organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Di­ethyl­amino-2-hy­dr­oxy­benzyl­­idene)-4-(di­methyl­amino)­benzo­hydrazide methanol monosolvate

aJiangsu Centre of Extraction Separation Engineering Technology, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, People's Republic of China
*Correspondence e-mail: douduo2011@163.com

(Received 25 May 2011; accepted 25 May 2011; online 11 June 2011)

The title compound, C20H26N4O2·CH3OH, was prepared by the reaction of 4-diethyl­amino-2-hy­droxy­benzaldehyde with 4-(dimethyl­amino)­benzohydrazide. The dihedral angle between the two benzene rings is 13.6 (3)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, the hydrazone and methanol mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, forming chains along a.

Related literature

For the biological properties of hydrazones, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Zhang et al. (2010[Zhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289-293.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For similar structures, see: Huang & Wu (2010[Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729-o2730.]); Khaledi et al. (2010[Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105-o106.]); Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.]). For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N4O2·CH4O

  • Mr = 386.49

  • Triclinic, [P \overline 1]

  • a = 6.786 (3) Å

  • b = 11.791 (3) Å

  • c = 14.252 (2) Å

  • α = 111.511 (3)°

  • β = 92.811 (2)°

  • γ = 96.492 (2)°

  • V = 1049.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.983

  • 7543 measured reflections

  • 4421 independent reflections

  • 1809 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.189

  • S = 1.00

  • 4421 reflections

  • 263 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.90 (1) 2.07 (2) 2.936 (4) 160 (3)
O3—H3⋯O2i 0.82 1.84 2.661 (3) 177
O1—H1⋯N1 0.82 2.02 2.727 (3) 145
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last year, much attention has been focused on the biological properties of hydrazone compounds (Ajani et al., 2010; Zhang et al., 2010; Angelusiu et al., 2010). The crystal structures of a number of hydrazone compounds have also been determined (Huang & Wu, 2010; Khaledi et al., 2010; Zhou & Yang, 2010; Ji & Lu, 2010; Singh & Singh, 2010; Ahmad et al., 2010). In this paper, the title new hydrazone compound, Fig. 1, is reported.

The asymmetric unit of the compound contains a hydrazone molecule and a methanol molecule. The dihedral angle between the two benzene rings is 13.6 (3)° and an intramolecular O1—H1···N1 hydrogen bond forms an S(6) ring (Bernstein et al., 1995). In the crystal structure, the hydrazone and methanol molecules are linked through intermolecular O–H···O and N–H···O hydrogen bonds (Table 1), to form 1D chains along a (Fig. 2).

Related literature top

For the biological properties of hydrazones, see: Ajani et al. (2010); Zhang et al. (2010); Angelusiu et al. (2010). For similar structures, see: Huang & Wu (2010); Khaledi et al. (2010); Zhou & Yang (2010); Ji & Lu (2010); Singh & Singh (2010); Ahmad et al. (2010). For hydrogen-bond motifs, see Bernstein et al. (1995).

Experimental top

The reaction of 4-diethylamino-2-hydroxybenzaldehyde (0.193 g, 1 mmol) with 4-(dimethylamino)benzohydrazide (0.179 g, 1 mmol) in 30 ml methanol at room temperature afforded the title compound. Colorless single crystals were formed by gradual evaporation of the solution in air.

Refinement top

The amino H atom was located in a difference Fourier map and refined with the N–H distance restrained to be 0.90 (1) Å, and with Uiso = 0.08 Å2. The remaining H atoms were positioned geometrically (C–H = 0.93-0.97 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(O3 and Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the b axis. Intermolecular interactions are drawn as dashed lines.
N'-(4-Diethylamino-2-hydroxybenzylidene)-4-(dimethylamino)benzohydrazide methanol monosolvate top
Crystal data top
C20H26N4O2·CH4OZ = 2
Mr = 386.49F(000) = 416
Triclinic, P1Dx = 1.224 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.786 (3) ÅCell parameters from 765 reflections
b = 11.791 (3) Åθ = 2.6–24.5°
c = 14.252 (2) ŵ = 0.08 mm1
α = 111.511 (3)°T = 298 K
β = 92.811 (2)°Block, colorless
γ = 96.492 (2)°0.27 × 0.23 × 0.21 mm
V = 1049.1 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4421 independent reflections
Radiation source: fine-focus sealed tube1809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.978, Tmax = 0.983k = 1515
7543 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
4421 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C20H26N4O2·CH4Oγ = 96.492 (2)°
Mr = 386.49V = 1049.1 (6) Å3
Triclinic, P1Z = 2
a = 6.786 (3) ÅMo Kα radiation
b = 11.791 (3) ŵ = 0.08 mm1
c = 14.252 (2) ÅT = 298 K
α = 111.511 (3)°0.27 × 0.23 × 0.21 mm
β = 92.811 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4421 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1809 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.045
7543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0701 restraint
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
4421 reflectionsΔρmin = 0.21 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1048 (3)0.5092 (2)0.2045 (2)0.0741 (8)
H10.06860.45640.22350.111*
O20.0566 (3)0.2247 (2)0.3184 (2)0.0770 (8)
O30.6751 (4)0.3787 (2)0.3427 (2)0.0907 (9)
H30.75860.33210.33710.136*
N10.1680 (4)0.3808 (2)0.2520 (2)0.0549 (7)
N20.2452 (4)0.2985 (2)0.2885 (2)0.0564 (8)
N30.4202 (4)0.1790 (2)0.3829 (2)0.0632 (8)
N40.1131 (4)0.7762 (2)0.0366 (2)0.0705 (9)
C10.2398 (4)0.5230 (2)0.1692 (2)0.0488 (8)
C20.0478 (5)0.5553 (3)0.1644 (2)0.0487 (8)
C30.0066 (4)0.6387 (3)0.1211 (2)0.0535 (9)
H3A0.12180.65880.11940.064*
C40.1541 (5)0.6933 (3)0.0801 (2)0.0525 (8)
C50.3450 (5)0.6589 (3)0.0828 (3)0.0649 (10)
H50.44570.69220.05460.078*
C60.3848 (5)0.5769 (3)0.1263 (3)0.0594 (9)
H60.51300.55640.12730.071*
C70.2927 (5)0.4383 (3)0.2145 (2)0.0523 (8)
H70.42480.42460.21680.063*
C80.1245 (5)0.2195 (3)0.3155 (2)0.0522 (8)
C90.2154 (4)0.1219 (3)0.3371 (2)0.0470 (8)
C100.0978 (5)0.0474 (3)0.3749 (3)0.0573 (9)
H100.03010.06440.38970.069*
C110.1637 (5)0.0504 (3)0.3910 (2)0.0596 (9)
H110.08060.09730.41730.071*
C120.3538 (5)0.0806 (3)0.3687 (2)0.0505 (8)
C130.4723 (4)0.0056 (3)0.3301 (2)0.0575 (9)
H130.60010.02240.31480.069*
C140.4036 (5)0.0927 (3)0.3145 (2)0.0553 (9)
H140.48550.14020.28830.066*
C150.2976 (6)0.2536 (3)0.4256 (3)0.0780 (11)
H15A0.28080.20510.49460.117*
H15B0.36140.32310.42330.117*
H15C0.16960.28210.38690.117*
C160.6191 (5)0.2071 (3)0.3638 (3)0.0789 (12)
H16A0.64120.21600.29560.118*
H16B0.63470.28240.37280.118*
H16C0.71390.14140.41030.118*
C170.2791 (6)0.8609 (3)0.0203 (3)0.0792 (12)
H17A0.23460.93960.03070.095*
H17B0.39170.87510.06980.095*
C180.3427 (6)0.8094 (4)0.0821 (3)0.1027 (14)
H18A0.38530.73100.09290.154*
H18B0.45110.86450.08930.154*
H18C0.23320.79890.13120.154*
C190.0856 (5)0.8062 (3)0.0254 (3)0.0603 (9)
H19A0.18180.73320.01150.072*
H19B0.09750.83100.03220.072*
C200.1341 (6)0.9075 (3)0.1181 (3)0.0841 (12)
H20A0.13270.88100.17420.126*
H20B0.26380.92720.10570.126*
H20C0.03660.97910.13360.126*
C210.7364 (6)0.4885 (4)0.4255 (3)0.0977 (14)
H21A0.85060.53280.41080.146*
H21B0.77060.47040.48410.146*
H21C0.63010.53780.43840.146*
H20.3791 (16)0.309 (3)0.290 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0555 (14)0.0899 (18)0.111 (2)0.0186 (12)0.0232 (14)0.0730 (17)
O20.0539 (15)0.0793 (16)0.118 (2)0.0240 (13)0.0139 (14)0.0555 (15)
O30.0596 (17)0.0795 (18)0.137 (3)0.0214 (13)0.0033 (17)0.0440 (18)
N10.0575 (18)0.0537 (15)0.062 (2)0.0165 (13)0.0006 (15)0.0301 (15)
N20.0473 (16)0.0592 (16)0.078 (2)0.0149 (14)0.0037 (16)0.0420 (16)
N30.071 (2)0.0561 (16)0.077 (2)0.0165 (15)0.0121 (16)0.0391 (16)
N40.0546 (18)0.0831 (19)0.108 (3)0.0214 (15)0.0239 (17)0.070 (2)
C10.0493 (19)0.0476 (17)0.055 (2)0.0121 (15)0.0030 (16)0.0239 (16)
C20.048 (2)0.0527 (18)0.051 (2)0.0079 (15)0.0085 (16)0.0261 (17)
C30.0428 (19)0.0593 (19)0.071 (3)0.0145 (16)0.0099 (17)0.0364 (18)
C40.050 (2)0.0564 (18)0.062 (2)0.0109 (16)0.0111 (17)0.0329 (18)
C50.049 (2)0.078 (2)0.091 (3)0.0170 (18)0.0227 (19)0.054 (2)
C60.047 (2)0.064 (2)0.078 (3)0.0168 (16)0.0093 (18)0.036 (2)
C70.051 (2)0.0497 (18)0.058 (2)0.0168 (16)0.0002 (17)0.0206 (17)
C80.046 (2)0.0579 (19)0.058 (2)0.0172 (16)0.0043 (17)0.0248 (17)
C90.0447 (19)0.0527 (18)0.049 (2)0.0133 (15)0.0031 (16)0.0233 (16)
C100.0446 (19)0.071 (2)0.070 (3)0.0175 (16)0.0158 (17)0.038 (2)
C110.057 (2)0.066 (2)0.069 (3)0.0114 (18)0.0119 (19)0.0401 (19)
C120.058 (2)0.0480 (17)0.050 (2)0.0094 (16)0.0002 (17)0.0233 (16)
C130.0447 (19)0.061 (2)0.075 (3)0.0165 (16)0.0112 (18)0.0314 (19)
C140.050 (2)0.0555 (18)0.072 (3)0.0133 (16)0.0117 (18)0.0353 (18)
C150.108 (3)0.061 (2)0.079 (3)0.020 (2)0.015 (2)0.040 (2)
C160.071 (3)0.069 (2)0.109 (3)0.0221 (19)0.004 (2)0.043 (2)
C170.079 (3)0.083 (2)0.094 (4)0.025 (2)0.017 (2)0.050 (2)
C180.113 (4)0.129 (4)0.092 (4)0.038 (3)0.036 (3)0.062 (3)
C190.058 (2)0.066 (2)0.069 (3)0.0134 (17)0.0033 (19)0.038 (2)
C200.085 (3)0.080 (3)0.089 (3)0.023 (2)0.011 (2)0.030 (2)
C210.101 (3)0.090 (3)0.114 (4)0.029 (3)0.024 (3)0.046 (3)
Geometric parameters (Å, º) top
O1—C21.362 (3)C10—C111.373 (4)
O1—H10.8200C10—H100.9300
O2—C81.239 (3)C11—C121.397 (4)
O3—C211.397 (4)C11—H110.9300
O3—H30.8200C12—C131.404 (4)
N1—C71.281 (4)C13—C141.383 (4)
N1—N21.396 (3)C13—H130.9300
N2—C81.344 (4)C14—H140.9300
N2—H20.900 (10)C15—H15A0.9600
N3—C121.368 (3)C15—H15B0.9600
N3—C161.441 (4)C15—H15C0.9600
N3—C151.454 (4)C16—H16A0.9600
N4—C41.381 (4)C16—H16B0.9600
N4—C191.448 (4)C16—H16C0.9600
N4—C171.504 (4)C17—C181.469 (5)
C1—C61.396 (4)C17—H17A0.9700
C1—C21.403 (4)C17—H17B0.9700
C1—C71.441 (4)C18—H18A0.9600
C2—C31.384 (4)C18—H18B0.9600
C3—C41.395 (4)C18—H18C0.9600
C3—H3A0.9300C19—C201.501 (5)
C4—C51.404 (4)C19—H19A0.9700
C5—C61.369 (4)C19—H19B0.9700
C5—H50.9300C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—H70.9300C20—H20C0.9600
C8—C91.484 (4)C21—H21A0.9600
C9—C141.382 (4)C21—H21B0.9600
C9—C101.389 (4)C21—H21C0.9600
C2—O1—H1109.5C14—C13—C12121.6 (3)
C21—O3—H3109.5C14—C13—H13119.2
C7—N1—N2115.4 (3)C12—C13—H13119.2
C8—N2—N1121.0 (3)C9—C14—C13121.3 (3)
C8—N2—H2129 (2)C9—C14—H14119.4
N1—N2—H2110 (2)C13—C14—H14119.4
C12—N3—C16121.6 (3)N3—C15—H15A109.5
C12—N3—C15121.0 (3)N3—C15—H15B109.5
C16—N3—C15117.3 (3)H15A—C15—H15B109.5
C4—N4—C19122.5 (3)N3—C15—H15C109.5
C4—N4—C17120.5 (3)H15A—C15—H15C109.5
C19—N4—C17115.6 (2)H15B—C15—H15C109.5
C6—C1—C2116.7 (3)N3—C16—H16A109.5
C6—C1—C7119.4 (3)N3—C16—H16B109.5
C2—C1—C7123.9 (3)H16A—C16—H16B109.5
O1—C2—C3116.9 (3)N3—C16—H16C109.5
O1—C2—C1121.8 (3)H16A—C16—H16C109.5
C3—C2—C1121.3 (3)H16B—C16—H16C109.5
C2—C3—C4121.2 (3)C18—C17—N4111.6 (3)
C2—C3—H3A119.4C18—C17—H17A109.3
C4—C3—H3A119.4N4—C17—H17A109.3
N4—C4—C3121.3 (3)C18—C17—H17B109.3
N4—C4—C5121.2 (3)N4—C17—H17B109.3
C3—C4—C5117.5 (3)H17A—C17—H17B108.0
C6—C5—C4120.9 (3)C17—C18—H18A109.5
C6—C5—H5119.6C17—C18—H18B109.5
C4—C5—H5119.6H18A—C18—H18B109.5
C5—C6—C1122.4 (3)C17—C18—H18C109.5
C5—C6—H6118.8H18A—C18—H18C109.5
C1—C6—H6118.8H18B—C18—H18C109.5
N1—C7—C1123.7 (3)N4—C19—C20112.6 (3)
N1—C7—H7118.2N4—C19—H19A109.1
C1—C7—H7118.2C20—C19—H19A109.1
O2—C8—N2121.6 (3)N4—C19—H19B109.1
O2—C8—C9121.1 (3)C20—C19—H19B109.1
N2—C8—C9117.2 (3)H19A—C19—H19B107.8
C14—C9—C10117.2 (3)C19—C20—H20A109.5
C14—C9—C8124.7 (3)C19—C20—H20B109.5
C10—C9—C8117.9 (3)H20A—C20—H20B109.5
C11—C10—C9122.3 (3)C19—C20—H20C109.5
C11—C10—H10118.8H20A—C20—H20C109.5
C9—C10—H10118.8H20B—C20—H20C109.5
C10—C11—C12121.0 (3)O3—C21—H21A109.5
C10—C11—H11119.5O3—C21—H21B109.5
C12—C11—H11119.5H21A—C21—H21B109.5
N3—C12—C11121.6 (3)O3—C21—H21C109.5
N3—C12—C13121.7 (3)H21A—C21—H21C109.5
C11—C12—C13116.7 (3)H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.90 (1)2.07 (2)2.936 (4)160 (3)
O3—H3···O2i0.821.842.661 (3)177
O1—H1···N10.822.022.727 (3)145
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H26N4O2·CH4O
Mr386.49
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.786 (3), 11.791 (3), 14.252 (2)
α, β, γ (°)111.511 (3), 92.811 (2), 96.492 (2)
V3)1049.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.27 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7543, 4421, 1809
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.189, 1.00
No. of reflections4421
No. of parameters263
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.900 (10)2.073 (15)2.936 (4)160 (3)
O3—H3···O2i0.821.842.661 (3)177
O1—H1···N10.822.022.727 (3)145
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We acknowledge the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds