organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1844-o1845

2-Diazo-1-(1,1-dioxo­thio­morpholin-4-yl)ethanone

aDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

(Received 7 June 2011; accepted 17 June 2011; online 30 June 2011)

In the mol­ecule of the title compound, C6H9N3O3S, at 105 K, the six-membered ring is predominantly found in the chair conformation, with 1.89 (14)% in the boat conformation. In the crystal structure, there are five inter­molecular C—H⋯O=C and C—H⋯O=S contacts less than 2.6 Å, as well as a weak C—H⋯N=N inter­action to the diazo group.

Related literature

For related structures found in the Cambridge Structural Database (Version 5.32 of November 2010; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), see: Fenlon et al. (2007[Fenlon, T. W., Schwaebisch, D., Mayweg, A. V. W., Lee, V., Adlington, R. M. & Baldwin, J. E. (2007). Synlett, pp. 2679-2682.]); Haynes et al. (2006[Haynes, R. K., Fugmann, B., Stetter, J., Rieckmann, K., Heilmann, H.-D., Chan, H.-W., Cheung, M.-K., Lam, W.-L. & Wong, H.-N. (2006). Angew. Chem. Int. Ed. 45, 2082-2088.]); Wang et al. (2006[Wang, J., Zeng, T., Li, M.-L., Duan, E.-H. & Li, J.-S. (2006). Acta Cryst. E62, o2912-o2913.]); Miller et al. (1991[Miller, R. D., Theis, W., Heilig, G. & Kirchmeyer, S. (1991). J. Org. Chem. 56, 1453-1463.]); Foces-Foces et al. (1988[Foces-Foces, M. C., Cano, F. H., Claramunt, R. M., Fruchier, A. & Elguero, J. (1988). Bull. Soc. Chim. Belg. 97, 1055-1066.]); Ganguly et al. (1980[Ganguly, A. K., Liu, Y.-T., Sarre, O., Jaret, R. S., McPhail, A. T. & Onan, K. D. (1980). Tetrahedron Lett. 21, 49, 4699-4702.]); Herdklotz & Sass (1969[Herdklotz, J. & Sass, R. L. (1969). Acta Cryst. B25, 1614-1620.]). For details of the synthesis, see: Kaupang (2010[Kaupang, Å. (2010). MSc thesis, University of Oslo, Norway. PDF available online at http://urn.nb.no/URN:NBN:no-26202 or through http://www.duo.uio.no/ .]); Toma et al. (2007[Toma, T., Shimokawa, J. & Fukuyama, T. (2007). Org. Lett. 9, 3195-3197.]) and for the synthesis of related diazo­acetamides, see: Kaupang et al. (2010[Kaupang, Å., Görbitz, C. H. & Hansen, T. (2010). Acta Cryst. E66, o1299.]); Kaupang (2010[Kaupang, Å. (2010). MSc thesis, University of Oslo, Norway. PDF available online at http://urn.nb.no/URN:NBN:no-26202 or through http://www.duo.uio.no/ .]); Ouihia et al. (1993[Ouihia, A., Rene, L., Guilhem, J., Pascard, C. & Badet, B. (1993). J. Org. Chem. 58, 1641-1642.]). For quantum chemical calculations involving the acetamide analogue of the title compound, see: Fraenkel et al. (1992[Fraenkel, G., Kolp, C. J. & Chow, A. (1992). J. Am. Chem. Soc. 114, 4307-4314.]). For the Chemical Abstracts Service, see: American Chemical Society (2008[American Chemical Society (2008). Chemical Abstracts Service, American Chemical Society, Columbus, OH, USA; accessed Apr 27, 2010.]). For hydrogen-bond graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N3O3S

  • Mr = 203.22

  • Monoclinic, P 21 /n

  • a = 5.2729 (3) Å

  • b = 20.1349 (11) Å

  • c = 7.8683 (4) Å

  • β = 95.171 (2)°

  • V = 831.97 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 105 K

  • 0.80 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.849, Tmax = 0.929

  • 14742 measured reflections

  • 3951 independent reflections

  • 3029 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.165

  • S = 1.11

  • 3951 reflections

  • 138 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.94 (2) 2.42 (2) 3.326 (2) 163 (2)
C3—H32⋯O1ii 0.99 2.47 3.372 (2) 152
C5—H52⋯O1iii 0.99 2.36 3.022 (2) 123
C5—H51⋯O3iv 0.99 2.56 3.445 (2) 149
C5—H52⋯N3v 0.99 2.59 3.417 (3) 141
C6—H61⋯O2vi 0.99 2.45 3.168 (2) 129
Symmetry codes: (i) x, y, z-1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) x+1, y, z; (v) x-1, y, z+1; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Diazo-1-(1,1-dioxido-4-thiomorpholinyl)ethanone (I) was prepared as part of a series of diazoacetamides used in the intramolecular C—H insertion reactions taking place upon thermolysis of their corresponding α-bromodiazoacetamides (Kaupang, 2010). The title compound was synthesized from 2-bromo-1-(1,1-dioxido-4-thiomorpholinyl)ethanone following a procedure reported by Toma et al. (2007), modified to employ 1,1,3,3-tetramethylguanidine as the base instead of 1,8-diazabicyclo[5.4.0]undec-7-ene. No previous reports of this compound were found in the Chemical Abstracts Service (CAS, American Chemical Society, 2008).

In the crystal (I) occurs in the expected chair conformation, with a very minor fraction [occupancy 0.0189 (14)] in a boat conformation as shown in Fig. 1. The unit cell and crystal packing are depicted in Fig. 2, while a list of six C—H···O/N interactions with H···O distance shorter than 2.60 Å are given in Table 1. The two shortest interactions, with C2—H2 and C5—H52 donors, form C(8) chains along the a axis and dimeric R22(12) ring motifs, respectively (Etter et al., 1990). H52 is also close to the diazo N3 atom and thus participates in a three-center interaction. The interactions of (I) are different from those observed in our previous, related structure of tert-butyl 4-(2-diazoacetyl)piperazine-1-carboxylate (Kaupang et al., 2010) where the H of the diazoacetyl group was accepted by the O atom of the same group.

Related literature top

For related structures found in the Cambridge Structural Database (Version 5.32 of November 2010; Allen, 2002), see: Fenlon et al. (2007); Haynes et al. (2006); Wang et al. (2006); Miller et al. (1991); Foces-Foces et al. (1988); Ganguly et al. (1980); Herdklotz & Sass (1969). For details of the synthesis, see: Kaupang (2010); Toma et al. (2007) and for the synthesis of related diazoacetamides, see: Kaupang et al. (2010); Kaupang (2010); Ouihia et al. (1993). For quantum chemical calculations involving the acetamide analogue of the title compound, see: Fraenkel et al. (1992). For the Chemical Abstracts Service, see: American Chemical Society (2008). For hydrogen-bond graph-set notation, see: Etter et al. (1990).

Experimental top

A solution of 4.0 mg of the title compound in 500 µL of CH2Cl2 was placed in a 2.5 ml vial which was capped and a pinhole (0.5 mm) made in the cap to allow for slow evaporation in darkness at ambient temperature. A single cluster of pale yellow needles appeared after approximately 48 h.

Refinement top

H atoms were positioned with idealized geometry and with fixed C—H distances at 0.99 Å, except H atoms bonded to C2 and C4 for which coordinates were refined, as too short intramolecular H···H distances resulted from putting these H atoms in theoretical positions. Distance restraints were imposed on the C2—H2 and C4—H41/H42 bonds utilizing SHELX DFIX 0.95 0.02 and DFIX 0.99 0.02 commands, respectively. Heavy atoms were refined anisotropically, except S11, O12 and O13 associated with the minor boat conformation of the six-membered ring with an occupancy 0.0189 (14). The first two were assigned Uiso-values equal to the Ueq-values of the corresponding atoms of the major chair conformation, while O13 received the same set of anisotropic thermal parameters as O2, from which it is separated by 0.35 Å. Failure to include the 2% minor conformation in the refinement increases the R-factor from 0.056 to 0.058 for 138 versus. 127 refinement parameters.

Initial checkCIF/PLATON results indicated possible twinning; introduction of the suggested command TWIN -1 0 0 0 - 1 0 0.269 0 1 during refinement gave a very modest decrease in the R-factor, from 0.057 to 0.056, with BASF = 0.00248.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with atomic numbering indicated. Displacement ellipsoids are shown at the 50% probability level with H atoms as spheres of arbitrary size. The wireframe structure represents the minor boat conformation [occupancy 0.189 (14)].
[Figure 2] Fig. 2. The unit cell and crystal packing of (I) viewed approximately along the a axis. A three-dimensional network of weak intermolecular C=O···H, S=O···H and N=N···H contacts with O/N···H < 2.6 Å are shown as dotted lines.
2-Diazo-1-(1,1-dioxothiomorpholin-4-yl)ethanone top
Crystal data top
C6H9N3O3SF(000) = 424
Mr = 203.22Dx = 1.622 Mg m3
Monoclinic, P21/nMelting point = 438–449 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.2729 (3) ÅCell parameters from 5309 reflections
b = 20.1349 (11) Åθ = 2.8–36.6°
c = 7.8683 (4) ŵ = 0.37 mm1
β = 95.171 (2)°T = 105 K
V = 831.97 (8) Å3Needle, yellow
Z = 40.80 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3951 independent reflections
Radiation source: fine-focus sealed tube3029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3 pixels mm-1θmax = 36.8°, θmin = 2.0°
Sets of exposures each taken over 0.5° ω rotation scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 3032
Tmin = 0.849, Tmax = 0.929l = 1113
14742 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0728P)2 + 1.0103P]
where P = (Fo2 + 2Fc2)/3
3951 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 1.24 e Å3
13 restraintsΔρmin = 0.71 e Å3
Crystal data top
C6H9N3O3SV = 831.97 (8) Å3
Mr = 203.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.2729 (3) ŵ = 0.37 mm1
b = 20.1349 (11) ÅT = 105 K
c = 7.8683 (4) Å0.80 × 0.30 × 0.20 mm
β = 95.171 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3951 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3029 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.929Rint = 0.031
14742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05613 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 1.24 e Å3
3951 reflectionsΔρmin = 0.71 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.12602 (8)0.17713 (2)0.58307 (5)0.01306 (11)0.9811 (14)
O30.1485 (2)0.17127 (7)0.56520 (19)0.0176 (3)0.9811 (14)
O20.2367 (3)0.21336 (7)0.73056 (18)0.0194 (3)0.9811 (14)
C50.2645 (3)0.09728 (9)0.5781 (2)0.0152 (3)0.9811 (14)
H510.45240.10120.59130.018*0.9811 (14)
H520.21150.07030.67390.018*0.9811 (14)
C60.2280 (3)0.21174 (9)0.3937 (2)0.0156 (3)0.9811 (14)
H610.15290.25650.37470.019*0.9811 (14)
H620.41570.21630.40510.019*0.9811 (14)
S110.385 (3)0.1792 (3)0.5843 (11)0.013*0.0189 (14)
O120.6562 (19)0.1779 (9)0.569 (4)0.018*0.0189 (14)
O130.302 (7)0.2139 (3)0.7308 (6)0.0194 (3)0.0189 (14)
C150.2645 (3)0.09728 (9)0.5781 (2)0.0152 (3)0.0189 (14)
H1510.39690.06870.63790.018*0.0189 (14)
H1520.11680.09680.64740.018*0.0189 (14)
C160.2280 (3)0.21174 (9)0.3937 (2)0.0156 (3)0.0189 (14)
H1610.07340.23480.42550.019*0.0189 (14)
H1620.34080.24630.35190.019*0.0189 (14)
O10.5857 (3)0.02988 (7)0.23496 (18)0.0199 (3)
N10.2562 (3)0.10078 (8)0.26290 (19)0.0153 (3)
C30.1799 (3)0.06335 (9)0.4088 (2)0.0158 (3)
H310.25520.01830.40810.019*
H320.00770.05850.39820.019*
C40.1452 (4)0.16671 (9)0.2410 (2)0.0175 (3)
H410.042 (3)0.1625 (15)0.232 (4)0.021*
H420.197 (5)0.1864 (13)0.135 (3)0.021*
C10.4582 (3)0.07843 (9)0.1828 (2)0.0146 (3)
C20.5141 (4)0.11299 (10)0.0274 (2)0.0173 (3)
H20.410 (5)0.1428 (12)0.039 (3)0.021*
N20.7103 (3)0.08892 (9)0.0445 (2)0.0200 (3)
N30.8809 (4)0.06859 (12)0.1020 (2)0.0294 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01136 (17)0.01274 (19)0.01499 (19)0.00030 (13)0.00065 (12)0.00052 (13)
O30.0102 (5)0.0198 (6)0.0230 (6)0.0005 (4)0.0021 (4)0.0000 (5)
O20.0209 (6)0.0185 (6)0.0182 (6)0.0011 (5)0.0011 (5)0.0042 (5)
C50.0151 (7)0.0143 (7)0.0163 (7)0.0017 (5)0.0013 (5)0.0016 (5)
C60.0160 (7)0.0132 (7)0.0175 (7)0.0001 (5)0.0010 (5)0.0017 (5)
O130.0209 (6)0.0185 (6)0.0182 (6)0.0011 (5)0.0011 (5)0.0042 (5)
C150.0151 (7)0.0143 (7)0.0163 (7)0.0017 (5)0.0013 (5)0.0016 (5)
C160.0160 (7)0.0132 (7)0.0175 (7)0.0001 (5)0.0010 (5)0.0017 (5)
O10.0195 (6)0.0180 (6)0.0224 (6)0.0039 (5)0.0026 (5)0.0040 (5)
N10.0182 (6)0.0130 (6)0.0151 (6)0.0021 (5)0.0032 (5)0.0019 (5)
C30.0177 (7)0.0132 (7)0.0168 (7)0.0010 (5)0.0036 (5)0.0008 (5)
C40.0207 (8)0.0146 (8)0.0169 (7)0.0038 (6)0.0005 (6)0.0013 (5)
C10.0151 (7)0.0144 (7)0.0140 (7)0.0013 (5)0.0003 (5)0.0004 (5)
C20.0186 (7)0.0190 (8)0.0143 (7)0.0008 (6)0.0013 (5)0.0007 (6)
N20.0199 (7)0.0243 (8)0.0160 (7)0.0043 (6)0.0022 (5)0.0005 (5)
N30.0240 (8)0.0410 (11)0.0245 (9)0.0015 (8)0.0087 (7)0.0003 (7)
Geometric parameters (Å, º) top
S1—O31.4463 (13)O1—C11.235 (2)
S1—O21.4482 (14)N1—C11.362 (2)
S1—C51.7679 (18)N1—C41.455 (2)
S1—C61.7718 (18)N1—C31.460 (2)
C5—C31.528 (3)C3—H310.9900
C5—H510.9900C3—H320.9900
C5—H520.9900C4—H410.984 (17)
C6—C41.537 (3)C4—H420.983 (16)
C6—H610.9900C1—C21.460 (2)
C6—H620.9900C2—N21.316 (2)
S11—O121.446 (2)C2—H20.940 (17)
S11—O131.448 (2)N2—N31.120 (2)
O3—S1—O2116.52 (9)C4—N1—C3115.30 (14)
O3—S1—C5109.59 (8)N1—C3—C5112.05 (14)
O2—S1—C5109.77 (9)N1—C3—H31109.2
O3—S1—C6109.11 (9)C5—C3—H31109.2
O2—S1—C6110.17 (9)N1—C3—H32109.2
C5—S1—C6100.48 (8)C5—C3—H32109.2
C3—C5—S1109.70 (12)H31—C3—H32107.9
C3—C5—H51109.7N1—C4—C6111.28 (15)
S1—C5—H51109.7N1—C4—H41108.6 (17)
C3—C5—H52109.7C6—C4—H41108.7 (17)
S1—C5—H52109.7N1—C4—H42109.1 (17)
H51—C5—H52108.2C6—C4—H42110.1 (17)
C4—C6—S1109.81 (12)H41—C4—H42109 (2)
C4—C6—H61109.7O1—C1—N1122.16 (16)
S1—C6—H61109.7O1—C1—C2120.72 (16)
C4—C6—H62109.7N1—C1—C2117.09 (16)
S1—C6—H62109.7N2—C2—C1114.24 (17)
H61—C6—H62108.2N2—C2—H2116.1 (17)
O12—S11—O13116.5 (3)C1—C2—H2128.1 (18)
C1—N1—C4124.74 (15)N3—N2—C2178.3 (2)
C1—N1—C3118.42 (15)
O3—S1—C5—C359.85 (14)C3—N1—C4—C662.7 (2)
O2—S1—C5—C3170.98 (12)S1—C6—C4—N160.49 (17)
C6—S1—C5—C354.93 (13)C4—N1—C1—O1161.34 (18)
O3—S1—C6—C459.84 (14)C3—N1—C1—O13.9 (3)
O2—S1—C6—C4171.06 (12)C4—N1—C1—C220.7 (3)
C5—S1—C6—C455.31 (13)C3—N1—C1—C2174.07 (15)
C1—N1—C3—C5103.74 (18)O1—C1—C2—N21.7 (3)
C4—N1—C3—C562.8 (2)N1—C1—C2—N2179.68 (16)
S1—C5—C3—N160.09 (17)C1—C2—N2—N353 (8)
C1—N1—C4—C6102.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.94 (2)2.42 (2)3.326 (2)163 (2)
C3—H32···O1ii0.992.473.372 (2)152
C5—H52···O1iii0.992.363.022 (2)123
C5—H51···O3iv0.992.563.445 (2)149
C5—H52···N3v0.992.593.417 (3)141
C6—H61···O2vi0.992.453.168 (2)129
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x1, y, z+1; (vi) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H9N3O3S
Mr203.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)105
a, b, c (Å)5.2729 (3), 20.1349 (11), 7.8683 (4)
β (°) 95.171 (2)
V3)831.97 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.80 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.849, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
14742, 3951, 3029
Rint0.031
(sin θ/λ)max1)0.842
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.165, 1.11
No. of reflections3951
No. of parameters138
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.24, 0.71

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.940 (17)2.417 (18)3.326 (2)163 (2)
C3—H32···O1ii0.992.473.372 (2)152
C5—H52···O1iii0.992.363.022 (2)123
C5—H51···O3iv0.992.563.445 (2)149
C5—H52···N3v0.992.593.417 (3)141
C6—H61···O2vi0.992.453.168 (2)129
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x1, y, z+1; (vi) x1/2, y+1/2, z1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmerican Chemical Society (2008). Chemical Abstracts Service, American Chemical Society, Columbus, OH, USA; accessed Apr 27, 2010.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFenlon, T. W., Schwaebisch, D., Mayweg, A. V. W., Lee, V., Adlington, R. M. & Baldwin, J. E. (2007). Synlett, pp. 2679–2682.  Google Scholar
First citationFoces-Foces, M. C., Cano, F. H., Claramunt, R. M., Fruchier, A. & Elguero, J. (1988). Bull. Soc. Chim. Belg. 97, 1055–1066.  CAS Google Scholar
First citationFraenkel, G., Kolp, C. J. & Chow, A. (1992). J. Am. Chem. Soc. 114, 4307–4314.  CrossRef CAS Google Scholar
First citationGanguly, A. K., Liu, Y.-T., Sarre, O., Jaret, R. S., McPhail, A. T. & Onan, K. D. (1980). Tetrahedron Lett. 21, 49, 4699–4702.  Google Scholar
First citationHaynes, R. K., Fugmann, B., Stetter, J., Rieckmann, K., Heilmann, H.-D., Chan, H.-W., Cheung, M.-K., Lam, W.-L. & Wong, H.-N. (2006). Angew. Chem. Int. Ed. 45, 2082–2088.  CrossRef CAS Google Scholar
First citationHerdklotz, J. & Sass, R. L. (1969). Acta Cryst. B25, 1614–1620.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKaupang, Å. (2010). MSc thesis, University of Oslo, Norway. PDF available online at http://urn.nb.no/URN:NBN:no-26202 or through http://www.duo.uio.no/Google Scholar
First citationKaupang, Å., Görbitz, C. H. & Hansen, T. (2010). Acta Cryst. E66, o1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiller, R. D., Theis, W., Heilig, G. & Kirchmeyer, S. (1991). J. Org. Chem. 56, 1453–1463.  CSD CrossRef CAS Web of Science Google Scholar
First citationOuihia, A., Rene, L., Guilhem, J., Pascard, C. & Badet, B. (1993). J. Org. Chem. 58, 1641–1642.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToma, T., Shimokawa, J. & Fukuyama, T. (2007). Org. Lett. 9, 3195–3197.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, J., Zeng, T., Li, M.-L., Duan, E.-H. & Li, J.-S. (2006). Acta Cryst. E62, o2912–o2913.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1844-o1845
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds