organic compounds
2,2′-[Naphthalene-1,5-diylbis(nitrilomethanylylidene)]diphenol
aDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and bCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: manimaran.che@pondiuni.edu.in
The title compound, C24H18N2O2, lies about an inversion centre and the contains one half-molecule. An intramolecular O—H⋯N hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The crystal packing exhibits intermolecular π–π stacking interactions between the aromatic rings with a centroid–centroid distance of 3.851 (2) Å.
Related literature
For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of Schiff base ligands, see: Pandeya et al. (1999, 2000); Singh & Dash (1988); Kelley et al. (1995); Turan-Zitouni et al. (2007); Tarafder et al. (2002); Sakyan et al. (2004); Gianneshi et al. (2005); Morris et al. (2001); Lu et al. (2007); Lau et al. (1999). For a related structure, see: Al-Douh et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811023099/sj5163sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811023099/sj5163Isup2.hkl
1,5-naphthalenediamine (158 mg, 1 mmol) was taken in a 100 ml round bottom schlenk flask and the system was evacuated and purged with nitrogen. To this, a freshly distilled ethanol (40 ml), salicylaldehyde (0.2 ml, 2 mmol) and 2 drops of acetic acid were added. The reaction mixture was stirred at 25 °C for 3 h. The solvent was evaporated using vacuum and the yellow color product was purified by recrystallization with dichloromethane (Yield 73%, Melting Point: 220 °C). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane at room temperature. Spectroscopic data of the title compound: IR (KBr): ν 3442 (m), 1615 (s), 1454 (w), 1278 (m), 1143 (m), 744 (s), cm-1. 1H NMR (400 MHz, CDCl3): δ 13.30 (s, 2H), 8.74 (s, 2H), 8.21 (d, 2H), 7.57 (t, 2H), 7.49–7.72 (m, 4H), 7.25 (d, 2H), 7.12 (d, 2H), 7.0 (t, 2H). 13C NMR (100 MHz, CDCl3): δ 164.0, 161.4, 146.4, 133.7, 132.6, 129.0, 126.7, 122.4, 119.6, 119.4, 117.5, 115.0.
The non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. The hydrogen atoms were placed in calculated positions (C–H = 0.93 Å) and included in the
in a riding-model approximation with Uiso(H) = 1.2Ueq(C).Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).C24H18N2O2 | F(000) = 384 |
Mr = 366.40 | Dx = 1.388 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4711 reflections |
a = 3.8510 (9) Å | θ = 3.5–25.0° |
b = 19.395 (6) Å | µ = 0.09 mm−1 |
c = 11.796 (2) Å | T = 293 K |
β = 95.85 (3)° | Block, yellow |
V = 876.4 (4) Å3 | 0.23 × 0.15 × 0.11 mm |
Z = 2 |
Oxford Diffraction Xcalibur-S diffractometer | 1544 independent reflections |
Radiation source: fine-focus sealed tube | 1004 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
Detector resolution: 15.9948 pixels mm-1 | θmax = 25.0°, θmin = 3.5° |
ω scans | h = −4→3 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −22→23 |
Tmin = 0.980, Tmax = 0.990 | l = −13→13 |
4711 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.080 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.206 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
1544 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C24H18N2O2 | V = 876.4 (4) Å3 |
Mr = 366.40 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.8510 (9) Å | µ = 0.09 mm−1 |
b = 19.395 (6) Å | T = 293 K |
c = 11.796 (2) Å | 0.23 × 0.15 × 0.11 mm |
β = 95.85 (3)° |
Oxford Diffraction Xcalibur-S diffractometer | 1544 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1004 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.990 | Rint = 0.099 |
4711 measured reflections |
R[F2 > 2σ(F2)] = 0.080 | 0 restraints |
wR(F2) = 0.206 | H-atom parameters constrained |
S = 1.18 | Δρmax = 0.35 e Å−3 |
1544 reflections | Δρmin = −0.36 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3017 (6) | 0.64602 (13) | −0.0063 (2) | 0.0372 (7) | |
C1 | 0.5621 (8) | 0.77817 (16) | 0.0770 (3) | 0.0380 (8) | |
C6 | 0.3700 (7) | 0.76789 (15) | −0.0294 (3) | 0.0355 (8) | |
C8 | 0.0499 (7) | 0.53316 (14) | 0.0215 (3) | 0.0331 (8) | |
C7 | 0.2450 (8) | 0.70066 (16) | −0.0666 (3) | 0.0390 (8) | |
H7 | 0.1174 | 0.6968 | −0.1376 | 0.047* | |
C9 | 0.1929 (7) | 0.58080 (15) | −0.0513 (3) | 0.0361 (8) | |
O1 | 0.6420 (7) | 0.72510 (12) | 0.1490 (2) | 0.0531 (8) | |
H1 | 0.5617 | 0.6893 | 0.1202 | 0.080* | |
C11 | −0.0030 (8) | 0.54993 (16) | 0.1351 (3) | 0.0381 (8) | |
H11 | 0.0586 | 0.5934 | 0.1638 | 0.046* | |
C5 | 0.2987 (9) | 0.82501 (16) | −0.1005 (3) | 0.0428 (9) | |
H5 | 0.1709 | 0.8190 | −0.1711 | 0.051* | |
C10 | 0.2399 (8) | 0.56269 (17) | −0.1607 (3) | 0.0384 (8) | |
H10 | 0.3368 | 0.5942 | −0.2078 | 0.046* | |
C2 | 0.6767 (8) | 0.84352 (17) | 0.1085 (3) | 0.0442 (9) | |
H2 | 0.8043 | 0.8504 | 0.1788 | 0.053* | |
C12 | −0.1435 (8) | 0.50288 (16) | 0.2025 (3) | 0.0398 (8) | |
H12 | −0.1760 | 0.5143 | 0.2773 | 0.048* | |
C3 | 0.6030 (9) | 0.89849 (18) | 0.0363 (3) | 0.0484 (10) | |
H3 | 0.6824 | 0.9422 | 0.0585 | 0.058* | |
C4 | 0.4136 (9) | 0.88975 (18) | −0.0682 (3) | 0.0471 (9) | |
H4 | 0.3641 | 0.9273 | −0.1163 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0418 (13) | 0.0354 (15) | 0.0331 (17) | −0.0021 (11) | −0.0027 (12) | 0.0029 (12) |
C1 | 0.0390 (15) | 0.0432 (19) | 0.031 (2) | 0.0014 (13) | 0.0018 (15) | 0.0017 (15) |
C6 | 0.0381 (15) | 0.0395 (18) | 0.028 (2) | −0.0038 (13) | −0.0007 (14) | 0.0010 (15) |
C8 | 0.0324 (13) | 0.0363 (16) | 0.0288 (19) | 0.0033 (12) | −0.0058 (13) | 0.0026 (14) |
C7 | 0.0399 (16) | 0.0445 (19) | 0.031 (2) | −0.0027 (13) | −0.0045 (14) | −0.0004 (15) |
C9 | 0.0338 (14) | 0.0405 (18) | 0.032 (2) | −0.0013 (13) | −0.0065 (14) | −0.0012 (15) |
O1 | 0.0687 (16) | 0.0534 (15) | 0.0332 (16) | −0.0045 (12) | −0.0141 (12) | 0.0057 (12) |
C11 | 0.0404 (16) | 0.0384 (17) | 0.034 (2) | 0.0013 (13) | −0.0035 (14) | −0.0021 (16) |
C5 | 0.0516 (18) | 0.0440 (19) | 0.031 (2) | −0.0015 (15) | −0.0023 (16) | 0.0016 (16) |
C10 | 0.0400 (16) | 0.0456 (19) | 0.029 (2) | −0.0017 (13) | 0.0012 (14) | 0.0067 (15) |
C2 | 0.0442 (17) | 0.052 (2) | 0.034 (2) | −0.0037 (15) | −0.0051 (15) | −0.0082 (16) |
C12 | 0.0443 (16) | 0.051 (2) | 0.0241 (19) | 0.0029 (14) | 0.0012 (15) | −0.0032 (15) |
C3 | 0.0515 (19) | 0.0410 (19) | 0.052 (3) | −0.0047 (15) | 0.0024 (18) | −0.0059 (18) |
C4 | 0.056 (2) | 0.043 (2) | 0.042 (2) | 0.0001 (15) | 0.0030 (18) | 0.0070 (17) |
N1—C7 | 1.283 (4) | C11—C12 | 1.358 (5) |
N1—C9 | 1.418 (4) | C11—H11 | 0.9300 |
C1—O1 | 1.350 (4) | C5—C4 | 1.372 (5) |
C1—C2 | 1.381 (4) | C5—H5 | 0.9300 |
C1—C6 | 1.404 (4) | C10—C12i | 1.400 (4) |
C6—C5 | 1.400 (4) | C10—H10 | 0.9300 |
C6—C7 | 1.443 (4) | C2—C3 | 1.376 (5) |
C8—C9 | 1.411 (5) | C2—H2 | 0.9300 |
C8—C11 | 1.414 (4) | C12—C10i | 1.400 (4) |
C8—C8i | 1.421 (6) | C12—H12 | 0.9300 |
C7—H7 | 0.9300 | C3—C4 | 1.378 (5) |
C9—C10 | 1.367 (5) | C3—H3 | 0.9300 |
O1—H1 | 0.8200 | C4—H4 | 0.9300 |
C7—N1—C9 | 120.2 (3) | C8—C11—H11 | 119.8 |
O1—C1—C2 | 119.0 (3) | C4—C5—C6 | 121.3 (3) |
O1—C1—C6 | 121.3 (3) | C4—C5—H5 | 119.3 |
C2—C1—C6 | 119.7 (3) | C6—C5—H5 | 119.3 |
C1—C6—C5 | 118.4 (3) | C9—C10—C12i | 120.7 (3) |
C1—C6—C7 | 122.0 (3) | C9—C10—H10 | 119.7 |
C5—C6—C7 | 119.6 (3) | C12i—C10—H10 | 119.7 |
C9—C8—C11 | 121.9 (3) | C3—C2—C1 | 120.3 (3) |
C9—C8—C8i | 119.0 (4) | C3—C2—H2 | 119.8 |
C11—C8—C8i | 119.1 (4) | C1—C2—H2 | 119.8 |
N1—C7—C6 | 123.0 (3) | C11—C12—C10i | 120.7 (3) |
N1—C7—H7 | 118.5 | C11—C12—H12 | 119.6 |
C6—C7—H7 | 118.5 | C10i—C12—H12 | 119.6 |
C10—C9—C8 | 120.2 (3) | C2—C3—C4 | 121.0 (3) |
C10—C9—N1 | 121.3 (3) | C2—C3—H3 | 119.5 |
C8—C9—N1 | 118.4 (3) | C4—C3—H3 | 119.5 |
C1—O1—H1 | 109.5 | C5—C4—C3 | 119.2 (3) |
C12—C11—C8 | 120.3 (3) | C5—C4—H4 | 120.4 |
C12—C11—H11 | 119.8 | C3—C4—H4 | 120.4 |
O1—C1—C6—C5 | −179.4 (3) | C9—C8—C11—C12 | 179.6 (3) |
C2—C1—C6—C5 | −0.3 (5) | C8i—C8—C11—C12 | 0.8 (5) |
O1—C1—C6—C7 | 0.7 (5) | C1—C6—C5—C4 | 0.3 (5) |
C2—C1—C6—C7 | 179.8 (3) | C7—C6—C5—C4 | −179.9 (3) |
C9—N1—C7—C6 | −175.5 (3) | C8—C9—C10—C12i | 0.7 (4) |
C1—C6—C7—N1 | −0.5 (5) | N1—C9—C10—C12i | 177.5 (3) |
C5—C6—C7—N1 | 179.7 (3) | O1—C1—C2—C3 | 179.2 (3) |
C11—C8—C9—C10 | −180.0 (3) | C6—C1—C2—C3 | 0.1 (5) |
C8i—C8—C9—C10 | −1.2 (5) | C8—C11—C12—C10i | −0.4 (4) |
C11—C8—C9—N1 | 3.2 (4) | C1—C2—C3—C4 | 0.2 (5) |
C8i—C8—C9—N1 | −178.0 (3) | C6—C5—C4—C3 | 0.1 (5) |
C7—N1—C9—C10 | 43.0 (4) | C2—C3—C4—C5 | −0.3 (5) |
C7—N1—C9—C8 | −140.2 (3) |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C24H18N2O2 |
Mr | 366.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 3.8510 (9), 19.395 (6), 11.796 (2) |
β (°) | 95.85 (3) |
V (Å3) | 876.4 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.23 × 0.15 × 0.11 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur-S diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.980, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4711, 1544, 1004 |
Rint | 0.099 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.080, 0.206, 1.18 |
No. of reflections | 1544 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.36 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).
Footnotes
‡Additional correspondence author, e-mail: krishstrucbio@gmail.com.
Acknowledgements
BM thanks the Department of Science and Technology (DST), Government of India, New Delhi, for financial support. RK thanks the Centre for Bioinformatics [Funded by the Department of Biotechnology (DBT) and the Department of Information Technology (DIT)], Pondicherry University, for providing computational facilities to carry out this research work. JM thanks the Council for Scientific and Industrial Research (CSIR) for a Senior Research Fellowship (SRF).
References
Al-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, o680–o681. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gianneshi, N. C., Ngugen, S. T. & Mirkin, C. A. (2005). J. Am. Chem. Soc. 127, 1644–1645. Web of Science PubMed Google Scholar
Kelley, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 3676–3679. CrossRef CAS PubMed Web of Science Google Scholar
Lau, K. Y., Mayr, A. & Cheung, K. K. (1999). Inorg. Chim. Acta, 285, 223–232. Web of Science CSD CrossRef CAS Google Scholar
Lu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun. 10, 1210–1213. Web of Science CSD CrossRef CAS Google Scholar
Morris, G. A., Zhou, H., Stern, C. L. & Nguyen, S. T. (2001). Inorg. Chem. 40, 3222–3227. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Pharm. Acta Helv. 74, 11–17. CrossRef PubMed CAS Google Scholar
Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (2000). Arzneimittelforschung, 50, 55–59. Web of Science PubMed CAS Google Scholar
Sakyan, I., Logoglu, E., Arsalan, S., Sari, N. & Akiyan, N. (2004). Biometals, 17, 115–120. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarafder, M. T. H., Kasbollah, A., Saravanan, N., Crouse, K. A., Ali, A. M. & Oo, K. T. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85–91. CrossRef PubMed CAS Google Scholar
Turan-Zitouni, G., Kaplancikli, Z. A., Ozdemir, A. & Chevallet, P. (2007). Arch. Pharm. Chem. Life Sci. 340, 586–590. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base ligands exhibit several biological and pharmacological properties such as anti-viral, anti-cancer, anti-bacterial, anti-fungal, anti-inflammatory, anti-convulsant and anti-HIV activities (Pandeya et al., 1999, 2000; Singh & Dash, 1988; Kelley et al., 1995; Turan-Zitouni et al., 2007; Tarafder et al., 2002). They are well known to be medicinally important and have been used to design several medicinal compounds (Sakyan et al., 2004). Schiff base ligands have been extensively employed in various fields such as catalysis (Gianneshi et al., 2005), materials chemistry (Morris et al., 2001) and magneto chemistry (Lu et al., 2007). Schiff bases that incorporate an imine group (–CH=N), are used in elucidating the transformation and rasemination mechanism in biological systems (Lau et al., 1999). In view of the growing medicinal importance of Schiff base ligands and their derivatives, a single-crystal X-ray diffraction study on the title compound was carried out and analyzed. The molecular structure of the title compound is shown in Fig. 1. The bond length of imine group (–CH=N) is comparable to those observed in a related crystal structure namely that of 6,6'-Dimethoxy-2,2'-[p-phenylene-bis(nitrilomethylidyne)]diphenol chloroform disolvate (Al-Douh et al., 2009). The atom series and their weighted average absolute torsion angles in all six-membered ring of title compound are Ring 1: C1/C2/C3/C4/C5/C6 & 0.2°, Ring 2: C8/C9/C10/C12/C11a/C8a & 0.8° and Ring 3: C8/C11/C12a/C10a/C9a/C8a & 0.8°. The molecular structure is stabilized by intramolecular O1—H1···N1 interactions. An intramolecular O1—H1···N1 hydrogen bond generates a six-membered ring, producing an S(6) ring motif [Fig. 2] [O1—H1 distance: 0.82 Å, H1—N1 distance: 1.90 Å, O1—N1 distance: 2.634 (3) Å and O1—H1···N1 angle 148 °]. (Bernstein et al., 1995). The crystal packing exhibits intermolecular π—π stacking interactions (Fig. 3) between the aromatic rings with the centroid-to-centroid distance of 3.851 (2) Å.