organic compounds
Butane-1,2,3,4-tetracarboxylic acid–1,10-phenanthroline–water (1/2/2)
aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhuhonglin1@nbu.edu.cn
The 12H8N2·C8H10O8·2H2O, contains one 1,10-phenanthroline molecule, one half-molecule of butane-1,2,3,4-tetracarboxylic acid (H4BTC) and a water molecule, with the complete tetra-acid generated by crystallographic inversion symmetry. Intermolecular O—H⋯O hydrogen bonds and π–π stacking interactions [centroid–centroid distances = 3.672 (2) and 3.708 (2) Å form an extensive three-dimensional network, which consolidates the crystal packing.
of the title compound, 2CRelated literature
For the use of H4BTC as a ligand in metal–organic coordination complexes, see: Delgado et al. (2007); Liu et al. (2008); Xu et al. (2010); Zhu et al. (2011). For co-crystals involving H4BTC, see: Cheng et al. (2009); Najafpour et al. (2008). For details of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811021398/sj5157sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021398/sj5157Isup2.hkl
All chemicals were obtained from commerical sources and were used as obtained. 1,10-phenanthroline (0.1983 g, 1.00 mmol) was added to a stirred mixture solution of butane-1,2,3,4-tetracarboxylic acid (0.1173 g, 0.50 mmol) in 10 ml H2O and 10 ml me thanol, and the resulting mixture was stirred for 30 min. Colorless crystals were obtained from the solution after standing at room temperature for two months.
H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).2C12H8N2·C8H10O8·2H2O | Z = 1 |
Mr = 630.60 | F(000) = 330 |
Triclinic, P1 | Dx = 1.397 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9472 (16) Å | Cell parameters from 4546 reflections |
b = 9.884 (2) Å | θ = 3.1–27.5° |
c = 10.628 (2) Å | µ = 0.11 mm−1 |
α = 84.37 (3)° | T = 293 K |
β = 70.12 (3)° | Block, colorless |
γ = 72.72 (3)° | 0.58 × 0.34 × 0.10 mm |
V = 749.7 (3) Å3 |
Rigaku R-AXIS RAPID diffractometer | 3396 independent reflections |
Radiation source: fine-focus sealed tube | 1960 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −10→10 |
Tmin = 0.950, Tmax = 0.990 | k = −12→12 |
7400 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.188 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0607P)2 + 0.4694P] where P = (Fo2 + 2Fc2)/3 |
3396 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
2C12H8N2·C8H10O8·2H2O | γ = 72.72 (3)° |
Mr = 630.60 | V = 749.7 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.9472 (16) Å | Mo Kα radiation |
b = 9.884 (2) Å | µ = 0.11 mm−1 |
c = 10.628 (2) Å | T = 293 K |
α = 84.37 (3)° | 0.58 × 0.34 × 0.10 mm |
β = 70.12 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3396 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1960 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.990 | Rint = 0.024 |
7400 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.188 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.30 e Å−3 |
3396 reflections | Δρmin = −0.34 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.5184 (3) | 0.7050 (2) | 0.4404 (3) | 0.0745 (7) | |
H1A | −0.5899 | 0.7919 | 0.4447 | 0.089* | |
O2 | −0.3498 (3) | 0.8187 (2) | 0.4902 (3) | 0.0734 (7) | |
C1 | −0.3757 (4) | 0.7102 (3) | 0.4718 (3) | 0.0434 (6) | |
C2 | −0.2475 (4) | 0.5669 (3) | 0.4825 (3) | 0.0484 (6) | |
H2A | −0.2240 | 0.5103 | 0.4055 | 0.058* | |
H2B | −0.3086 | 0.5200 | 0.5619 | 0.058* | |
C3 | −0.0619 (3) | 0.5737 (2) | 0.4898 (2) | 0.0389 (5) | |
H3A | −0.0862 | 0.6351 | 0.5647 | 0.047* | |
C4 | 0.0425 (4) | 0.6356 (2) | 0.3614 (2) | 0.0408 (5) | |
O3 | 0.0605 (3) | 0.5952 (2) | 0.25216 (19) | 0.0652 (6) | |
O4 | 0.1121 (3) | 0.73303 (19) | 0.37990 (18) | 0.0532 (5) | |
H4A | 0.1639 | 0.7706 | 0.3054 | 0.064* | |
N1 | 0.0963 (3) | 1.0528 (2) | 0.2323 (2) | 0.0514 (6) | |
C5 | −0.0353 (5) | 1.1744 (3) | 0.2717 (3) | 0.0613 (8) | |
H5A | −0.0890 | 1.1934 | 0.3629 | 0.074* | |
C6 | −0.0969 (5) | 1.2746 (3) | 0.1844 (4) | 0.0705 (9) | |
H6A | −0.1915 | 1.3571 | 0.2170 | 0.085* | |
C7 | −0.0175 (5) | 1.2505 (3) | 0.0505 (3) | 0.0677 (9) | |
H7A | −0.0565 | 1.3168 | −0.0096 | 0.081* | |
C8 | 0.1230 (4) | 1.1255 (3) | 0.0040 (3) | 0.0546 (7) | |
C9 | 0.2172 (5) | 1.0959 (4) | −0.1356 (3) | 0.0696 (9) | |
H9A | 0.1810 | 1.1599 | −0.1982 | 0.084* | |
C10 | 0.3561 (6) | 0.9781 (4) | −0.1774 (3) | 0.0734 (10) | |
H10A | 0.4185 | 0.9633 | −0.2687 | 0.088* | |
C11 | 0.4106 (4) | 0.8744 (3) | −0.0853 (3) | 0.0571 (7) | |
C12 | 0.5552 (5) | 0.7492 (4) | −0.1252 (4) | 0.0746 (10) | |
H12A | 0.6236 | 0.7328 | −0.2154 | 0.089* | |
C13 | 0.5961 (5) | 0.6515 (4) | −0.0328 (4) | 0.0777 (10) | |
H13A | 0.6935 | 0.5690 | −0.0586 | 0.093* | |
C14 | 0.4888 (5) | 0.6777 (3) | 0.1014 (4) | 0.0709 (9) | |
H14A | 0.5149 | 0.6093 | 0.1639 | 0.085* | |
C15 | 0.3153 (4) | 0.8952 (3) | 0.0537 (3) | 0.0466 (6) | |
C16 | 0.1741 (4) | 1.0267 (3) | 0.0985 (2) | 0.0449 (6) | |
N2 | 0.3519 (3) | 0.7946 (2) | 0.1444 (2) | 0.0552 (6) | |
O5 | 0.2570 (3) | 0.9523 (2) | 0.4390 (2) | 0.0597 (6) | |
H5B | 0.2932 | 1.0275 | 0.4404 | 0.072* | |
H5C | 0.1736 | 0.9754 | 0.4011 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0631 (13) | 0.0483 (11) | 0.131 (2) | −0.0092 (10) | −0.0622 (14) | 0.0059 (12) |
O2 | 0.0697 (14) | 0.0409 (11) | 0.124 (2) | −0.0077 (10) | −0.0544 (14) | −0.0078 (11) |
C1 | 0.0420 (13) | 0.0434 (13) | 0.0460 (14) | −0.0107 (11) | −0.0188 (11) | 0.0070 (11) |
C2 | 0.0450 (14) | 0.0369 (12) | 0.0677 (17) | −0.0104 (11) | −0.0269 (13) | 0.0080 (12) |
C3 | 0.0394 (12) | 0.0340 (11) | 0.0442 (13) | −0.0094 (10) | −0.0166 (10) | 0.0046 (10) |
C4 | 0.0475 (14) | 0.0363 (12) | 0.0392 (13) | −0.0102 (10) | −0.0178 (11) | 0.0053 (10) |
O3 | 0.0941 (17) | 0.0659 (13) | 0.0441 (11) | −0.0352 (12) | −0.0239 (11) | 0.0055 (9) |
O4 | 0.0683 (13) | 0.0509 (11) | 0.0502 (11) | −0.0332 (10) | −0.0205 (9) | 0.0110 (8) |
N1 | 0.0597 (14) | 0.0524 (13) | 0.0431 (12) | −0.0176 (11) | −0.0171 (11) | 0.0022 (10) |
C5 | 0.068 (2) | 0.0575 (17) | 0.0536 (17) | −0.0092 (15) | −0.0186 (15) | −0.0078 (14) |
C6 | 0.077 (2) | 0.0546 (17) | 0.080 (2) | −0.0035 (16) | −0.0384 (19) | −0.0002 (16) |
C7 | 0.082 (2) | 0.0611 (19) | 0.070 (2) | −0.0191 (17) | −0.0424 (19) | 0.0141 (16) |
C8 | 0.0687 (18) | 0.0576 (16) | 0.0503 (16) | −0.0299 (15) | −0.0282 (14) | 0.0125 (13) |
C9 | 0.093 (3) | 0.083 (2) | 0.0443 (16) | −0.041 (2) | −0.0266 (17) | 0.0164 (16) |
C10 | 0.091 (3) | 0.096 (3) | 0.0380 (15) | −0.048 (2) | −0.0102 (16) | 0.0071 (17) |
C11 | 0.0575 (17) | 0.0677 (18) | 0.0488 (16) | −0.0326 (15) | −0.0060 (13) | −0.0067 (14) |
C12 | 0.066 (2) | 0.086 (2) | 0.066 (2) | −0.0365 (19) | 0.0029 (17) | −0.0179 (19) |
C13 | 0.058 (2) | 0.064 (2) | 0.098 (3) | −0.0149 (16) | −0.0048 (19) | −0.025 (2) |
C14 | 0.068 (2) | 0.0519 (17) | 0.082 (2) | −0.0128 (15) | −0.0131 (18) | −0.0047 (16) |
C15 | 0.0533 (15) | 0.0488 (14) | 0.0434 (14) | −0.0281 (12) | −0.0121 (12) | 0.0034 (11) |
C16 | 0.0548 (15) | 0.0496 (14) | 0.0382 (13) | −0.0246 (12) | −0.0179 (11) | 0.0054 (11) |
N2 | 0.0594 (15) | 0.0461 (12) | 0.0576 (14) | −0.0170 (11) | −0.0144 (12) | 0.0017 (11) |
O5 | 0.0634 (13) | 0.0495 (11) | 0.0780 (14) | −0.0128 (9) | −0.0418 (11) | 0.0047 (10) |
O1—C1 | 1.302 (3) | C7—H7A | 0.9300 |
O1—H1A | 0.8734 | C8—C16 | 1.406 (4) |
O2—C1 | 1.196 (3) | C8—C9 | 1.431 (4) |
C1—C2 | 1.499 (3) | C9—C10 | 1.333 (5) |
C2—C3 | 1.525 (3) | C9—H9A | 0.9300 |
C2—H2A | 0.9700 | C10—C11 | 1.423 (5) |
C2—H2B | 0.9700 | C10—H10A | 0.9300 |
C3—C4 | 1.514 (3) | C11—C12 | 1.399 (5) |
C3—C3i | 1.540 (4) | C11—C15 | 1.416 (4) |
C3—H3A | 0.9800 | C12—C13 | 1.359 (5) |
C4—O3 | 1.214 (3) | C12—H12A | 0.9300 |
C4—O4 | 1.303 (3) | C13—C14 | 1.393 (5) |
O4—H4A | 0.8635 | C13—H13A | 0.9300 |
N1—C5 | 1.330 (4) | C14—N2 | 1.321 (4) |
N1—C16 | 1.361 (3) | C14—H14A | 0.9300 |
C5—C6 | 1.387 (4) | C15—N2 | 1.354 (4) |
C5—H5A | 0.9300 | C15—C16 | 1.438 (4) |
C6—C7 | 1.359 (5) | O5—H5B | 0.8756 |
C6—H6A | 0.9300 | O5—H5C | 0.8533 |
C7—C8 | 1.393 (4) | ||
Cg1···Cg3ii | 3.672 (2) | Cg2···Cg3iii | 3.708 (2) |
C1—O1—H1A | 106.5 | C7—C8—C16 | 118.4 (3) |
O2—C1—O1 | 123.2 (2) | C7—C8—C9 | 122.2 (3) |
O2—C1—C2 | 123.5 (2) | C16—C8—C9 | 119.4 (3) |
O1—C1—C2 | 113.4 (2) | C10—C9—C8 | 121.1 (3) |
C1—C2—C3 | 112.9 (2) | C10—C9—H9A | 119.5 |
C1—C2—H2A | 109.0 | C8—C9—H9A | 119.5 |
C3—C2—H2A | 109.0 | C9—C10—C11 | 121.3 (3) |
C1—C2—H2B | 109.0 | C9—C10—H10A | 119.4 |
C3—C2—H2B | 109.0 | C11—C10—H10A | 119.4 |
H2A—C2—H2B | 107.8 | C12—C11—C15 | 117.1 (3) |
C4—C3—C2 | 109.7 (2) | C12—C11—C10 | 123.0 (3) |
C4—C3—C3i | 108.5 (2) | C15—C11—C10 | 119.8 (3) |
C2—C3—C3i | 112.0 (2) | C13—C12—C11 | 120.3 (3) |
C4—C3—H3A | 108.9 | C13—C12—H12A | 119.8 |
C2—C3—H3A | 108.9 | C11—C12—H12A | 119.8 |
C3i—C3—H3A | 108.9 | C12—C13—C14 | 118.6 (3) |
O3—C4—O4 | 124.0 (2) | C12—C13—H13A | 120.7 |
O3—C4—C3 | 122.1 (2) | C14—C13—H13A | 120.7 |
O4—C4—C3 | 113.9 (2) | N2—C14—C13 | 123.5 (4) |
C4—O4—H4A | 111.9 | N2—C14—H14A | 118.2 |
C5—N1—C16 | 117.5 (2) | C13—C14—H14A | 118.2 |
N1—C5—C6 | 123.7 (3) | N2—C15—C11 | 122.0 (3) |
N1—C5—H5A | 118.1 | N2—C15—C16 | 119.6 (2) |
C6—C5—H5A | 118.1 | C11—C15—C16 | 118.5 (3) |
C7—C6—C5 | 119.1 (3) | N1—C16—C8 | 121.9 (3) |
C7—C6—H6A | 120.4 | N1—C16—C15 | 118.4 (2) |
C5—C6—H6A | 120.4 | C8—C16—C15 | 119.7 (2) |
C6—C7—C8 | 119.4 (3) | C14—N2—C15 | 118.3 (3) |
C6—C7—H7A | 120.3 | H5B—O5—H5C | 107.6 |
C8—C7—H7A | 120.3 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+2, −z; (iii) −x+1, −y+2, −z. |
Cg1, Cg2 and Cg3 are the centroids of the N1/C5-C8/C16/, N2/C14-C11/C15, and C8-C11/C15/C16, rings respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O5iv | 0.87 | 1.70 | 2.565 (3) | 172 |
O4—H4A···N2 | 0.86 | 1.90 | 2.723 (3) | 159 |
O5—H5B···O2v | 0.88 | 1.98 | 2.817 (3) | 160 |
O5—H5C···N1 | 0.85 | 2.09 | 2.858 (3) | 149 |
Symmetry codes: (iv) x−1, y, z; (v) −x, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C12H8N2·C8H10O8·2H2O |
Mr | 630.60 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.9472 (16), 9.884 (2), 10.628 (2) |
α, β, γ (°) | 84.37 (3), 70.12 (3), 72.72 (3) |
V (Å3) | 749.7 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.58 × 0.34 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.950, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7400, 3396, 1960 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.188, 1.17 |
No. of reflections | 3396 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.34 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg1···Cg3i | 3.672 (2) | Cg2···Cg3ii | 3.708 (2) |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+2, −z. |
Cg1, Cg2 and Cg3 are the centroids of the N1/C5-C8/C16/, N2/C14-C11/C15, and C8-C11/C15/C16, rings respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O5iii | 0.87 | 1.70 | 2.565 (3) | 172 |
O4—H4A···N2 | 0.86 | 1.90 | 2.723 (3) | 159 |
O5—H5B···O2iv | 0.88 | 1.98 | 2.817 (3) | 160 |
O5—H5C···N1 | 0.85 | 2.09 | 2.858 (3) | 149 |
Symmetry codes: (iii) x−1, y, z; (iv) −x, −y+2, −z+1. |
Acknowledgements
This project was supported by the K. C. Wong Magna Fund of Ningbo University.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cheng, Y., Wu, J., Zhu, H.-L. & Lin, J. (2009). Acta Cryst. E65, o835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Delgado, L. C., Fabelo, O., Pasàn, J., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2007). Inorg. Chem. 46, 7458–7465. Web of Science PubMed Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, Y. Y., Ma, J. F., Yang, J., Ma, J. C. & Su, Z. M. (2008). CrystEngComm, 10, 894–904. Web of Science CrossRef CAS Google Scholar
Najafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Y.-Y., Xing, Y.-Y., Duan, X.-Y., Li, Y.-Z., Zhu, H.-Z. & Meng, Q.-J. (2010). CrystEngComm, 12, 567–572. CrossRef CAS Google Scholar
Zhu, H.-L., Xu, W., Lin, J.-L., Cheng, Y. & Zheng, Y.-Q. (2011). Inorg. Chim. Acta, 366, 27–38. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Systems with butane-1,2,3,4-tetracarboxylic acid (H4BTC) as a ligand have been widely studied (Delgado et al., 2007; Liu et al., 2008; Xu et al., 2010; Zhu et al., 2011). A search of the Cambridge structural database (version 5.32, May 2011) (Allen, 2002) showed that most of the literature dealing with butane-1,2,3,4-tetracarboxylic acid concentrated on metal-organic coordination complexes. In contrast, utilization of the butane-1,2,3,4-tetracarboxylic acid seems relatively limited in the construction of co-crystals (Cheng et al., 2009; Najafpour et al., 2008). In this paper, we report the structure of the title cocrystal.
The asymmetric unit of the title cocrystal consists of one 1,10-phenanthroline, unit one half molecule of butane-1,2,3,4-tetracarboxylic acid and a water molecule as depicted in Figure 1. The present 1,10-phenanthroline molecule preserves a nearly perfect coplanarity with a maximum deviation from the best fit meanplane 0.123 (1) Å. The carboxylato group with C1 and C4 atoms is gauche with the C1–C2–C3–C4 torsion angle being 63.35 (2)°. These values agree well with reported structures (Cheng et al., 2009; Najafpour et al., 2008;). The butane-1,2,3,4-tetracarboxylic acid molecules and water molecules are interlinked via O–H···O hydrogen bonds to generate a 1-dimensional supramolecular chain (Figure 2), which is further interconnected by interchain O–H···N hydrogen bonds to construct a 2-dimensional layer parallel to the (001) plane (Figure 3). The resulting layers are arranged in such a way that the 1,10-phenanthroline ligands are each sandwiched between two antiparallel phen neighbors from different adjacent layers, and the mean interplanar distances between the neighboring phen ligands are 3.67 Å and 3.71 Å, suggesting significant intermolecular face-to-face π–π stacking interactions. Such interlayer interactions are regarded as the driving forces to assemble the layers into a three-dimensional supramolecular architecture as shown in Figure 4.