metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m832-m833

catena-Poly[bis­­[(1,10-phenanthroline)cobalt(II)]-μ4-3,6-dicarb­­oxy­cyclo­hexane-1,2,4,5-tetra­carboxyl­ato]

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 24 May 2011; accepted 26 May 2011; online 4 June 2011)

In the title compound, [Co2(C12H8O12)(C12H8N2)2]n, each 3,6-dicarb­oxy­cyclo­hexane-1,2,4,5-tetra­carboxyl­ate (H2chhc4−) anion has crystallographically imposed C2 symmetry and bridges four six-coordinate Co atoms, generating polymeric chains running along [010]. These chains are further extended into a three-dimensional network via O—H⋯O hydrogen-bonding inter­actions and inter­chain ππ stacking inter­actions [centroid–centroid distance = 3.662 (2) Å].

Related literature

For the design and synthesis of coordination polymer complexes and their potential applications, see: Biradha et al. (2006[Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]); Bauer et al. (2007[Bauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136-7144.]); Zacher et al. (2011[Zacher, D., Schmid, R., Wōll, C. & Fischer, R. A. (2011). Angew. Chem. Int. Ed. 50, 176-199.]). For the 1,2,3,4,5,6-cyclo­hexa­nehexa­carboxyl­ate ligand, see: Li et al. (2006[Li, Z.-F., Xie, H.-Z. & Zheng, Y.-Q. (2006). Acta Cryst. C62, m455-m457.]); Wang et al. (2008[Wang, J., Lin, Z. J., Ou, Y. C., Shen, Y., Herchel, R. & Tong, M. L. (2008). Chem. Eur. J. 14, 7218-7235.]); Thuéry & Masci (2010[Thuéry, P. & Masci, B. (2010). Cryst. Growth Des. 10, 3626-3631.]). For related structures, see: Konar et al. (2004[Konar, S., Zangrando, E., Drew, M. G. B., Ribas, J. & Chaudhuri, N. R. (2004). Dalton Trans. pp. 260-266.]); Li et al. (2006[Li, Z.-F., Xie, H.-Z. & Zheng, Y.-Q. (2006). Acta Cryst. C62, m455-m457.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C12H8O12)(C12H8N2)2]

  • Mr = 822.46

  • Monoclinic, C 2/c

  • a = 22.180 (4) Å

  • b = 8.9520 (18) Å

  • c = 16.426 (3) Å

  • β = 93.33 (3)°

  • V = 3256.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 295 K

  • 0.31 × 0.23 × 0.15 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.702, Tmax = 0.784

  • 4566 measured reflections

  • 3753 independent reflections

  • 3312 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.03

  • 3753 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.2002 (13)
Co1—O2 2.0890 (13)
Co1—O5i 2.1211 (13)
Co1—O6i 2.1519 (13)
Co1—N1 2.1012 (15)
Co1—N2 2.1016 (15)
Symmetry code: (i) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2ii 0.79 (3) 1.89 (3) 2.627 (2) 156 (2)
Symmetry code: (ii) -x, -y+2, -z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The rational design and construction of metal-organic coordination polymers with flexible multidentate ligands have received more and more attention due to their intriguing structural topologies and novel properties for potential applications (Biradha, et al., 2006; Bauer, et al., 2007; Zacher, et al., 2011). As a typical flexible cycloalkane polycarboxylic acid ligand, we have focused on the 1,2,3,4,5,6-cyclohexanehexacarboxylic acid (H6chhc) whose coordination chemistry remains practically unexplored. We were particularly aware that the greater flexibility of this ligand would make the prediction and control of the final coordination networks that it generates more difficult. (Wang, et al., 2008; Thuéry & Masci, 2010). Herein, we report a new cobalt coordination polymer, [Co2(phen)2(H2chhc)]n, resulting from reaction of Co2+ cations, phen and H6chhc under hydrothermal conditions. It is isostructural with the previously reported [Ni2(phen)2(H2chhc)]n complex (Li, et al., 2006).

The asymmetric unit of the title compound consists of one Co2+ cation, one phen ligand and one-half of a H2chhc4- anion lying across a twofold rotation axis. The Co atoms are each in an octahedral environment defined by two N atoms of one phen ligand and four O atoms of two carboxylate groups from different H2chhc4- anions. The Co-O bond lengths fall in the range 2.089 (1)-2.200 (1) Å and the two Co-N distances are 2.101 (2) and 2.102 (2) Å (Table 1), thus falling in the expected region (Konar, et al., 2004). The octahedral coordination around the Co atoms are strongly distorted since the diametrical and non-diametrical bond angles indicate signficant deviations from 180° and 90°, respectively. The H2chhc4- ligands assume an e,e,e,e,e,e-conformation with the central ring adopting a chair-shaped configuration, the carboxylate and carboxyl groups being located at the equatorical sites. Each carboxylate group of the H2chhc4- anion chelates one Co atom. As a result, the H2chhc4- anions are each coordinated to four [Co(phen)]2+ units, leading to polymeric chains [Co2(phen)2(H2chhc)]n running along the [010] direction with the phen ligands exo-orientated (Fig. 1). The phen ligands of two adjacent supramolecular chains are stacked via the quinoline fragments (centroid-centroid distance = 3.662 (2) Å). Obviously, such π-π stacking interactions are responsible for the supramolecular assembly of the one-dimensional chains into two-dimensional layers parallel to (001) (Fig. 2). The layers are further connected to form a three-dimensional framework via interlayer O-H···O hydrogen bonds (d(O4···O2#1 = 2.627 (2) Å, <O4-H4A···O2#1 = 156 (2)°, #1 = -x, 2-y, -z).

Related literature top

For the design and synthesis of coordination polymer complexes and their potential applications, see: Biradha et al. (2006); Bauer et al. (2007); Zacher et al. (2011). For the 1,2,3,4,5,6-cyclohexanehexacarboxylate ligand, see: Li et al. (2006); Wang et al. (2008); Thuéry & Masci (2010). For related structures, see: Konar et al. (2004); Li et al. (2006).

Experimental top

CoCl2.6H2O (0.238 g, 1.0 mmol), H6chhc (0.173 g, 0.5 mmol), phen (0.200 g, 1.0 mmol) and NaOH 1.5 mL (1 M) were stirred in 20 mL H2O. The resulting mixture was placed in a 23 mL Teflon-lined autoclave and heated at 170 °C for 3 days. The reaction system was cooled to room temperature at a rate of 20 °C/h, and small amount of pink crystals of the title complex was obtained.

Refinement top

All H atoms bound to C were position geometrically and refined as riding, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms attached to O were located in difference Fourier maps and refined freely with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the polymer chain [Co2(phen)2(H2chhc)]n of the title complex. The displacement ellipsoids are drawn at 40% probability level, hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. A view of a single layer of the title complex.
catena-Poly[bis[(1,10-phenanthroline)cobalt(II)]-µ4-3,6- dicarboxycyclohexane-1,2,4,5-tetracarboxylato] top
Crystal data top
[Co2(C12H8O12)(C12H8N2)2]F(000) = 1672
Mr = 822.46Dx = 1.678 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 22.180 (4) Åθ = 5.0–12.5°
b = 8.9520 (18) ŵ = 1.10 mm1
c = 16.426 (3) ÅT = 295 K
β = 93.33 (3)°Block, pink
V = 3256.0 (11) Å30.31 × 0.23 × 0.15 mm
Z = 4
Data collection top
Siemens P4
diffractometer
3312 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
θ/2θ scansh = 281
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 111
Tmin = 0.702, Tmax = 0.784l = 2121
4566 measured reflections3 standard reflections every 97 reflections
3753 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0413P)2 + 2.2781P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3753 reflectionsΔρmax = 0.38 e Å3
248 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00077 (19)
Crystal data top
[Co2(C12H8O12)(C12H8N2)2]V = 3256.0 (11) Å3
Mr = 822.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.180 (4) ŵ = 1.10 mm1
b = 8.9520 (18) ÅT = 295 K
c = 16.426 (3) Å0.31 × 0.23 × 0.15 mm
β = 93.33 (3)°
Data collection top
Siemens P4
diffractometer
3312 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.022
Tmin = 0.702, Tmax = 0.7843 standard reflections every 97 reflections
4566 measured reflections intensity decay: none
3753 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
3753 reflectionsΔρmin = 0.33 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.098444 (9)0.64743 (2)0.140367 (13)0.02138 (9)
O10.07208 (6)0.79951 (15)0.23735 (7)0.0330 (3)
O20.04781 (7)0.83776 (14)0.10892 (7)0.0327 (3)
O30.08305 (7)1.16900 (18)0.04746 (9)0.0433 (4)
O40.01738 (6)1.14637 (17)0.04776 (8)0.0363 (3)
H4A0.0159 (12)1.148 (3)0.0004 (19)0.054*
O50.09100 (5)1.45307 (15)0.21296 (8)0.0314 (3)
O60.01745 (5)1.51543 (15)0.12579 (8)0.0329 (3)
N10.13438 (6)0.55177 (17)0.03690 (9)0.0277 (3)
N20.18993 (7)0.70526 (19)0.16045 (9)0.0322 (3)
C10.10617 (9)0.4793 (2)0.02411 (11)0.0378 (4)
H1A0.06420.47710.02720.045*
C20.13708 (13)0.4053 (3)0.08457 (14)0.0544 (6)
H2A0.11590.35630.12720.065*
C30.19861 (13)0.4065 (3)0.07970 (15)0.0591 (7)
H3A0.21960.35610.11860.071*
C40.23052 (10)0.4833 (3)0.01624 (14)0.0472 (5)
C50.29531 (12)0.4955 (4)0.00706 (19)0.0673 (8)
H5A0.31860.44680.04410.081*
C60.32300 (10)0.5748 (4)0.05321 (19)0.0686 (9)
H6A0.36490.58060.05690.082*
C70.28897 (9)0.6512 (3)0.11216 (16)0.0517 (6)
C80.31442 (11)0.7393 (4)0.17623 (18)0.0660 (8)
H8A0.35610.75160.18210.079*
C90.27855 (12)0.8067 (4)0.22961 (17)0.0658 (8)
H9A0.29540.86500.27190.079*
C100.21599 (11)0.7875 (3)0.22011 (14)0.0487 (5)
H10A0.19170.83380.25680.058*
C110.22540 (8)0.6391 (2)0.10648 (12)0.0339 (4)
C120.19595 (8)0.5557 (2)0.04106 (11)0.0318 (4)
C130.00497 (7)1.00717 (17)0.20407 (9)0.0213 (3)
H13A0.03440.99850.17410.026*
C140.03623 (7)1.15052 (16)0.17600 (9)0.0205 (3)
H14A0.07781.15190.19980.025*
C150.00349 (7)1.29201 (17)0.20377 (9)0.0194 (3)
H15A0.03671.29580.17580.023*
C160.04335 (8)0.87293 (17)0.18323 (10)0.0234 (3)
C170.03790 (8)1.15477 (18)0.08330 (10)0.0256 (3)
C180.03920 (7)1.42928 (17)0.17948 (9)0.0209 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02179 (13)0.01718 (13)0.02545 (13)0.00066 (8)0.00385 (8)0.00008 (8)
O10.0451 (7)0.0284 (6)0.0258 (6)0.0125 (6)0.0031 (5)0.0002 (5)
O20.0497 (8)0.0259 (6)0.0228 (6)0.0115 (6)0.0048 (5)0.0013 (5)
O30.0426 (8)0.0505 (9)0.0389 (7)0.0011 (7)0.0212 (6)0.0015 (6)
O40.0402 (7)0.0477 (9)0.0209 (6)0.0031 (6)0.0014 (5)0.0005 (6)
O50.0286 (6)0.0283 (6)0.0368 (6)0.0066 (5)0.0040 (5)0.0084 (5)
O60.0274 (6)0.0276 (6)0.0431 (7)0.0037 (5)0.0031 (5)0.0141 (6)
N10.0265 (7)0.0298 (7)0.0272 (7)0.0006 (6)0.0044 (5)0.0008 (6)
N20.0299 (7)0.0335 (8)0.0328 (7)0.0094 (6)0.0004 (6)0.0029 (7)
C10.0407 (10)0.0412 (11)0.0313 (9)0.0015 (8)0.0005 (7)0.0037 (8)
C20.0764 (17)0.0522 (14)0.0353 (11)0.0025 (13)0.0089 (10)0.0145 (10)
C30.0742 (17)0.0589 (15)0.0469 (13)0.0132 (14)0.0256 (12)0.0108 (12)
C40.0444 (11)0.0513 (13)0.0479 (12)0.0140 (10)0.0206 (9)0.0045 (10)
C50.0411 (13)0.086 (2)0.0782 (18)0.0230 (14)0.0307 (13)0.0099 (17)
C60.0245 (10)0.096 (2)0.087 (2)0.0121 (13)0.0166 (11)0.0225 (18)
C70.0236 (9)0.0692 (17)0.0620 (14)0.0055 (9)0.0005 (9)0.0216 (12)
C80.0310 (11)0.092 (2)0.0729 (17)0.0238 (13)0.0132 (11)0.0211 (16)
C90.0571 (15)0.081 (2)0.0564 (15)0.0368 (15)0.0180 (12)0.0040 (14)
C100.0505 (13)0.0511 (13)0.0438 (11)0.0208 (11)0.0043 (9)0.0023 (10)
C110.0229 (8)0.0386 (10)0.0404 (10)0.0019 (7)0.0025 (7)0.0106 (8)
C120.0278 (8)0.0337 (9)0.0348 (9)0.0038 (7)0.0091 (7)0.0062 (8)
C130.0275 (7)0.0155 (7)0.0213 (7)0.0008 (6)0.0037 (6)0.0001 (6)
C140.0228 (7)0.0161 (7)0.0227 (7)0.0001 (6)0.0036 (5)0.0001 (6)
C150.0209 (7)0.0157 (7)0.0217 (7)0.0000 (5)0.0020 (5)0.0003 (6)
C160.0302 (8)0.0168 (7)0.0238 (7)0.0003 (6)0.0051 (6)0.0008 (6)
C170.0342 (8)0.0179 (7)0.0252 (8)0.0015 (6)0.0077 (6)0.0009 (6)
C180.0238 (7)0.0167 (7)0.0228 (7)0.0008 (6)0.0058 (6)0.0014 (6)
Geometric parameters (Å, º) top
Co1—O12.2002 (13)C3—H3A0.9300
Co1—O22.0890 (13)C4—C121.406 (3)
Co1—O5i2.1211 (13)C4—C51.440 (3)
Co1—O6i2.1519 (13)C5—C61.338 (5)
Co1—N12.1012 (15)C5—H5A0.9300
Co1—N22.1016 (15)C6—C71.435 (4)
Co1—C18i2.4599 (16)C6—H6A0.9300
Co1—C162.4827 (16)C7—C81.407 (4)
O1—C161.250 (2)C7—C111.412 (3)
O2—C161.270 (2)C8—C91.359 (4)
O3—C171.198 (2)C8—H8A0.9300
O4—C171.329 (2)C9—C101.398 (3)
O4—H4A0.79 (3)C9—H9A0.9300
O5—C181.263 (2)C10—H10A0.9300
O5—Co1ii2.1211 (13)C11—C121.435 (3)
O6—C181.247 (2)C13—C161.523 (2)
O6—Co1ii2.1519 (13)C13—C13iii1.538 (3)
N1—C11.321 (2)C13—C141.542 (2)
N1—C121.364 (2)C13—H13A0.9800
N2—C101.330 (3)C14—C171.526 (2)
N2—C111.355 (3)C14—C151.542 (2)
C1—C21.405 (3)C14—H14A0.9800
C1—H1A0.9300C15—C181.528 (2)
C2—C31.363 (4)C15—C15iii1.535 (3)
C2—H2A0.9300C15—H15A0.9800
C3—C41.405 (4)C18—Co1ii2.4599 (16)
O2—Co1—N1110.87 (6)C5—C6—C7121.0 (2)
O2—Co1—N2109.77 (6)C5—C6—H6A119.5
N1—Co1—N279.58 (6)C7—C6—H6A119.5
O2—Co1—O5i138.57 (6)C8—C7—C11116.6 (2)
N1—Co1—O5i99.55 (6)C8—C7—C6124.6 (2)
N2—Co1—O5i102.70 (6)C11—C7—C6118.8 (2)
O2—Co1—O6i89.26 (5)C9—C8—C7120.5 (2)
N1—Co1—O6i92.27 (6)C9—C8—H8A119.8
N2—Co1—O6i160.89 (6)C7—C8—H8A119.8
O5i—Co1—O6i61.34 (5)C8—C9—C10119.2 (2)
O2—Co1—O160.84 (5)C8—C9—H9A120.4
N1—Co1—O1165.26 (6)C10—C9—H9A120.4
N2—Co1—O191.64 (6)N2—C10—C9122.4 (2)
O5i—Co1—O193.89 (5)N2—C10—H10A118.8
O6i—Co1—O199.50 (6)C9—C10—H10A118.8
O2—Co1—C18i115.12 (6)N2—C11—C7122.6 (2)
N1—Co1—C18i96.96 (6)N2—C11—C12117.47 (15)
N2—Co1—C18i132.85 (6)C7—C11—C12119.9 (2)
O5i—Co1—C18i30.88 (5)N1—C12—C4122.56 (19)
O6i—Co1—C18i30.46 (5)N1—C12—C11117.50 (16)
O1—Co1—C18i97.68 (5)C4—C12—C11119.94 (18)
O2—Co1—C1630.74 (5)C16—C13—C13iii109.53 (11)
N1—Co1—C16140.98 (6)C16—C13—C14108.82 (12)
N2—Co1—C16104.00 (6)C13iii—C13—C14112.70 (10)
O5i—Co1—C16116.86 (6)C16—C13—H13A108.6
O6i—Co1—C1693.24 (6)C13iii—C13—H13A108.6
O1—Co1—C1630.20 (5)C14—C13—H13A108.6
C18i—Co1—C16106.99 (5)C17—C14—C13110.89 (13)
C16—O1—Co187.50 (10)C17—C14—C15108.29 (12)
C16—O2—Co192.02 (10)C13—C14—C15111.56 (12)
C17—O4—H4A110 (2)C17—C14—H14A108.7
C18—O5—Co1ii89.55 (10)C13—C14—H14A108.7
C18—O6—Co1ii88.55 (10)C15—C14—H14A108.7
C1—N1—C12118.65 (16)C18—C15—C15iii109.99 (10)
C1—N1—Co1128.96 (13)C18—C15—C14108.86 (12)
C12—N1—Co1112.02 (12)C15iii—C15—C14111.64 (10)
C10—N2—C11118.66 (18)C18—C15—H15A108.8
C10—N2—Co1128.76 (15)C15iii—C15—H15A108.8
C11—N2—Co1112.44 (12)C14—C15—H15A108.8
N1—C1—C2122.6 (2)O1—C16—O2119.22 (15)
N1—C1—H1A118.7O1—C16—C13121.57 (14)
C2—C1—H1A118.7O2—C16—C13119.17 (14)
C3—C2—C1118.9 (2)O1—C16—Co162.30 (9)
C3—C2—H2A120.6O2—C16—Co157.23 (8)
C1—C2—H2A120.6C13—C16—Co1174.86 (12)
C2—C3—C4120.5 (2)O3—C17—O4124.52 (17)
C2—C3—H3A119.8O3—C17—C14124.24 (17)
C4—C3—H3A119.8O4—C17—C14111.20 (14)
C3—C4—C12116.8 (2)O6—C18—O5120.56 (15)
C3—C4—C5124.8 (2)O6—C18—C15119.79 (14)
C12—C4—C5118.3 (2)O5—C18—C15119.64 (14)
C6—C5—C4122.0 (2)O6—C18—Co1ii60.99 (9)
C6—C5—H5A119.0O5—C18—Co1ii59.57 (8)
C4—C5—H5A119.0C15—C18—Co1ii178.92 (11)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2iv0.79 (3)1.89 (3)2.627 (2)156 (2)
Symmetry code: (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Co2(C12H8O12)(C12H8N2)2]
Mr822.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)22.180 (4), 8.9520 (18), 16.426 (3)
β (°) 93.33 (3)
V3)3256.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.31 × 0.23 × 0.15
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.702, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
4566, 3753, 3312
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.03
No. of reflections3753
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.2002 (13)Co1—O6i2.1519 (13)
Co1—O22.0890 (13)Co1—N12.1012 (15)
Co1—O5i2.1211 (13)Co1—N22.1016 (15)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2ii0.79 (3)1.89 (3)2.627 (2)156 (2)
Symmetry code: (ii) x, y+2, z.
 

Acknowledgements

This project was supported by the Scientific Research Fund of the Zhejiang Provincial Education Department (grant No. Y201017782) and the Scientific Research Fund of Ningbo University (grant No. XKL09078). Grateful thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationBauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136–7144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBiradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citationKonar, S., Zangrando, E., Drew, M. G. B., Ribas, J. & Chaudhuri, N. R. (2004). Dalton Trans. pp. 260–266.  Web of Science CSD CrossRef Google Scholar
First citationLi, Z.-F., Xie, H.-Z. & Zheng, Y.-Q. (2006). Acta Cryst. C62, m455–m457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationThuéry, P. & Masci, B. (2010). Cryst. Growth Des. 10, 3626–3631.  Google Scholar
First citationWang, J., Lin, Z. J., Ou, Y. C., Shen, Y., Herchel, R. & Tong, M. L. (2008). Chem. Eur. J. 14, 7218–7235.  CrossRef PubMed CAS Google Scholar
First citationZacher, D., Schmid, R., Wōll, C. & Fischer, R. A. (2011). Angew. Chem. Int. Ed. 50, 176–199.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m832-m833
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds