independent reflections

  • 2620 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.20

  • 3014 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 6.57 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Cl1 2.3258 (16)
Hg1—Cl2 2.3302 (16)
Hg1—Cl1i 3.1301 (16)
Hg1—Cl2ii 3.0416 (16)
Hg1—O1iii 2.775 (6)
Hg1—N1 2.649 (6)
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z; (iii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯Cl1iv 0.93 2.81 3.630 (8) 147
C10—H10B⋯Cl2v 0.97 2.76 3.724 (9) 171
Symmetry codes: (iv) -x+2, -y+1, -z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART APEX (Bruker, 2000[Bruker (2000). SMART APEX. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound represents the first crystal structure of a complex with the heterocyclic ligand 1,2,3,9-tetrahydropyrrolo(2,1 - b)quinazolin-9-one; the uncoordinated organic molecule has been reported by Turgunov et al. (1995).

The asymmetric unit contains a slightly bent HgCl2 moiety (Cl1—Hg1—Cl2 = 171.44 (6)°) and one ligand molecule (Fig.1) In the crystal each HgII cation is coordinated by four bridging chlorido ligands in the equatorial plane; one N- and one O-connected organic ligand occupy the axial positions of a distorted octahedron. The Hg—Cl bonds are asymmetric with two short and two longer distances (Table 1).

The bridging chlorido ligands form zigzag Hg—Cl—Hg—Cl ring chains in the direction of the shortest lattice parameter. Strongly asymmetric halide bridges are well established structural features in the coordination chemistry of divalent mercury (Batten et al., 2002; Hu et al., 2007; Merkens et al., 2010; Englert, 2010).

The chlorido-bridged Hg···Hg distances amount to 3.9342 (7) and 3.9442 (7) Å. As the result of halide bridging in the [100] and bridging of the ditopic organic ligand in the [010] direction, an overall two-dimensional sheet is formed which is depicted in Fig. 2.

The observed structure is stabilized by weak C—H···Cl hydrogen bonds (Table 2). Cooperative ππ stacking interactions between neighbouring quinazolone ring systems also contribute to the stability of this layer structure (Cg1···Cg1i=3.942 (4) Cg1···Cg2i=3.621 (4) Å, where Cg1 represents the centroid of the pyrimidinone and Cg2 that of the benzo ring centroid, (i): 2 - x,1 - y,-z).

The ligand molecule is essentially planar with a maximum deviation of 0.044 (7) Å for atom C10 and an r.m.s. deviation of 0.015 Å.

Related literature top

For the synthesis of the ligand, see Chatterjee et al. (1968). For the crystal structure of the ligand, see Turgunov et al. (1995). For the crystal structure of the pure octahedral HgII ion and halide- bridged complex, see Hu et al. (2007). For the crystal structure of a HgII complex with asymmetric Hg—Cl bonds, see Batten et al. (2002); Hu et al. (2007); Merkens et al. (2010). For a general review of halide-bridged chain and crosslinking polymers, see Englert (2010).

Experimental top

A solution of 27.15 mg (0.1 mmol) of mercury (II) chloride in 2 ml water was added to a solution of 18.62 mg (0.1 mmol) of 1,2,3,9-tetrahydropyrrolo(2,1 - b)quinazolin-9-one in 2 ml acetone. The solution was allowed for slow evaporation at the room temperature. Colourless needle shaped crystals were obtained after several days.

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H)=1.2Ueq(C). After completion of the structure model, a difference Fourier synthesis resulted in a local maximum closer than 0.8 Å to Hg1.

Computing details top

Data collection: SMART APEX (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title coordination polymer (50% displacement ellipsoids).
[Figure 2] Fig. 2. View of a single two-dimensional sheet. (Hydrogen atoms are omitted for clarity).
Poly[di-µ-chlorido-µ-(1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin- 9-one-κ2N:O)-mercury(II)] top
Crystal data top
[HgCl2(C11H10N2O)]F(000) = 848
Mr = 457.70Dx = 2.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3815 reflections
a = 7.7275 (11) Åθ = 2.2–28.3°
b = 9.4705 (13) ŵ = 13.25 mm1
c = 16.729 (2) ÅT = 130 K
β = 101.416 (2)°Rod, colourless
V = 1200.1 (3) Å30.21 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3014 independent reflections
Radiation source: fine-focus sealed tube2620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.167, Tmax = 0.417k = 1212
13274 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0432P)2 + 2.8193P]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 6.57 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[HgCl2(C11H10N2O)]V = 1200.1 (3) Å3
Mr = 457.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7275 (11) ŵ = 13.25 mm1
b = 9.4705 (13) ÅT = 130 K
c = 16.729 (2) Å0.21 × 0.09 × 0.08 mm
β = 101.416 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3014 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2620 reflections with I > 2σ(I)
Tmin = 0.167, Tmax = 0.417Rint = 0.041
13274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.20Δρmax = 6.57 e Å3
3014 reflectionsΔρmin = 1.26 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.75260 (3)0.03946 (3)0.005310 (12)0.02475 (11)
Cl10.9924 (2)0.02655 (19)0.11378 (9)0.0277 (3)
Cl20.5237 (2)0.01819 (19)0.10788 (9)0.0288 (4)
O10.7419 (7)0.7485 (6)0.0235 (3)0.0439 (14)
N10.7546 (6)0.3191 (7)0.0057 (3)0.0248 (12)
C20.7279 (8)0.3824 (8)0.0697 (4)0.0264 (14)
N30.7223 (7)0.5265 (6)0.0757 (3)0.0245 (12)
C40.7484 (8)0.6201 (8)0.0148 (4)0.0286 (14)
C4A0.7784 (9)0.5509 (7)0.0581 (4)0.0238 (14)
C50.8068 (9)0.6256 (8)0.1257 (4)0.0320 (15)
H5A0.80740.72370.12400.038*
C60.8339 (9)0.5600 (8)0.1943 (4)0.0321 (16)
H6A0.85100.61230.23910.038*
C70.8355 (9)0.4115 (7)0.1964 (4)0.0249 (13)
H7A0.85340.36590.24340.030*
C80.8111 (8)0.3315 (7)0.1301 (4)0.0249 (13)
H8A0.81430.23340.13200.030*
C8A0.7813 (8)0.4016 (7)0.0596 (3)0.0193 (12)
C90.6954 (10)0.3200 (9)0.1470 (4)0.0374 (18)
H9A0.79240.25920.17160.045*
H9B0.58700.26540.13730.045*
C100.6806 (13)0.4488 (10)0.2024 (5)0.049 (2)
H10A0.56920.44600.22080.059*
H10B0.77570.44700.24990.059*
C110.6914 (10)0.5786 (8)0.1545 (4)0.0337 (17)
H11A0.58220.63190.14750.040*
H11B0.78800.63820.18100.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02197 (15)0.03650 (19)0.01675 (14)0.00429 (11)0.00622 (9)0.00185 (9)
Cl10.0231 (7)0.0420 (10)0.0188 (7)0.0049 (7)0.0060 (5)0.0053 (6)
Cl20.0229 (8)0.0452 (10)0.0189 (7)0.0008 (7)0.0055 (6)0.0021 (6)
O10.059 (4)0.035 (3)0.043 (3)0.009 (3)0.021 (3)0.011 (3)
N10.028 (3)0.031 (3)0.016 (2)0.005 (2)0.005 (2)0.0025 (19)
C20.024 (3)0.036 (4)0.019 (3)0.009 (3)0.005 (2)0.003 (3)
N30.021 (3)0.033 (3)0.020 (2)0.011 (2)0.004 (2)0.002 (2)
C40.023 (3)0.035 (4)0.029 (3)0.004 (3)0.007 (2)0.004 (3)
C4A0.021 (3)0.026 (4)0.023 (3)0.008 (3)0.000 (2)0.002 (2)
C50.035 (4)0.031 (4)0.029 (3)0.001 (3)0.005 (3)0.005 (3)
C60.033 (4)0.041 (5)0.024 (3)0.001 (3)0.008 (3)0.009 (3)
C70.026 (3)0.031 (4)0.018 (3)0.001 (3)0.006 (2)0.001 (2)
C80.027 (3)0.025 (3)0.022 (3)0.005 (3)0.005 (2)0.000 (2)
C8A0.017 (3)0.023 (3)0.017 (2)0.004 (2)0.000 (2)0.002 (2)
C90.044 (4)0.052 (5)0.021 (3)0.014 (4)0.019 (3)0.004 (3)
C100.057 (5)0.069 (7)0.023 (3)0.021 (5)0.014 (3)0.016 (4)
C110.030 (4)0.047 (5)0.027 (3)0.010 (3)0.011 (3)0.014 (3)
Geometric parameters (Å, º) top
Hg1—Cl12.3258 (16)C5—C61.357 (10)
Hg1—Cl22.3302 (16)C5—H5A0.93
Hg1—Cl1i3.1301 (16)C6—C71.407 (10)
Hg1—Cl2ii3.0416 (16)C6—H6A0.93
Hg1—O1iii2.775 (6)C7—C81.387 (9)
Hg1—N12.649 (6)C7—H7A0.93
O1—C41.227 (9)C8—C8A1.411 (8)
N1—C21.279 (8)C8—H8A0.93
N1—C8A1.392 (8)C9—C101.550 (11)
C2—N31.370 (9)C9—H9A0.97
C2—C91.488 (9)C9—H9B0.97
N3—C41.395 (9)C10—C111.479 (12)
N3—C111.471 (8)C10—H10A0.97
C4—C4A1.442 (9)C10—H10B0.97
C4A—C51.388 (9)C11—H11A0.97
C4A—C8A1.415 (10)C11—H11B0.97
Cl1—Hg1—Cl2171.44 (7)C6—C7—H7A119.3
Cl1—Hg1—N192.70 (11)C7—C8—C8A118.8 (6)
Cl2—Hg1—N195.27 (11)C7—C8—H8A120.6
C2—N1—C8A117.9 (6)C8A—C8—H8A120.6
C2—N1—Hg1118.0 (5)N1—C8A—C8117.8 (6)
C8A—N1—Hg1124.1 (4)N1—C8A—C4A122.8 (5)
N1—C2—N3122.7 (6)C8—C8A—C4A119.4 (5)
N1—C2—C9128.6 (7)C2—C9—C10104.6 (7)
N3—C2—C9108.6 (5)C2—C9—H9A110.8
C2—N3—C4124.6 (5)C10—C9—H9A110.8
C2—N3—C11114.4 (5)C2—C9—H9B110.8
C4—N3—C11121.0 (6)C10—C9—H9B110.8
O1—C4—N3121.9 (6)H9A—C9—H9B108.9
O1—C4—C4A124.6 (7)C11—C10—C9108.1 (6)
N3—C4—C4A113.6 (6)C11—C10—H10A110.1
C5—C4A—C8A119.2 (6)C9—C10—H10A110.1
C5—C4A—C4122.4 (7)C11—C10—H10B110.1
C8A—C4A—C4118.3 (6)C9—C10—H10B110.1
C6—C5—C4A122.1 (7)H10A—C10—H10B108.4
C6—C5—H5A118.9N3—C11—C10104.1 (6)
C4A—C5—H5A118.9N3—C11—H11A110.9
C5—C6—C7118.9 (6)C10—C11—H11A110.9
C5—C6—H6A120.6N3—C11—H11B110.9
C7—C6—H6A120.6C10—C11—H11B110.9
C8—C7—C6121.4 (6)H11A—C11—H11B109.0
C8—C7—H7A119.3
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl1iv0.932.813.630 (8)147
C10—H10B···Cl2v0.972.763.724 (9)171
Symmetry codes: (iv) x+2, y+1, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[HgCl2(C11H10N2O)]
Mr457.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)7.7275 (11), 9.4705 (13), 16.729 (2)
β (°) 101.416 (2)
V3)1200.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)13.25
Crystal size (mm)0.21 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.167, 0.417
No. of measured, independent and
observed [I > 2σ(I)] reflections
13274, 3014, 2620
Rint0.041
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.20
No. of reflections3014
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)6.57, 1.26

Computer programs: SMART APEX (Bruker, 2000), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Hg1—Cl12.3258 (16)Hg1—Cl2ii3.0416 (16)
Hg1—Cl22.3302 (16)Hg1—O1iii2.775 (6)
Hg1—Cl1i3.1301 (16)Hg1—N12.649 (6)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl1iv0.932.813.630 (8)147.0
C10—H10B···Cl2v0.972.763.724 (9)171.0
Symmetry codes: (iv) x+2, y+1, z; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the DAAD for supporting this study.

References

First citationBatten, S. R., Harris, A. R., Murray, K. S. & Smith, J. P. (2002). Cryst. Growth Des. 2, 87–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART APEX. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatterjee, A. & Ganguly, M. G. (1968). Phytochemistry, 7, 307–311.  CrossRef CAS Web of Science Google Scholar
First citationEnglert, U. (2010). Coord. Chem. Rev. 254, 537–554.  Web of Science CrossRef CAS Google Scholar
First citationHu, C., Kalf, I. & Englert, U. (2007). CrystEngComm, 9, 603–610.  Web of Science CSD CrossRef CAS Google Scholar
First citationMerkens, C., Kalf, I. & Englert, U. (2010). Z. Anorg. Allg. Chem. 636, 681–684.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Aripov, Kh. N. (1995). Chem. Nat. Compd, 31, 714–718.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m953-m954
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds