metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium N,2-di­chloro­benzene­sulfonamidate sesquihydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 5 June 2011; accepted 7 June 2011; online 11 June 2011)

In the title compound, K+·C6H4Cl2NO2S·1.5H2O, one water mol­ecule has crystallographically imposed twofold symmetry. The K+ ion is heptacoordinated by three O atoms from water mol­ecules and by four sulfonyl O atoms of N-chloro-2-chloro-benzene­sulfonamide anions. The S—N distance of 1.582 (2) Å is consistent with an S—N double bond. In the structure, the sulfonyl-O and the water-O atoms bridge the K+ cations in a bidentate fashion. The crystal structure comprises sheets in the ac plane which are further stabilized by inter­molecular O—H⋯Cl and O—H⋯N hydrogen bonds.

Related literature

For our studies of the effect of substituents on the structures of N-haloaryl­sulfonamides, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o889.], 2011a[Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m918.],b[Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67. In the press.]); and on the oxidative strengths of N-haloaryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]); Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For similar structures, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]). For the preparation of the title compound, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H4Cl2NO2S·1.5H2O

  • Mr = 291.19

  • Monoclinic, C 2/c

  • a = 12.301 (2) Å

  • b = 6.8277 (6) Å

  • c = 27.965 (3) Å

  • β = 106.28 (1)°

  • V = 2254.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 293 K

  • 0.44 × 0.44 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.640, Tmax = 0.677

  • 4174 measured reflections

  • 2298 independent reflections

  • 2181 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.19

  • 2298 reflections

  • 142 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N1i 0.80 (2) 2.23 (2) 2.962 (3) 152 (4)
O3—H32⋯Cl1ii 0.81 (2) 2.73 (2) 3.517 (3) 165 (4)
O4—H41⋯N1i 0.81 (2) 2.19 (2) 2.978 (3) 165 (4)
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Arylsulfonamides and their N-halo compounds are of interest in synthetic, mechanistic and analytical chemistry (Gowda & Shetty, 2004; Usha & Gowda, 2006). To explore the substituent effects and the effect of replacing sodium ions by potassium ions on the solid state structures of N-halo- arylsulfonamides (Gowda et al., 2010, 2011a,b), in the present work, the structure of potassium N,2-dichloro-benzenesulfonamidate sesquihydrate (I) has been determined (Fig. 1). The structure of (I) is isostructural with potassium N-bromo-2-chloro-benzenesulfonamidate sesquihydrate (II) (Gowda et al., 2011b), and resembles those of potassium N,4-dichloro-benzenesulfonamidate monohydrate (III) (Gowda et al., 2011a), sodium N,2-dichloro-benzenesulfonamidate sesquihydrate (IV) (Gowda et al., 2010) and other sodium N-chloro-arylsulfonamides (George et al., 2000; Olmstead & Power, 1986).

In the title compound, K+ ion is hepta coordinated by three O atoms from water molecules and by four sulfonyl O atoms of N-chloro-2-chloro- benzenesulfonamidate anions. This is in contrast to hepta coordination of K+ by two O atoms from water molecules, four sulfonyl O atoms from the N-chloro-4-chlorobenzenesulfonamidate anions and one Cl in (III), and octahedral coordination of Na+ by three O atoms of water molecules and three sulfonyl O atoms of three different N-chloro-2-chloro- benzenesulfonamidate anions.

The S—N distance of 1.582 (4)Å is consistent with an S—N double bond and is in agreement with the observed values of 1.582 (4)Å in (II), 1.588 (2) Å in (III) and 1.588 (2) Å in (IV)

The crystal structure comprises sheets in the ac plane (Fig. 2). The molecular packing is stabilized by O3—H31···N1, O3—H32···Cl1 and O4—H41···N1 hydrogen bonds (Table 1).

Related literature top

For our studies of the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda et al. (2010, 2011a,b); and on the oxidative strengths of N-halolarylsulfonamides, see: Gowda & Shetty (2004); Usha & Gowda (2006). For similar structures, see: George et al. (2000); Olmstead & Power (1986). For the preparation of the title compound, see: Jyothi & Gowda (2004).

Experimental top

The title compound was prepared by the method similar to that reported in literature (Jyothi & Gowda, 2004). The purity of the compound was checked by determining its melting point. Colourless prisms of (I) were obtained from its aqueous solution at room temperature.

Refinement top

The O bound H atoms were located in difference map and later restrained to O—H = 0.82 (2) Å The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K+ cation. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii (i) -x+1/2, y-1/2, -z+3/2; (ii) -x+1, y, -z+3/2; (iii) -x+1/2, y+1/2, -z+3/2.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonds drawn as dashed lines.
Potassium N,2-dichlorobenzenesulfonamidate sesquihydrate top
Crystal data top
K+·C6H4Cl2NO2S·1.5H2OF(000) = 1176
Mr = 291.19Dx = 1.716 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2350 reflections
a = 12.301 (2) Åθ = 3.0–27.8°
b = 6.8277 (6) ŵ = 1.12 mm1
c = 27.965 (3) ÅT = 293 K
β = 106.28 (1)°Prism, colourless
V = 2254.5 (5) Å30.44 × 0.44 × 0.38 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2298 independent reflections
Radiation source: fine-focus sealed tube2181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scans.θmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1510
Tmin = 0.640, Tmax = 0.677k = 68
4174 measured reflectionsl = 3434
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0457P)2 + 5.0762P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.002
2298 reflectionsΔρmax = 0.47 e Å3
142 parametersΔρmin = 0.46 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0234 (10)
Crystal data top
K+·C6H4Cl2NO2S·1.5H2OV = 2254.5 (5) Å3
Mr = 291.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.301 (2) ŵ = 1.12 mm1
b = 6.8277 (6) ÅT = 293 K
c = 27.965 (3) Å0.44 × 0.44 × 0.38 mm
β = 106.28 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2298 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2181 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.677Rint = 0.015
4174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.47 e Å3
2298 reflectionsΔρmin = 0.46 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2790 (2)0.2499 (4)0.60429 (9)0.0268 (5)
C20.1789 (2)0.1729 (4)0.57347 (10)0.0346 (6)
C30.1218 (3)0.2695 (6)0.53041 (12)0.0510 (8)
H30.05510.21730.51000.061*
C40.1633 (4)0.4426 (6)0.51767 (13)0.0599 (10)
H40.12410.50750.48870.072*
C50.2620 (3)0.5203 (5)0.54735 (13)0.0545 (9)
H50.28990.63730.53840.065*
C60.3204 (3)0.4242 (4)0.59073 (11)0.0383 (6)
H60.38740.47690.61080.046*
N10.38459 (19)0.0793 (3)0.65478 (9)0.0328 (5)
O10.27693 (18)0.1323 (3)0.69244 (7)0.0380 (5)
O20.45006 (17)0.2695 (3)0.68135 (7)0.0402 (5)
O30.2321 (2)0.6414 (3)0.68516 (8)0.0431 (5)
H310.260 (3)0.704 (5)0.6675 (12)0.052*
H320.181 (3)0.584 (5)0.6658 (12)0.052*
O40.50000.7199 (5)0.75000.0478 (8)
H410.477 (3)0.791 (5)0.7260 (10)0.057*
K10.35556 (5)0.42956 (9)0.76528 (2)0.0342 (2)
Cl10.48019 (7)0.09326 (13)0.61910 (3)0.0478 (2)
Cl20.12087 (7)0.04411 (13)0.58723 (4)0.0561 (3)
S10.35458 (5)0.14187 (9)0.66219 (2)0.0262 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (11)0.0307 (13)0.0240 (11)0.0051 (10)0.0085 (9)0.0003 (10)
C20.0302 (13)0.0381 (14)0.0329 (13)0.0059 (11)0.0047 (11)0.0060 (11)
C30.0414 (17)0.067 (2)0.0359 (16)0.0174 (16)0.0028 (13)0.0059 (15)
C40.072 (2)0.069 (2)0.0342 (17)0.032 (2)0.0082 (16)0.0163 (16)
C50.071 (2)0.0499 (19)0.0461 (18)0.0114 (17)0.0224 (17)0.0192 (15)
C60.0433 (16)0.0370 (15)0.0360 (14)0.0002 (12)0.0133 (12)0.0035 (12)
N10.0325 (12)0.0327 (12)0.0339 (12)0.0018 (9)0.0104 (9)0.0021 (9)
O10.0449 (11)0.0444 (11)0.0309 (10)0.0048 (9)0.0208 (9)0.0007 (8)
O20.0373 (11)0.0430 (11)0.0341 (10)0.0127 (9)0.0002 (8)0.0018 (9)
O30.0455 (12)0.0427 (12)0.0387 (12)0.0017 (10)0.0079 (9)0.0016 (9)
O40.0565 (19)0.0343 (16)0.0420 (17)0.0000.0038 (15)0.000
K10.0325 (3)0.0354 (3)0.0366 (3)0.0065 (2)0.0129 (2)0.0028 (2)
Cl10.0399 (4)0.0590 (5)0.0472 (4)0.0057 (3)0.0164 (3)0.0102 (4)
Cl20.0364 (4)0.0480 (5)0.0718 (6)0.0112 (3)0.0049 (4)0.0054 (4)
S10.0271 (3)0.0299 (3)0.0206 (3)0.0043 (2)0.0053 (2)0.0000 (2)
Geometric parameters (Å, º) top
C1—C61.388 (4)O1—K12.846 (2)
C1—C21.393 (4)O2—S11.440 (2)
C1—S11.785 (2)O2—K1ii2.672 (2)
C2—C31.380 (4)O2—K13.096 (2)
C2—Cl21.734 (3)O3—K12.741 (2)
C3—C41.373 (6)O3—K1iii2.791 (2)
C3—H30.9300O3—H310.797 (19)
C4—C51.372 (6)O3—H320.806 (19)
C4—H40.9300O4—K12.774 (2)
C5—C61.389 (4)O4—K1ii2.774 (2)
C5—H50.9300O4—H410.811 (18)
C6—H60.9300K1—O1iii2.655 (2)
N1—S11.582 (2)K1—O2ii2.672 (2)
N1—Cl11.745 (2)K1—O3i2.791 (2)
O1—S11.4442 (19)K1—S13.4859 (9)
O1—K1i2.655 (2)
C6—C1—C2118.9 (2)O2ii—K1—O3151.25 (7)
C6—C1—S1117.7 (2)O1iii—K1—O4101.28 (7)
C2—C1—S1123.4 (2)O2ii—K1—O482.34 (6)
C3—C2—C1120.3 (3)O3—K1—O474.28 (6)
C3—C2—Cl2117.5 (2)O1iii—K1—O3i77.05 (7)
C1—C2—Cl2122.2 (2)O2ii—K1—O3i81.03 (7)
C4—C3—C2120.2 (3)O3—K1—O3i125.11 (4)
C4—C3—H3119.9O4—K1—O3i158.97 (5)
C2—C3—H3119.9O1iii—K1—O1124.24 (4)
C5—C4—C3120.4 (3)O2ii—K1—O1100.34 (7)
C5—C4—H4119.8O3—K1—O177.99 (7)
C3—C4—H4119.8O4—K1—O1120.21 (5)
C4—C5—C6119.9 (3)O3i—K1—O175.62 (6)
C4—C5—H5120.0O1iii—K1—O2158.33 (6)
C6—C5—H5120.0O2ii—K1—O279.15 (7)
C1—C6—C5120.3 (3)O3—K1—O278.84 (6)
C1—C6—H6119.9O4—K1—O275.08 (6)
C5—C6—H6119.9O3i—K1—O2114.01 (7)
S1—N1—Cl1110.28 (13)O1—K1—O247.94 (5)
S1—O1—K1i150.89 (13)O1iii—K1—S1143.30 (5)
S1—O1—K1103.85 (10)O2ii—K1—S191.52 (5)
K1i—O1—K1100.43 (6)O3—K1—S175.44 (5)
S1—O2—K1ii164.66 (13)O4—K1—S197.42 (4)
S1—O2—K193.17 (10)O3i—K1—S195.81 (5)
K1ii—O2—K184.23 (6)O1—K1—S123.72 (4)
K1—O3—K1iii99.72 (7)O2—K1—S124.36 (4)
K1—O3—H31124 (3)O2—S1—O1114.44 (12)
K1iii—O3—H31103 (3)O2—S1—N1115.50 (13)
K1—O3—H32116 (3)O1—S1—N1104.51 (12)
K1iii—O3—H32110 (3)O2—S1—C1104.51 (12)
H31—O3—H32103 (4)O1—S1—C1106.75 (12)
K1—O4—K1ii88.78 (10)N1—S1—C1110.93 (12)
K1—O4—H41118 (3)O2—S1—K162.47 (9)
K1ii—O4—H41113 (3)O1—S1—K152.43 (9)
O1iii—K1—O2ii121.97 (7)N1—S1—K1134.37 (9)
O1iii—K1—O379.63 (7)C1—S1—K1113.42 (8)
C6—C1—C2—C30.4 (4)K1—O2—S1—O17.24 (13)
S1—C1—C2—C3176.7 (2)K1ii—O2—S1—N149.0 (5)
C6—C1—C2—Cl2179.9 (2)K1—O2—S1—N1128.69 (10)
S1—C1—C2—Cl23.0 (3)K1ii—O2—S1—C1171.1 (5)
C1—C2—C3—C40.1 (5)K1—O2—S1—C1109.15 (9)
Cl2—C2—C3—C4179.6 (3)K1ii—O2—S1—K179.7 (5)
C2—C3—C4—C50.5 (5)K1i—O1—S1—O2137.6 (2)
C3—C4—C5—C60.4 (6)K1—O1—S1—O28.11 (15)
C2—C1—C6—C50.6 (4)K1i—O1—S1—N110.2 (3)
S1—C1—C6—C5176.7 (2)K1—O1—S1—N1135.42 (10)
C4—C5—C6—C10.2 (5)K1i—O1—S1—C1107.3 (3)
K1iii—O3—K1—O1iii16.67 (7)K1—O1—S1—C1106.99 (11)
K1iii—O3—K1—O2ii125.10 (13)K1i—O1—S1—K1145.7 (3)
K1iii—O3—K1—O488.29 (7)Cl1—N1—S1—O252.68 (17)
K1iii—O3—K1—O3i82.64 (12)Cl1—N1—S1—O1179.33 (13)
K1iii—O3—K1—O1145.25 (8)Cl1—N1—S1—C165.98 (16)
K1iii—O3—K1—O2165.75 (8)Cl1—N1—S1—K1128.22 (10)
K1iii—O3—K1—S1169.49 (7)C6—C1—S1—O22.1 (2)
K1ii—O4—K1—O1iii164.53 (5)C2—C1—S1—O2179.2 (2)
K1ii—O4—K1—O2ii43.34 (5)C6—C1—S1—O1119.5 (2)
K1ii—O4—K1—O3119.75 (6)C2—C1—S1—O157.6 (2)
K1ii—O4—K1—O3i81.31 (19)C6—C1—S1—N1127.2 (2)
K1ii—O4—K1—O154.21 (6)C2—C1—S1—N155.7 (2)
K1ii—O4—K1—O237.41 (4)C6—C1—S1—K163.8 (2)
K1ii—O4—K1—S147.208 (16)C2—C1—S1—K1113.3 (2)
S1—O1—K1—O1iii149.55 (9)O1iii—K1—S1—O2143.82 (13)
K1i—O1—K1—O1iii46.65 (10)O2ii—K1—S1—O258.97 (8)
S1—O1—K1—O2ii69.62 (12)O3—K1—S1—O295.08 (11)
K1i—O1—K1—O2ii94.17 (7)O4—K1—S1—O223.50 (11)
S1—O1—K1—O381.10 (11)O3i—K1—S1—O2140.10 (11)
K1i—O1—K1—O3115.10 (8)O1—K1—S1—O2171.67 (15)
S1—O1—K1—O417.48 (14)O1iii—K1—S1—O144.51 (11)
K1i—O1—K1—O4178.72 (6)O2ii—K1—S1—O1112.70 (12)
S1—O1—K1—O3i147.47 (12)O3—K1—S1—O193.24 (12)
K1i—O1—K1—O3i16.33 (7)O4—K1—S1—O1164.82 (12)
S1—O1—K1—O24.61 (8)O3i—K1—S1—O131.57 (12)
K1i—O1—K1—O2159.19 (11)O2—K1—S1—O1171.67 (15)
K1i—O1—K1—S1163.80 (15)O1iii—K1—S1—N1116.44 (14)
S1—O2—K1—O1iii72.9 (2)O2ii—K1—S1—N140.78 (13)
K1ii—O2—K1—O1iii122.30 (16)O3—K1—S1—N1165.17 (13)
S1—O2—K1—O2ii119.28 (6)O4—K1—S1—N1123.25 (13)
K1ii—O2—K1—O2ii45.55 (9)O3i—K1—S1—N140.36 (13)
S1—O2—K1—O379.32 (10)O1—K1—S1—N171.93 (16)
K1ii—O2—K1—O3115.85 (7)O2—K1—S1—N199.75 (16)
S1—O2—K1—O4155.84 (10)O1iii—K1—S1—C149.10 (13)
K1ii—O2—K1—O439.33 (5)O2ii—K1—S1—C1153.68 (10)
S1—O2—K1—O3i44.31 (12)O3—K1—S1—C10.37 (11)
K1ii—O2—K1—O3i120.52 (7)O4—K1—S1—C171.21 (10)
S1—O2—K1—O14.50 (8)O3i—K1—S1—C1125.18 (10)
K1ii—O2—K1—O1160.33 (10)O1—K1—S1—C193.61 (15)
K1ii—O2—K1—S1164.83 (13)O2—K1—S1—C194.71 (13)
K1ii—O2—S1—O172.5 (5)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1iv0.80 (2)2.23 (2)2.962 (3)152 (4)
O3—H32···Cl1v0.81 (2)2.73 (2)3.517 (3)165 (4)
O4—H41···N1iv0.81 (2)2.19 (2)2.978 (3)165 (4)
Symmetry codes: (iv) x, y+1, z; (v) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaK+·C6H4Cl2NO2S·1.5H2O
Mr291.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.301 (2), 6.8277 (6), 27.965 (3)
β (°) 106.28 (1)
V3)2254.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.44 × 0.44 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.640, 0.677
No. of measured, independent and
observed [I > 2σ(I)] reflections
4174, 2298, 2181
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.19
No. of reflections2298
No. of parameters142
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.46

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), CrysAlis RED, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1i0.797 (19)2.23 (2)2.962 (3)152 (4)
O3—H32···Cl1ii0.806 (19)2.73 (2)3.517 (3)165 (4)
O4—H41···N1i0.811 (18)2.19 (2)2.978 (3)165 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a grant under the UGC–BSR one time grant to Faculty/Professors.

References

First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m918.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67. In the press.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o889.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds