organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1765-o1766

2,2′-[Naphthalene-1,5-diylbis(nitrilo­methanylyl­­idene)]diphenol

aDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and bCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: manimaran.che@pondiuni.edu.in

(Received 12 June 2011; accepted 14 June 2011; online 22 June 2011)

The title compound, C24H18N2O2, lies about an inversion centre and the asymmetric unit contains one half-mol­ecule. An intra­molecular O—H⋯N hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The crystal packing exhibits inter­molecular ππ stacking inter­actions between the aromatic rings with a centroid–centroid distance of 3.851 (2) Å.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For applications of Schiff base ligands, see: Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Pharm. Acta Helv. 74, 11-17.], 2000[Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (2000). Arzneimittelforschung, 50, 55-59.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Kelley et al. (1995[Kelley, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 3676-3679.]); Turan-Zitouni et al. (2007[Turan-Zitouni, G., Kaplancikli, Z. A., Ozdemir, A. & Chevallet, P. (2007). Arch. Pharm. Chem. Life Sci. 340, 586-590.]); Tarafder et al. (2002[Tarafder, M. T. H., Kasbollah, A., Saravanan, N., Crouse, K. A., Ali, A. M. & Oo, K. T. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85-91.]); Sakyan et al. (2004[Sakyan, I., Logoglu, E., Arsalan, S., Sari, N. & Akiyan, N. (2004). Biometals, 17, 115-120.]); Gianneshi et al. (2005[Gianneshi, N. C., Ngugen, S. T. & Mirkin, C. A. (2005). J. Am. Chem. Soc. 127, 1644-1645.]); Morris et al. (2001[Morris, G. A., Zhou, H., Stern, C. L. & Nguyen, S. T. (2001). Inorg. Chem. 40, 3222-3227.]); Lu et al. (2007[Lu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun. 10, 1210-1213.]); Lau et al. (1999[Lau, K. Y., Mayr, A. & Cheung, K. K. (1999). Inorg. Chim. Acta, 285, 223-232.]). For a related structure, see: Al-Douh et al. (2009[Al-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, o680-o681.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O2

  • Mr = 366.40

  • Monoclinic, P 21 /c

  • a = 3.8510 (9) Å

  • b = 19.395 (6) Å

  • c = 11.796 (2) Å

  • β = 95.85 (3)°

  • V = 876.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.23 × 0.15 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur-S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.980, Tmax = 0.990

  • 4711 measured reflections

  • 1544 independent reflections

  • 1004 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.206

  • S = 1.18

  • 1544 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.634 (3) 148

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands exhibit several biological and pharmacological properties such as anti-viral, anti-cancer, anti-bacterial, anti-fungal, anti-inflammatory, anti-convulsant and anti-HIV activities (Pandeya et al., 1999, 2000; Singh & Dash, 1988; Kelley et al., 1995; Turan-Zitouni et al., 2007; Tarafder et al., 2002). They are well known to be medicinally important and have been used to design several medicinal compounds (Sakyan et al., 2004). Schiff base ligands have been extensively employed in various fields such as catalysis (Gianneshi et al., 2005), materials chemistry (Morris et al., 2001) and magneto chemistry (Lu et al., 2007). Schiff bases that incorporate an imine group (–CH=N), are used in elucidating the transformation and rasemination mechanism in biological systems (Lau et al., 1999). In view of the growing medicinal importance of Schiff base ligands and their derivatives, a single-crystal X-ray diffraction study on the title compound was carried out and analyzed. The molecular structure of the title compound is shown in Fig. 1. The bond length of imine group (–CH=N) is comparable to those observed in a related crystal structure namely that of 6,6'-Dimethoxy-2,2'-[p-phenylene-bis(nitrilomethylidyne)]diphenol chloroform disolvate (Al-Douh et al., 2009). The atom series and their weighted average absolute torsion angles in all six-membered ring of title compound are Ring 1: C1/C2/C3/C4/C5/C6 & 0.2°, Ring 2: C8/C9/C10/C12/C11a/C8a & 0.8° and Ring 3: C8/C11/C12a/C10a/C9a/C8a & 0.8°. The molecular structure is stabilized by intramolecular O1—H1···N1 interactions. An intramolecular O1—H1···N1 hydrogen bond generates a six-membered ring, producing an S(6) ring motif [Fig. 2] [O1—H1 distance: 0.82 Å, H1—N1 distance: 1.90 Å, O1—N1 distance: 2.634 (3) Å and O1—H1···N1 angle 148 °]. (Bernstein et al., 1995). The crystal packing exhibits intermolecular ππ stacking interactions (Fig. 3) between the aromatic rings with the centroid-to-centroid distance of 3.851 (2) Å.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of Schiff base ligands, see: Pandeya et al. (1999, 2000); Singh & Dash (1988); Kelley et al. (1995); Turan-Zitouni et al. (2007); Tarafder et al. (2002); Sakyan et al. (2004); Gianneshi et al. (2005); Morris et al. (2001); Lu et al. (2007); Lau et al. (1999). For a related structure, see: Al-Douh et al. (2009).

Experimental top

1,5-naphthalenediamine (158 mg, 1 mmol) was taken in a 100 ml round bottom schlenk flask and the system was evacuated and purged with nitrogen. To this, a freshly distilled ethanol (40 ml), salicylaldehyde (0.2 ml, 2 mmol) and 2 drops of acetic acid were added. The reaction mixture was stirred at 25 °C for 3 h. The solvent was evaporated using vacuum and the yellow color product was purified by recrystallization with dichloromethane (Yield 73%, Melting Point: 220 °C). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane at room temperature. Spectroscopic data of the title compound: IR (KBr): ν 3442 (m), 1615 (s), 1454 (w), 1278 (m), 1143 (m), 744 (s), cm-1. 1H NMR (400 MHz, CDCl3): δ 13.30 (s, 2H), 8.74 (s, 2H), 8.21 (d, 2H), 7.57 (t, 2H), 7.49–7.72 (m, 4H), 7.25 (d, 2H), 7.12 (d, 2H), 7.0 (t, 2H). 13C NMR (100 MHz, CDCl3): δ 164.0, 161.4, 146.4, 133.7, 132.6, 129.0, 126.7, 122.4, 119.6, 119.4, 117.5, 115.0.

Refinement top

The non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. The hydrogen atoms were placed in calculated positions (C–H = 0.93 Å) and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the intramolecular S (6) ring motif formed by an O—H···N interaction in the title compound. The motif forming atoms are shown in a ball and stick representation and the hydrogen bond is shown as a red dashed line.
[Figure 3] Fig. 3. View of the crystal packing showing intermolecular π···π stacking interactions. Cg(1), Cg(2) and Cg(3) are the centroids of the C1/C2/C3/C4/C5/C6, C8/C9/C10/C12/C11a/C8a and C8/C11/C12a/C10a/C9a/C8a rings respectively.
2,2'-[Naphthalene-1,5-diylbis(nitrilomethanylylidene)]diphenol top
Crystal data top
C24H18N2O2F(000) = 384
Mr = 366.40Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4711 reflections
a = 3.8510 (9) Åθ = 3.5–25.0°
b = 19.395 (6) ŵ = 0.09 mm1
c = 11.796 (2) ÅT = 293 K
β = 95.85 (3)°Block, yellow
V = 876.4 (4) Å30.23 × 0.15 × 0.11 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
1544 independent reflections
Radiation source: fine-focus sealed tube1004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 15.9948 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 43
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2223
Tmin = 0.980, Tmax = 0.990l = 1313
4711 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1544 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C24H18N2O2V = 876.4 (4) Å3
Mr = 366.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 3.8510 (9) ŵ = 0.09 mm1
b = 19.395 (6) ÅT = 293 K
c = 11.796 (2) Å0.23 × 0.15 × 0.11 mm
β = 95.85 (3)°
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
1544 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1004 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.099
4711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.18Δρmax = 0.35 e Å3
1544 reflectionsΔρmin = 0.36 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3017 (6)0.64602 (13)0.0063 (2)0.0372 (7)
C10.5621 (8)0.77817 (16)0.0770 (3)0.0380 (8)
C60.3700 (7)0.76789 (15)0.0294 (3)0.0355 (8)
C80.0499 (7)0.53316 (14)0.0215 (3)0.0331 (8)
C70.2450 (8)0.70066 (16)0.0666 (3)0.0390 (8)
H70.11740.69680.13760.047*
C90.1929 (7)0.58080 (15)0.0513 (3)0.0361 (8)
O10.6420 (7)0.72510 (12)0.1490 (2)0.0531 (8)
H10.56170.68930.12020.080*
C110.0030 (8)0.54993 (16)0.1351 (3)0.0381 (8)
H110.05860.59340.16380.046*
C50.2987 (9)0.82501 (16)0.1005 (3)0.0428 (9)
H50.17090.81900.17110.051*
C100.2399 (8)0.56269 (17)0.1607 (3)0.0384 (8)
H100.33680.59420.20780.046*
C20.6767 (8)0.84352 (17)0.1085 (3)0.0442 (9)
H20.80430.85040.17880.053*
C120.1435 (8)0.50288 (16)0.2025 (3)0.0398 (8)
H120.17600.51430.27730.048*
C30.6030 (9)0.89849 (18)0.0363 (3)0.0484 (10)
H30.68240.94220.05850.058*
C40.4136 (9)0.88975 (18)0.0682 (3)0.0471 (9)
H40.36410.92730.11630.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0418 (13)0.0354 (15)0.0331 (17)0.0021 (11)0.0027 (12)0.0029 (12)
C10.0390 (15)0.0432 (19)0.031 (2)0.0014 (13)0.0018 (15)0.0017 (15)
C60.0381 (15)0.0395 (18)0.028 (2)0.0038 (13)0.0007 (14)0.0010 (15)
C80.0324 (13)0.0363 (16)0.0288 (19)0.0033 (12)0.0058 (13)0.0026 (14)
C70.0399 (16)0.0445 (19)0.031 (2)0.0027 (13)0.0045 (14)0.0004 (15)
C90.0338 (14)0.0405 (18)0.032 (2)0.0013 (13)0.0065 (14)0.0012 (15)
O10.0687 (16)0.0534 (15)0.0332 (16)0.0045 (12)0.0141 (12)0.0057 (12)
C110.0404 (16)0.0384 (17)0.034 (2)0.0013 (13)0.0035 (14)0.0021 (16)
C50.0516 (18)0.0440 (19)0.031 (2)0.0015 (15)0.0023 (16)0.0016 (16)
C100.0400 (16)0.0456 (19)0.029 (2)0.0017 (13)0.0012 (14)0.0067 (15)
C20.0442 (17)0.052 (2)0.034 (2)0.0037 (15)0.0051 (15)0.0082 (16)
C120.0443 (16)0.051 (2)0.0241 (19)0.0029 (14)0.0012 (15)0.0032 (15)
C30.0515 (19)0.0410 (19)0.052 (3)0.0047 (15)0.0024 (18)0.0059 (18)
C40.056 (2)0.043 (2)0.042 (2)0.0001 (15)0.0030 (18)0.0070 (17)
Geometric parameters (Å, º) top
N1—C71.283 (4)C11—C121.358 (5)
N1—C91.418 (4)C11—H110.9300
C1—O11.350 (4)C5—C41.372 (5)
C1—C21.381 (4)C5—H50.9300
C1—C61.404 (4)C10—C12i1.400 (4)
C6—C51.400 (4)C10—H100.9300
C6—C71.443 (4)C2—C31.376 (5)
C8—C91.411 (5)C2—H20.9300
C8—C111.414 (4)C12—C10i1.400 (4)
C8—C8i1.421 (6)C12—H120.9300
C7—H70.9300C3—C41.378 (5)
C9—C101.367 (5)C3—H30.9300
O1—H10.8200C4—H40.9300
C7—N1—C9120.2 (3)C8—C11—H11119.8
O1—C1—C2119.0 (3)C4—C5—C6121.3 (3)
O1—C1—C6121.3 (3)C4—C5—H5119.3
C2—C1—C6119.7 (3)C6—C5—H5119.3
C1—C6—C5118.4 (3)C9—C10—C12i120.7 (3)
C1—C6—C7122.0 (3)C9—C10—H10119.7
C5—C6—C7119.6 (3)C12i—C10—H10119.7
C9—C8—C11121.9 (3)C3—C2—C1120.3 (3)
C9—C8—C8i119.0 (4)C3—C2—H2119.8
C11—C8—C8i119.1 (4)C1—C2—H2119.8
N1—C7—C6123.0 (3)C11—C12—C10i120.7 (3)
N1—C7—H7118.5C11—C12—H12119.6
C6—C7—H7118.5C10i—C12—H12119.6
C10—C9—C8120.2 (3)C2—C3—C4121.0 (3)
C10—C9—N1121.3 (3)C2—C3—H3119.5
C8—C9—N1118.4 (3)C4—C3—H3119.5
C1—O1—H1109.5C5—C4—C3119.2 (3)
C12—C11—C8120.3 (3)C5—C4—H4120.4
C12—C11—H11119.8C3—C4—H4120.4
O1—C1—C6—C5179.4 (3)C9—C8—C11—C12179.6 (3)
C2—C1—C6—C50.3 (5)C8i—C8—C11—C120.8 (5)
O1—C1—C6—C70.7 (5)C1—C6—C5—C40.3 (5)
C2—C1—C6—C7179.8 (3)C7—C6—C5—C4179.9 (3)
C9—N1—C7—C6175.5 (3)C8—C9—C10—C12i0.7 (4)
C1—C6—C7—N10.5 (5)N1—C9—C10—C12i177.5 (3)
C5—C6—C7—N1179.7 (3)O1—C1—C2—C3179.2 (3)
C11—C8—C9—C10180.0 (3)C6—C1—C2—C30.1 (5)
C8i—C8—C9—C101.2 (5)C8—C11—C12—C10i0.4 (4)
C11—C8—C9—N13.2 (4)C1—C2—C3—C40.2 (5)
C8i—C8—C9—N1178.0 (3)C6—C5—C4—C30.1 (5)
C7—N1—C9—C1043.0 (4)C2—C3—C4—C50.3 (5)
C7—N1—C9—C8140.2 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.634 (3)148

Experimental details

Crystal data
Chemical formulaC24H18N2O2
Mr366.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)3.8510 (9), 19.395 (6), 11.796 (2)
β (°) 95.85 (3)
V3)876.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.15 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur-S
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4711, 1544, 1004
Rint0.099
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.206, 1.18
No. of reflections1544
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.634 (3)148
 

Footnotes

Additional correspondence author, e-mail: krishstrucbio@gmail.com.

Acknowledgements

BM thanks the Department of Science and Technology (DST), Government of India, New Delhi, for financial support. RK thanks the Centre for Bioinformatics [Funded by the Department of Biotechnology (DBT) and the Department of Information Technology (DIT)], Pondicherry University, for providing computational facilities to carry out this research work. JM thanks the Council for Scientific and Industrial Research (CSIR) for a Senior Research Fellowship (SRF).

References

First citationAl-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, o680–o681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGianneshi, N. C., Ngugen, S. T. & Mirkin, C. A. (2005). J. Am. Chem. Soc. 127, 1644–1645.  Web of Science PubMed Google Scholar
First citationKelley, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 3676–3679.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLau, K. Y., Mayr, A. & Cheung, K. K. (1999). Inorg. Chim. Acta, 285, 223–232.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun. 10, 1210–1213.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorris, G. A., Zhou, H., Stern, C. L. & Nguyen, S. T. (2001). Inorg. Chem. 40, 3222–3227.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (2000). Arzneimittelforschung, 50, 55–59.  Web of Science PubMed CAS Google Scholar
First citationSakyan, I., Logoglu, E., Arsalan, S., Sari, N. & Akiyan, N. (2004). Biometals, 17, 115–120.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Kasbollah, A., Saravanan, N., Crouse, K. A., Ali, A. M. & Oo, K. T. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85–91.  CrossRef PubMed CAS Google Scholar
First citationTuran-Zitouni, G., Kaplancikli, Z. A., Ozdemir, A. & Chevallet, P. (2007). Arch. Pharm. Chem. Life Sci. 340, 586–590.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1765-o1766
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds