organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-1-(4-meth­­oxy­benz­yl)indoline-2,3-dione

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: sl_cao@sohu.com

(Received 30 May 2011; accepted 16 June 2011; online 30 June 2011)

In the title compound, C16H12FNO3, the dihedral angle between the benzene ring and the plane of the indole ring system is 71.60 (6)°. In the crystal, mol­ecules stack along the b axis through ππ inter­actions between the adjacent indole-2,3-dione units with a centroid–centroid distance of 3.649 (3) Å. Inter­molecular C—H⋯O=C and C—H⋯π inter­actions further stabilize the structure, forming a three-dimensional framework.

Related literature

For background to the use of 5-fluoro­indoline-2,3-dione and its analogues as anti-tumour agents, see: Uddin et al. (2007[Uddin, M. K., Reignier, S. G., Coulter, T., Montalbetti, C., Granas, C., Butcher, S., Krog-Jensen, C. & Felding, J. (2007). Bioorg. Med. Chem. Lett. 17, 2854-2857.]); Penthala et al. (2010[Penthala, R. N., Yerramreddy, R. T., Madadi, R. N. & Crooks, A. P. (2010). Bioorg. Med. Chem. 20, 4468-4471.]). For a related structure, see: Wu et al. (2011[Wu, W., Zheng, T., Cao, S. & Xiao, Z. (2011). Acta Cryst. E67, o246.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12FNO3

  • Mr = 285.27

  • Orthorhombic, P b c a

  • a = 17.779 (4) Å

  • b = 7.1575 (14) Å

  • c = 21.306 (4) Å

  • V = 2711.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.641, Tmax = 0.746

  • 25325 measured reflections

  • 3202 independent reflections

  • 1604 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.01

  • 3202 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15ACg1i 0.93 3.03 3.812 (2) 142
C14—H14A⋯O2ii 0.93 2.49 3.345 (2) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The derivatives of 5-fluoroindoline-2,3-dione and its analogues are widely used as anti-tumor compounds (Uddin et al., 2007; Penthala et al., 2010). Herein, we report the crystal structure of one new derivative of 5-fluoroindoline-2,3-dione.

In the title compound C16H12FNO3, the indoline moiety links to the 4-methoxybenzene through methylene group with a C5-C7(methylene)-N1 angle of 113.29 (2)° (Fig. 1). The benzene ring and the plane of the indole-2,3-dione exhibit a dihedral angle of 71.60 (6)°. The C5-C7(methylene)-N1 angle and the dihedral angle are comparable to these in the chloro-substituted compound, 5-chloro-1- (4-methoxybenzyl)indoline-2,3-dione, where the corresponding values are 113.86 (2)° and 88.44 (8)° (Wu et al. 2011). Molecules stack along the b axis through ππ stacking interactions between adjacent indole-2,3-dione units with a Cg···Cg distance of 3.649 (3)Å and C15-H15A···Cg contacts, Table 1, form a chain structure, as shown in Fig. 2. The almost parallel chains are further interconnected through C14-H14A···O2C9 interactions, Table 1, generating a three-dimensional framework, Fig. 2.

Related literature top

For background to the use of 5-fluoroindoline-2,3-dione and its analogues as anti-tumour agents, see: Uddin et al. (2007); Penthala et al. (2010). For a related structure, see: Wu et al. (2011).

Experimental top

To an ice-bath cooled solution of 5-fluoroindoline-2,3-dione (0.33 g, 2 mmol) in N,N-dimethylformamide (20 ml) was added potassium carbonate (0.33 g, 2.4 mmol) and potassium iodide (0.07 g, 0.4 mmol) followed by 4-methoxybenzyl chloride (0.32 ml, 2.2 mmol). The reaction mixture was stirred at 110 °C for 3 h. After cooling to room temperature, the reaction mixture was poured into ice water (80 ml). The resulting precipitate was filtered and subsequently purified by column chromatography on silica gel with dichloromethane as an eluent to give the title compound (Rf = 0.81, dichloromethane; m.p. 138-139 °C; yield 78%). Yellow crystals of the title compound were obtained by slow evaporation from the solution of dichloromethane/ethanol 8:2 (v/v) at room temperature after a week.

Refinement top

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene hydrogens, respectively. Uiso(H) = 1.2Ueq(C)aryl/methylene.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level, while the hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. View down the b axis of the crystal packing of the title compound.
5-Fluoro-1-(4-methoxybenzyl)indoline-2,3-dione top
Crystal data top
C16H12FNO3Z = 8
Mr = 285.27F(000) = 1184
Orthorhombic, PbcaDx = 1.398 Mg m3
Hall symbol: -P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 17.779 (4) ŵ = 0.11 mm1
b = 7.1575 (14) ÅT = 296 K
c = 21.306 (4) ÅBlock, yellow
V = 2711.3 (9) Å30.40 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube1604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ω scansθmax = 27.9°, θmin = 6.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2323
Tmin = 0.641, Tmax = 0.746k = 99
25325 measured reflectionsl = 2827
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.1083P]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H12FNO3V = 2711.3 (9) Å3
Mr = 285.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.779 (4) ŵ = 0.11 mm1
b = 7.1575 (14) ÅT = 296 K
c = 21.306 (4) Å0.40 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3202 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1604 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.746Rint = 0.100
25325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
3202 reflectionsΔρmin = 0.15 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.08487 (7)0.2819 (2)0.39404 (6)0.0874 (4)
O10.38817 (8)0.2815 (2)0.34962 (7)0.0788 (5)
O20.47658 (8)0.2065 (2)0.46416 (7)0.0738 (5)
O30.36524 (10)0.7189 (2)0.74362 (7)0.0833 (5)
N10.35821 (8)0.1683 (2)0.50669 (7)0.0508 (4)
C10.42398 (10)0.5766 (3)0.65265 (9)0.0569 (5)
H1A0.45790.67450.64820.068*
C20.37197 (11)0.5783 (3)0.70053 (9)0.0579 (5)
C30.32168 (12)0.4322 (3)0.70640 (9)0.0668 (6)
H3A0.28660.43250.73880.080*
C40.32346 (12)0.2861 (3)0.66446 (10)0.0630 (6)
H4A0.28900.18920.66870.076*
C50.37553 (11)0.2802 (3)0.61599 (8)0.0502 (5)
C60.42526 (10)0.4275 (3)0.61115 (9)0.0542 (5)
H6A0.46070.42680.57910.065*
C70.37914 (11)0.1181 (3)0.57101 (9)0.0576 (5)
H7A0.42990.06830.57090.069*
H7B0.34580.02020.58570.069*
C80.36179 (12)0.2478 (3)0.40047 (10)0.0543 (5)
C90.40834 (11)0.2057 (3)0.45996 (9)0.0545 (5)
C100.28347 (10)0.1884 (2)0.48441 (9)0.0451 (4)
C110.28318 (10)0.2373 (2)0.42095 (9)0.0472 (5)
C120.21641 (11)0.2671 (3)0.38876 (9)0.0552 (5)
H12A0.21570.29870.34640.066*
C130.15144 (11)0.2476 (3)0.42286 (10)0.0570 (5)
C140.15047 (11)0.1975 (3)0.48525 (10)0.0569 (5)
H14A0.10480.18400.50600.068*
C150.21751 (10)0.1671 (3)0.51749 (9)0.0522 (5)
H15A0.21770.13370.55970.063*
C160.42269 (18)0.8594 (4)0.74439 (13)0.0992 (9)
H16A0.41160.94950.77640.149*
H16B0.42450.92050.70430.149*
H16C0.47040.80210.75290.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0514 (7)0.1155 (11)0.0953 (10)0.0063 (7)0.0130 (6)0.0019 (8)
O10.0704 (10)0.1040 (13)0.0619 (10)0.0115 (8)0.0144 (8)0.0097 (8)
O20.0460 (9)0.0904 (11)0.0851 (11)0.0052 (7)0.0015 (7)0.0017 (8)
O30.0923 (12)0.0894 (12)0.0682 (10)0.0015 (9)0.0081 (8)0.0262 (9)
N10.0480 (9)0.0532 (9)0.0510 (9)0.0020 (7)0.0001 (7)0.0018 (7)
C10.0512 (11)0.0608 (13)0.0587 (12)0.0066 (9)0.0012 (9)0.0035 (10)
C20.0604 (12)0.0652 (13)0.0480 (11)0.0062 (11)0.0031 (10)0.0060 (10)
C30.0643 (13)0.0856 (17)0.0504 (12)0.0053 (12)0.0107 (10)0.0008 (11)
C40.0614 (13)0.0679 (14)0.0597 (13)0.0122 (10)0.0016 (10)0.0056 (11)
C50.0499 (11)0.0530 (12)0.0479 (11)0.0043 (9)0.0050 (9)0.0054 (9)
C60.0448 (11)0.0656 (13)0.0520 (11)0.0007 (10)0.0024 (8)0.0009 (10)
C70.0609 (12)0.0558 (12)0.0560 (12)0.0012 (9)0.0057 (10)0.0028 (10)
C80.0558 (12)0.0522 (12)0.0549 (12)0.0070 (9)0.0042 (10)0.0004 (9)
C90.0483 (12)0.0524 (12)0.0628 (13)0.0044 (9)0.0039 (10)0.0036 (9)
C100.0448 (10)0.0388 (10)0.0516 (11)0.0020 (8)0.0028 (8)0.0063 (8)
C110.0472 (11)0.0432 (10)0.0513 (11)0.0031 (8)0.0022 (8)0.0030 (8)
C120.0584 (13)0.0533 (12)0.0539 (12)0.0027 (9)0.0025 (9)0.0002 (9)
C130.0448 (11)0.0568 (12)0.0694 (14)0.0004 (9)0.0068 (10)0.0036 (10)
C140.0466 (11)0.0541 (12)0.0699 (14)0.0051 (9)0.0086 (9)0.0061 (10)
C150.0542 (12)0.0488 (11)0.0536 (11)0.0029 (9)0.0079 (9)0.0027 (9)
C160.138 (3)0.0752 (17)0.0848 (18)0.0146 (18)0.0027 (16)0.0240 (14)
Geometric parameters (Å, º) top
F1—C131.356 (2)C6—H6A0.9300
O1—C81.205 (2)C7—H7A0.9700
O2—C91.217 (2)C7—H7B0.9700
O3—C21.368 (2)C8—C111.466 (3)
O3—C161.433 (3)C8—C91.544 (3)
N1—C91.363 (2)C10—C151.377 (2)
N1—C101.418 (2)C10—C111.396 (3)
N1—C71.465 (2)C11—C121.388 (3)
C1—C21.377 (3)C12—C131.372 (3)
C1—C61.386 (3)C12—H12A0.9300
C1—H1A0.9300C13—C141.377 (3)
C2—C31.382 (3)C14—C151.393 (3)
C3—C41.375 (3)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9300
C4—C51.388 (3)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C61.380 (3)C16—H16C0.9600
C5—C71.507 (3)
C2—O3—C16117.50 (18)O1—C8—C9124.66 (19)
C9—N1—C10110.37 (15)C11—C8—C9104.88 (16)
C9—N1—C7124.44 (16)O2—C9—N1126.83 (19)
C10—N1—C7125.18 (15)O2—C9—C8126.46 (18)
C2—C1—C6119.38 (18)N1—C9—C8106.71 (16)
C2—C1—H1A120.3C15—C10—C11121.35 (17)
C6—C1—H1A120.3C15—C10—N1127.97 (17)
O3—C2—C1124.24 (19)C11—C10—N1110.67 (15)
O3—C2—C3116.10 (18)C12—C11—C10121.35 (16)
C1—C2—C3119.66 (18)C12—C11—C8131.34 (17)
C4—C3—C2120.11 (19)C10—C11—C8107.31 (16)
C4—C3—H3A119.9C13—C12—C11116.29 (18)
C2—C3—H3A119.9C13—C12—H12A121.9
C3—C4—C5121.47 (19)C11—C12—H12A121.9
C3—C4—H4A119.3F1—C13—C12118.47 (19)
C5—C4—H4A119.3F1—C13—C14118.25 (18)
C6—C5—C4117.37 (18)C12—C13—C14123.27 (18)
C6—C5—C7120.92 (17)C13—C14—C15120.39 (18)
C4—C5—C7121.70 (18)C13—C14—H14A119.8
C5—C6—C1122.01 (17)C15—C14—H14A119.8
C5—C6—H6A119.0C10—C15—C14117.34 (18)
C1—C6—H6A119.0C10—C15—H15A121.3
N1—C7—C5113.29 (15)C14—C15—H15A121.3
N1—C7—H7A108.9O3—C16—H16A109.5
C5—C7—H7A108.9O3—C16—H16B109.5
N1—C7—H7B108.9H16A—C16—H16B109.5
C5—C7—H7B108.9O3—C16—H16C109.5
H7A—C7—H7B107.7H16A—C16—H16C109.5
O1—C8—C11130.47 (19)H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i0.933.033.812 (2)142
C14—H14A···O2ii0.932.493.345 (2)153
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H12FNO3
Mr285.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)17.779 (4), 7.1575 (14), 21.306 (4)
V3)2711.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.641, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
25325, 3202, 1604
Rint0.100
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.136, 1.01
No. of reflections3202
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i0.933.033.812 (2)142
C14—H14A···O2ii0.932.493.345 (2)153
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to the National Science Foundation Committee (project No. 20972099) for financial support.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationPenthala, R. N., Yerramreddy, R. T., Madadi, R. N. & Crooks, A. P. (2010). Bioorg. Med. Chem. 20, 4468–4471.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUddin, M. K., Reignier, S. G., Coulter, T., Montalbetti, C., Granas, C., Butcher, S., Krog-Jensen, C. & Felding, J. (2007). Bioorg. Med. Chem. Lett. 17, 2854–2857.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, W., Zheng, T., Cao, S. & Xiao, Z. (2011). Acta Cryst. E67, o246.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds