organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[1,3-dioxo-6-(piperidin-1-yl)-2,3-di­hydro-1H-benz[de]isoquinolin-2-yl]acetate

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 20 May 2011; accepted 12 June 2011; online 18 June 2011)

In the title compound, C21H22N2O4, the naphthalimide unit is almost planar (r.m.s. deviation = 0.081Å). The carboximide N atom and the five C atoms of the eth­oxy­carbonyl­methyl substituent also lie close to a common plane (r.m.s. deviation = 0.119Å), which subtends an angle of 71.06 (8)° to the naphthalamide plane. The piperidine ring adopts a chair conformation. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the a axis.

Related literature

For general background to applications of 1,8-naphthalimides, see: McAdam et al. (2003[McAdam, C. J., Morgan, J. L., Robinson, B. H., Simpson, J., Rieger, P. H. & Rieger, A. L. (2003). Organometallics, 22, 5126-5136.]); Fülöp et al. (2009[Fülöp, A., Arian, D., Lysenko, A. & Mokhir, A. (2009). Bioorg. Med. Chem. Lett. 19, 3104-3107.]). For a related structure, see: Hanton et al. (2010[Hanton, L. R., Moratti, S. C., Shi, Z. & Simpson, J. (2010). Acta Cryst. E66, o1476-o1477.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O4

  • Mr = 366.41

  • Orthorhombic, P n a 21

  • a = 10.959 (2) Å

  • b = 18.037 (4) Å

  • c = 9.3330 (19) Å

  • V = 1844.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 3547 measured reflections

  • 1808 independent reflections

  • 1280 reflections with I > 2σ(I)

  • Rint = 0.039

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.00

  • 1808 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.97 2.60 3.455 (6) 147
C1—H1B⋯O1ii 0.97 2.51 3.373 (5) 149
C5—H5A⋯O2iii 0.97 2.44 3.219 (6) 138
C18—H18B⋯O4iv 0.97 2.56 3.315 (5) 135
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) [-x+1, -y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,8-naphthalimide derivatives are recognized to have an importance in dye and medicinal chemistry. They can be used as intermediates in the synthesis of organic pigments, in biological fluorescent labeling and as optical brighteners, pH-dependent sensors, laser and electroluminscent dyes and liquid crystals (McAdam et al., 2003). We have selected 4-substituted 1,8-naphthalimides to use in the synthesis of fluorophore groups, since they are highly photostable, cheap and their chemical modification is straightforward. Moreover, these dyes exhibit large Stoke's shifts due to the formation of an intramolecular charge transfer (ICT) state upon absorption of light. (Fülöp et al. 2009).

We report here the crystal structure of the title compound, N-[(2-Ethoxy)-2-oxo-ethyl]-4-piperidino-1,8-naphthalimide. In the structure of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges (Hanton et al., 2010). In the crystal structure, intermolecular C-H···O hydrogen bonds link the molecules into zig-zag chains along the a axis, to form a stable structure (Fig. 2).

Related literature top

For general background to applications of 1,8-naphthalimides, see: McAdam et al. (2003); Fülöp et al. (2009). For a related structure, see: Hanton et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, 1H-Benz[de]isoquinoline- 2(3H)-acetic acid, 6-(piperidin-1-yl)-1,3-dioxo-, ethyl ester was prepared by a method similar to that reported in the literature (Fülöp et al. 2009). 1H-Benz [de]isoquinoline- 2(3H)-acetic acid, 6-bromo-1,3-dioxo-, ethyl ester(3.82 g, 10.5 mmol) was dissolved in N-methylpyrrolidone (NMP, 58.5 mL) and piperidine (4.5 mL, 52.5 mmol) together with triethylamine (TEA, 14.8 mL, 105 mmol) were added. The mixture was stirred for 4 h at 383K. Then water (200 mL) was added, which induced formation of yellow precipitate. The precipitate was filtered, washed with water (150 mL), dried and re-crystallized from ethanol. Yield 3.34 g (86%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. In the absence of significant anomalous dispersion effects, 1739 Friedel pairs were merged.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the c axis. Dashed lines indicate intermolecular C-H···O interactions.
Ethyl 2-[1,3-dioxo-6-(piperidin-1-yl)-2,3-dihydro- 1H-benz[de]isoquinolin-2-yl]acetate top
Crystal data top
C21H22N2O4Dx = 1.319 Mg m3
Mr = 366.41Melting point: 421 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 10.959 (2) Åθ = 9–13°
b = 18.037 (4) ŵ = 0.09 mm1
c = 9.3330 (19) ÅT = 293 K
V = 1844.8 (6) Å3Needle, brown
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 776
Data collection top
Enraf–Nonius CAD-4
diffractometer
1280 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 2121
Tmin = 0.973, Tmax = 0.991l = 011
3547 measured reflections3 standard reflections every 200 reflections
1808 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
1808 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.13 e Å3
Crystal data top
C21H22N2O4V = 1844.8 (6) Å3
Mr = 366.41Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.959 (2) ŵ = 0.09 mm1
b = 18.037 (4) ÅT = 293 K
c = 9.3330 (19) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1280 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.039
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
3547 measured reflections intensity decay: 1%
1808 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
1808 reflectionsΔρmin = 0.13 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4405 (3)0.21405 (16)0.7011 (4)0.0561 (9)
O10.2714 (3)0.10503 (17)0.4672 (4)0.0777 (10)
C10.5640 (4)0.2215 (2)0.7609 (5)0.0621 (11)
H1A0.62370.21740.68460.074*
H1B0.57880.18180.82880.074*
N20.2974 (3)0.13210 (17)0.7041 (4)0.0553 (8)
O20.3201 (3)0.15994 (17)0.9379 (4)0.0747 (9)
C20.5780 (5)0.2952 (2)0.8348 (6)0.0791 (15)
H2A0.66050.30000.87130.095*
H2B0.52230.29790.91540.095*
O30.3649 (3)0.32513 (15)0.7198 (5)0.0858 (11)
C30.5511 (5)0.3589 (3)0.7302 (7)0.0898 (16)
H3A0.55230.40580.78110.108*
H3B0.61330.36040.65640.108*
O40.4935 (3)0.22931 (16)0.7031 (4)0.0705 (8)
C40.4263 (4)0.3472 (2)0.6620 (6)0.0717 (13)
H4A0.36350.35270.73450.086*
H4B0.41290.38480.58940.086*
C50.4158 (4)0.2712 (2)0.5944 (5)0.0670 (12)
H5A0.33440.26450.55580.080*
H5B0.47370.26690.51610.080*
C60.3992 (3)0.1420 (2)0.6730 (4)0.0509 (10)
C70.3691 (4)0.1189 (2)0.5352 (5)0.0601 (11)
H7A0.37250.15240.45950.072*
C80.3337 (4)0.0458 (3)0.5101 (5)0.0618 (12)
H8A0.31360.03110.41750.074*
C90.3280 (3)0.0048 (2)0.6196 (5)0.0515 (10)
C100.3521 (3)0.0175 (2)0.7621 (4)0.0461 (9)
C110.3431 (3)0.0331 (2)0.8754 (5)0.0496 (10)
C120.3581 (4)0.0101 (2)1.0172 (5)0.0586 (11)
H12A0.35350.04411.09180.070*
C130.3803 (4)0.0646 (2)1.0452 (5)0.0557 (11)
H13A0.38600.08091.13950.067*
C140.3935 (4)0.1138 (2)0.9362 (5)0.0528 (10)
H14A0.40900.16330.95770.063*
C150.3844 (3)0.0918 (2)0.7894 (4)0.0460 (9)
C160.2971 (4)0.0830 (2)0.5885 (5)0.0570 (11)
C170.3207 (4)0.1124 (2)0.8465 (5)0.0538 (11)
C180.2784 (3)0.21025 (19)0.6780 (6)0.0623 (12)
H18A0.25190.21730.57970.075*
H18B0.21430.22830.74050.075*
C190.3916 (4)0.2541 (2)0.7032 (5)0.0586 (10)
C200.4684 (6)0.3749 (3)0.7462 (10)0.131 (3)
H20A0.54380.35140.71640.157*
H20B0.47420.38610.84760.157*
C210.4499 (6)0.4403 (3)0.6680 (9)0.145 (3)
H21A0.51880.47260.68050.217*
H21B0.44090.42850.56830.217*
H21C0.37750.46470.70170.217*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.059 (2)0.0473 (17)0.062 (2)0.0060 (15)0.0043 (19)0.0084 (18)
O10.086 (2)0.076 (2)0.071 (2)0.0046 (17)0.0181 (18)0.025 (2)
C10.055 (3)0.066 (2)0.065 (3)0.0010 (19)0.005 (2)0.016 (2)
N20.0492 (18)0.0507 (18)0.066 (2)0.0017 (14)0.0060 (18)0.0060 (19)
O20.094 (2)0.0614 (18)0.069 (2)0.0103 (17)0.0184 (19)0.0068 (18)
C20.087 (3)0.068 (3)0.082 (4)0.017 (2)0.024 (3)0.014 (3)
O30.076 (2)0.0521 (16)0.129 (3)0.0014 (15)0.010 (2)0.008 (2)
C30.115 (4)0.060 (3)0.095 (4)0.020 (3)0.017 (4)0.020 (3)
O40.0456 (15)0.0769 (19)0.089 (2)0.0008 (14)0.0091 (17)0.0022 (19)
C40.089 (3)0.053 (2)0.073 (3)0.005 (2)0.000 (3)0.004 (2)
C50.077 (3)0.060 (3)0.064 (3)0.009 (2)0.007 (2)0.014 (2)
C60.047 (2)0.057 (2)0.049 (3)0.0132 (17)0.0027 (18)0.005 (2)
C70.071 (3)0.066 (3)0.043 (2)0.002 (2)0.008 (2)0.001 (2)
C80.065 (3)0.073 (3)0.047 (3)0.008 (2)0.012 (2)0.005 (2)
C90.044 (2)0.056 (3)0.055 (3)0.0060 (18)0.0017 (18)0.001 (2)
C100.0379 (19)0.054 (2)0.047 (2)0.0054 (16)0.0007 (18)0.008 (2)
C110.048 (2)0.050 (2)0.051 (3)0.0010 (17)0.006 (2)0.002 (2)
C120.062 (3)0.060 (3)0.054 (3)0.004 (2)0.009 (2)0.006 (2)
C130.065 (3)0.063 (3)0.039 (2)0.000 (2)0.003 (2)0.001 (2)
C140.057 (3)0.049 (2)0.052 (2)0.0009 (19)0.005 (2)0.002 (2)
C150.045 (2)0.049 (2)0.044 (2)0.0067 (16)0.0014 (19)0.0080 (19)
C160.041 (2)0.063 (3)0.067 (3)0.0070 (19)0.009 (2)0.014 (3)
C170.040 (2)0.058 (3)0.063 (3)0.0011 (18)0.009 (2)0.001 (2)
C180.047 (2)0.050 (2)0.090 (4)0.0024 (17)0.002 (2)0.011 (2)
C190.056 (2)0.054 (2)0.066 (3)0.0008 (19)0.006 (2)0.007 (2)
C200.114 (5)0.077 (3)0.202 (9)0.036 (3)0.058 (6)0.030 (5)
C210.138 (6)0.103 (5)0.193 (9)0.036 (4)0.019 (6)0.014 (6)
Geometric parameters (Å, º) top
N1—C61.401 (5)C6—C151.424 (6)
N1—C51.459 (5)C7—C81.395 (6)
N1—C11.470 (5)C7—H7A0.9300
O1—C161.233 (5)C8—C91.372 (6)
C1—C21.506 (6)C8—H8A0.9300
C1—H1A0.9700C9—C101.414 (6)
C1—H1B0.9700C9—C161.479 (6)
N2—C161.396 (6)C10—C111.400 (5)
N2—C171.399 (6)C10—C151.410 (5)
N2—C181.446 (4)C11—C121.397 (6)
O2—C171.209 (5)C11—C171.475 (5)
C2—C31.536 (7)C12—C131.393 (6)
C2—H2A0.9700C12—H12A0.9300
C2—H2B0.9700C13—C141.359 (6)
O3—C191.324 (5)C13—H13A0.9300
O3—C201.467 (6)C14—C151.430 (6)
C3—C41.524 (7)C14—H14A0.9300
C3—H3A0.9700C18—C191.490 (6)
C3—H3B0.9700C18—H18A0.9700
O4—C191.202 (5)C18—H18B0.9700
C4—C51.513 (6)C20—C211.402 (7)
C4—H4A0.9700C20—H20A0.9700
C4—H4B0.9700C20—H20B0.9700
C5—H5A0.9700C21—H21A0.9600
C5—H5B0.9700C21—H21B0.9600
C6—C71.391 (6)C21—H21C0.9600
C6—N1—C5117.9 (3)C8—C9—C16119.9 (4)
C6—N1—C1116.9 (3)C10—C9—C16119.9 (4)
C5—N1—C1111.5 (3)C11—C10—C15120.1 (3)
N1—C1—C2110.4 (4)C11—C10—C9120.8 (3)
N1—C1—H1A109.6C15—C10—C9119.1 (3)
C2—C1—H1A109.6C12—C11—C10120.8 (4)
N1—C1—H1B109.6C12—C11—C17118.8 (4)
C2—C1—H1B109.6C10—C11—C17120.4 (4)
H1A—C1—H1B108.1C13—C12—C11119.1 (4)
C16—N2—C17125.0 (3)C13—C12—H12A120.4
C16—N2—C18119.2 (4)C11—C12—H12A120.4
C17—N2—C18115.7 (4)C14—C13—C12120.7 (4)
C1—C2—C3110.4 (4)C14—C13—H13A119.7
C1—C2—H2A109.6C12—C13—H13A119.7
C3—C2—H2A109.6C13—C14—C15121.9 (4)
C1—C2—H2B109.6C13—C14—H14A119.1
C3—C2—H2B109.6C15—C14—H14A119.1
H2A—C2—H2B108.1C10—C15—C6119.7 (4)
C19—O3—C20116.2 (4)C10—C15—C14117.1 (4)
C4—C3—C2109.6 (4)C6—C15—C14123.1 (4)
C4—C3—H3A109.8O1—C16—N2120.4 (4)
C2—C3—H3A109.8O1—C16—C9122.7 (4)
C4—C3—H3B109.8N2—C16—C9116.9 (4)
C2—C3—H3B109.8O2—C17—N2119.3 (4)
H3A—C3—H3B108.2O2—C17—C11124.0 (4)
C5—C4—C3111.6 (4)N2—C17—C11116.7 (4)
C5—C4—H4A109.3N2—C18—C19111.7 (3)
C3—C4—H4A109.3N2—C18—H18A109.3
C5—C4—H4B109.3C19—C18—H18A109.3
C3—C4—H4B109.3N2—C18—H18B109.3
H4A—C4—H4B108.0C19—C18—H18B109.3
N1—C5—C4110.0 (4)H18A—C18—H18B107.9
N1—C5—H5A109.7O4—C19—O3124.4 (4)
C4—C5—H5A109.7O4—C19—C18125.2 (4)
N1—C5—H5B109.7O3—C19—C18110.3 (3)
C4—C5—H5B109.7C21—C20—O3108.4 (5)
H5A—C5—H5B108.2C21—C20—H20A110.0
C7—C6—N1121.9 (4)O3—C20—H20A110.0
C7—C6—C15119.2 (4)C21—C20—H20B110.0
N1—C6—C15118.9 (4)O3—C20—H20B110.0
C6—C7—C8120.3 (4)H20A—C20—H20B108.4
C6—C7—H7A119.8C20—C21—H21A109.5
C8—C7—H7A119.8C20—C21—H21B109.5
C9—C8—C7121.1 (4)H21A—C21—H21B109.5
C9—C8—H8A119.5C20—C21—H21C109.5
C7—C8—H8A119.5H21A—C21—H21C109.5
C8—C9—C10120.2 (4)H21B—C21—H21C109.5
C6—N1—C1—C2159.0 (4)C11—C10—C15—C146.7 (5)
C5—N1—C1—C261.3 (5)C9—C10—C15—C14172.7 (4)
N1—C1—C2—C357.5 (5)C7—C6—C15—C106.8 (5)
C1—C2—C3—C453.7 (6)N1—C6—C15—C10175.1 (3)
C2—C3—C4—C553.6 (6)C7—C6—C15—C14169.4 (4)
C6—N1—C5—C4160.5 (4)N1—C6—C15—C148.8 (5)
C1—N1—C5—C460.2 (5)C13—C14—C15—C104.5 (5)
C3—C4—C5—N156.7 (5)C13—C14—C15—C6179.3 (4)
C5—N1—C6—C718.9 (6)C17—N2—C16—O1177.5 (4)
C1—N1—C6—C7118.2 (4)C18—N2—C16—O15.7 (6)
C5—N1—C6—C15159.2 (4)C17—N2—C16—C92.2 (6)
C1—N1—C6—C1563.7 (5)C18—N2—C16—C9174.6 (3)
N1—C6—C7—C8177.0 (4)C8—C9—C16—O12.6 (6)
C15—C6—C7—C84.9 (6)C10—C9—C16—O1177.6 (4)
C6—C7—C8—C90.1 (6)C8—C9—C16—N2177.7 (4)
C7—C8—C9—C103.3 (6)C10—C9—C16—N22.1 (5)
C7—C8—C9—C16176.5 (4)C16—N2—C17—O2179.0 (4)
C8—C9—C10—C11178.1 (4)C18—N2—C17—O22.1 (5)
C16—C9—C10—C112.1 (5)C16—N2—C17—C111.8 (5)
C8—C9—C10—C151.3 (6)C18—N2—C17—C11178.7 (3)
C16—C9—C10—C15178.4 (3)C12—C11—C17—O23.6 (6)
C15—C10—C11—C124.1 (5)C10—C11—C17—O2174.7 (4)
C9—C10—C11—C12175.3 (4)C12—C11—C17—N2175.5 (4)
C15—C10—C11—C17174.2 (3)C10—C11—C17—N26.1 (5)
C9—C10—C11—C176.3 (5)C16—N2—C18—C19110.2 (4)
C10—C11—C12—C131.2 (6)C17—N2—C18—C1966.9 (5)
C17—C11—C12—C13179.5 (4)C20—O3—C19—O42.9 (8)
C11—C12—C13—C143.5 (6)C20—O3—C19—C18179.7 (5)
C12—C13—C14—C150.6 (6)N2—C18—C19—O420.9 (7)
C11—C10—C15—C6176.9 (3)N2—C18—C19—O3161.8 (4)
C9—C10—C15—C63.7 (5)C19—O3—C20—C21139.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.972.603.455 (6)147
C1—H1B···O1ii0.972.513.373 (5)149
C5—H5A···O2iii0.972.443.219 (6)138
C18—H18A···O10.972.292.735 (6)107
C18—H18B···O4iv0.972.563.315 (5)135
C20—H20A···O40.972.272.671 (6)103
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC21H22N2O4
Mr366.41
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)10.959 (2), 18.037 (4), 9.3330 (19)
V3)1844.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3547, 1808, 1280
Rint0.039
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.00
No. of reflections1808
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.13

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.972.603.455 (6)147
C1—H1B···O1ii0.972.513.373 (5)149
C5—H5A···O2iii0.972.443.219 (6)138
C18—H18B···O4iv0.972.563.315 (5)135
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Higher Education Institutions Natural Science Foundation of the Jiangsu Educational Commission (grant No. 09KJB540001) and the General Program of the National Natural Science Foundation of China (grant No. 51003047).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFülöp, A., Arian, D., Lysenko, A. & Mokhir, A. (2009). Bioorg. Med. Chem. Lett. 19, 3104–3107.  Web of Science PubMed Google Scholar
First citationHanton, L. R., Moratti, S. C., Shi, Z. & Simpson, J. (2010). Acta Cryst. E66, o1476–o1477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMcAdam, C. J., Morgan, J. L., Robinson, B. H., Simpson, J., Rieger, P. H. & Rieger, A. L. (2003). Organometallics, 22, 5126–5136.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds