organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[(2-Hydroxynaphthalen-1-yl)methyl­idene]nicotinohydrazide

aCollege of Chemistry and Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China, bDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China, and cDepartment of Chemistry, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: liushiyong2010@yahoo.cn

(Received 13 June 2011; accepted 15 June 2011; online 22 June 2011)

In the mol­ecule of the title compound, C17H13N3O2, the naphthyl ring system and the pyridine ring form a dihedral angle of 12.2 (3)°. An intra­molecular O—H⋯N hydrogen bond generates a six-membered ring with an S(6) ring motif. This also contributes to the relative overall near planarity of the mol­ecule [r.m.s. deviation of all 22 non-H atoms = 0.107 (5) Å]. In the crystal, mol­ecules are linked through inter­molecular N—H⋯N hydrogen bonds, forming chains along the a axis.

Related literature

For the medicinal applications of hydrazone compounds, see: Hillmer et al. (2010[Hillmer, A. S., Putcha, P., Levin, J., Hogen, T., Hyman, B. T., Kretzschmar, H., McLean, P. J. & Giese, A. (2010). Biochem. Biophys. Res. Commun. 391, 461-466.]); Zhu et al. (2009[Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2009). Pol. J. Chem. 83, 1233-1240.]). For hydrazones we have reported previously, see: Liu & You (2010[Liu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1662.]); Liu & Wang (2010[Liu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775.]). For related structures, see: Khaledi et al. (2009[Khaledi, H., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1920.]); Xu et al. (2009[Xu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412.]); Shafiq et al. (2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N3O2

  • Mr = 291.30

  • Orthorhombic, P 21 21 21

  • a = 6.253 (2) Å

  • b = 12.335 (4) Å

  • c = 18.511 (7) Å

  • V = 1427.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.984

  • 8787 measured reflections

  • 1810 independent reflections

  • 921 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.131

  • S = 0.99

  • 1810 reflections

  • 204 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.565 (4) 146
N2—H2⋯N3i 0.90 (1) 2.20 (2) 3.066 (5) 161 (4)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been focused on hydrazones and their medicinal applications (Hillmer et al., 2010; Zhu et al., 2009). A study of the crystal structures of such compounds is of particular interest (Khaledi et al., 2009). As a continuation of our work on the preparation and structure of such compounds (Liu & You, 2010; Liu & Wang, 2010), we report herein the crystal structure of the title compound, a new hydrazone.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the C1—C10 naphthyl ring and the C13—C17/N3 pyridine ring is 12.2 (3) °. An intramolecular O1—H1···N1 hydrogen bond forms a six-membered ring, with an S(6) ring motif [Fig. 1] and contributes to the overall planarity of the molecule (Bernstein et al., 1995). All the bond lengths are comparable to those observed in related structures (Xu et al., 2009; Shafiq et al., 2009) and those we reported previously. In the crystal structure, molecules are linked through intermolecular N2–H2···N3 hydrogen bonds (Table 1), to form chains along the a axis (Fig. 2).

Related literature top

For the medicinal applications of hydrazone compounds, see: Hillmer et al. (2010); Zhu et al. (2009). For hydrazones we have reported previously, see: Liu & You (2010); Liu & Wang (2010). For related structures, see: Khaledi et al. (2009); Xu et al. (2009); Shafiq et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the condensation reaction of 2-hydroxy-1-naphthaldehyde (1.0 mmol, 0.172 g) and nicotinohydrazide (1.0 mmol, 0.137 g) in methanol (50 ml) at ambient temperature. Colourless block-shaped single crystals suitable for X-ray structural determination were obtained by slow evaporation of the solution for a few days.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C–H distances of 0.93 Å, O–H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). In the absence of significant anomalous dispersion effects, 1294 Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and the intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-N'-[(2-Hydroxynaphthalen-1-yl)methylidene]nicotinohydrazide top
Crystal data top
C17H13N3O2F(000) = 608
Mr = 291.30Dx = 1.355 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 536 reflections
a = 6.253 (2) Åθ = 2.6–24.5°
b = 12.335 (4) ŵ = 0.09 mm1
c = 18.511 (7) ÅT = 298 K
V = 1427.8 (9) Å3Block, colourless
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1810 independent reflections
Radiation source: fine-focus sealed tube921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.982, Tmax = 0.984k = 1514
8787 measured reflectionsl = 2320
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
1810 reflectionsΔρmax = 0.13 e Å3
204 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Crystal data top
C17H13N3O2V = 1427.8 (9) Å3
Mr = 291.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.253 (2) ŵ = 0.09 mm1
b = 12.335 (4) ÅT = 298 K
c = 18.511 (7) Å0.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1810 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
921 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.081
8787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.13 e Å3
1810 reflectionsΔρmin = 0.13 e Å3
204 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7202 (5)0.4933 (3)0.16836 (14)0.0776 (10)
H10.60420.52360.16380.116*
O20.2100 (5)0.6667 (3)0.21269 (15)0.0921 (11)
N10.4016 (5)0.5735 (3)0.09932 (17)0.0550 (9)
N20.2169 (6)0.6340 (3)0.09272 (17)0.0556 (9)
N30.3466 (6)0.8162 (3)0.06814 (18)0.0623 (10)
C10.6656 (6)0.4675 (3)0.0409 (2)0.0458 (9)
C20.7836 (7)0.4540 (3)0.1040 (2)0.0556 (11)
C30.9784 (7)0.3984 (3)0.1031 (3)0.0682 (13)
H31.05440.38900.14590.082*
C41.0576 (7)0.3579 (3)0.0404 (3)0.0699 (13)
H41.18840.32200.04100.084*
C50.9465 (7)0.3688 (3)0.0257 (3)0.0577 (11)
C61.0301 (8)0.3281 (3)0.0913 (3)0.0772 (14)
H61.16250.29380.09140.093*
C70.9201 (10)0.3384 (4)0.1541 (3)0.0875 (16)
H70.97710.31100.19680.105*
C80.7219 (9)0.3898 (4)0.1546 (2)0.0768 (14)
H80.64670.39630.19780.092*
C90.6364 (7)0.4310 (3)0.0923 (2)0.0609 (11)
H90.50340.46460.09370.073*
C100.7465 (7)0.4234 (3)0.0255 (2)0.0501 (10)
C110.4700 (6)0.5284 (3)0.0414 (2)0.0498 (10)
H110.39170.53540.00110.060*
C120.1344 (7)0.6808 (3)0.1530 (2)0.0592 (11)
C130.0594 (7)0.7491 (3)0.1416 (2)0.0532 (11)
C140.1289 (10)0.8127 (4)0.1977 (2)0.0980 (19)
H140.05570.81280.24140.118*
C150.3062 (10)0.8761 (5)0.1888 (3)0.116 (2)
H150.35480.91960.22640.140*
C160.4116 (8)0.8747 (4)0.1241 (2)0.0704 (13)
H160.53430.91670.11910.085*
C170.1735 (7)0.7550 (3)0.0787 (2)0.0584 (11)
H170.12660.71290.04020.070*
H20.165 (7)0.648 (3)0.0485 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.085 (3)0.085 (2)0.0627 (19)0.008 (2)0.0107 (17)0.0032 (16)
O20.088 (3)0.135 (3)0.0539 (18)0.046 (2)0.0086 (17)0.0062 (18)
N10.046 (2)0.0574 (19)0.062 (2)0.0066 (18)0.0041 (18)0.0025 (18)
N20.048 (2)0.064 (2)0.055 (2)0.0080 (19)0.0020 (18)0.0004 (18)
N30.055 (3)0.064 (2)0.068 (2)0.004 (2)0.0006 (19)0.0009 (18)
C10.041 (2)0.041 (2)0.056 (2)0.0007 (19)0.0009 (19)0.0080 (18)
C20.056 (3)0.048 (2)0.063 (3)0.002 (2)0.006 (2)0.005 (2)
C30.060 (3)0.063 (3)0.081 (3)0.006 (3)0.019 (3)0.013 (3)
C40.047 (3)0.045 (2)0.117 (4)0.007 (2)0.008 (3)0.011 (3)
C50.048 (3)0.038 (2)0.087 (3)0.004 (2)0.006 (3)0.003 (2)
C60.054 (3)0.061 (3)0.117 (4)0.006 (3)0.031 (3)0.014 (3)
C70.092 (4)0.081 (3)0.089 (4)0.007 (3)0.028 (3)0.027 (3)
C80.089 (4)0.078 (3)0.064 (3)0.007 (3)0.005 (3)0.001 (2)
C90.066 (3)0.061 (2)0.056 (2)0.001 (2)0.004 (2)0.002 (2)
C100.045 (3)0.041 (2)0.064 (3)0.002 (2)0.007 (2)0.0061 (19)
C110.050 (3)0.050 (2)0.049 (2)0.001 (2)0.0025 (19)0.002 (2)
C120.056 (3)0.070 (3)0.052 (3)0.010 (3)0.004 (2)0.001 (2)
C130.058 (3)0.054 (2)0.047 (2)0.008 (2)0.004 (2)0.0012 (19)
C140.122 (5)0.121 (4)0.051 (3)0.066 (4)0.008 (3)0.018 (3)
C150.153 (6)0.144 (5)0.052 (3)0.092 (5)0.008 (3)0.010 (3)
C160.068 (3)0.074 (3)0.070 (3)0.020 (3)0.011 (3)0.009 (3)
C170.052 (3)0.063 (3)0.061 (3)0.003 (2)0.001 (2)0.012 (2)
Geometric parameters (Å, º) top
O1—C21.346 (4)C6—C71.357 (7)
O1—H10.8200C6—H60.9300
O2—C121.214 (4)C7—C81.393 (7)
N1—C111.282 (4)C7—H70.9300
N1—N21.381 (4)C8—C91.370 (6)
N2—C121.358 (5)C8—H80.9300
N2—H20.898 (10)C9—C101.417 (5)
N3—C161.326 (5)C9—H90.9300
N3—C171.334 (5)C11—H110.9300
C1—C21.392 (5)C12—C131.491 (6)
C1—C111.435 (5)C13—C171.367 (5)
C1—C101.436 (5)C13—C141.372 (5)
C2—C31.398 (6)C14—C151.366 (6)
C3—C41.357 (6)C14—H140.9300
C3—H30.9300C15—C161.368 (6)
C4—C51.414 (6)C15—H150.9300
C4—H40.9300C16—H160.9300
C5—C61.414 (6)C17—H170.9300
C5—C101.421 (5)
C2—O1—H1109.5C7—C8—H8119.7
C11—N1—N2116.1 (3)C8—C9—C10121.4 (4)
C12—N2—N1118.3 (3)C8—C9—H9119.3
C12—N2—H2122 (3)C10—C9—H9119.3
N1—N2—H2119 (3)C9—C10—C5117.2 (4)
C16—N3—C17116.2 (4)C9—C10—C1123.4 (4)
C2—C1—C11120.6 (4)C5—C10—C1119.4 (4)
C2—C1—C10119.1 (4)N1—C11—C1121.1 (4)
C11—C1—C10120.2 (4)N1—C11—H11119.4
O1—C2—C1122.9 (4)C1—C11—H11119.4
O1—C2—C3116.3 (4)O2—C12—N2122.6 (4)
C1—C2—C3120.7 (4)O2—C12—C13121.8 (4)
C4—C3—C2120.5 (4)N2—C12—C13115.6 (4)
C4—C3—H3119.7C17—C13—C14116.6 (4)
C2—C3—H3119.7C17—C13—C12125.1 (4)
C3—C4—C5121.8 (4)C14—C13—C12118.3 (4)
C3—C4—H4119.1C15—C14—C13119.6 (5)
C5—C4—H4119.1C15—C14—H14120.2
C6—C5—C4121.9 (5)C13—C14—H14120.2
C6—C5—C10119.7 (4)C14—C15—C16119.3 (5)
C4—C5—C10118.4 (4)C14—C15—H15120.4
C7—C6—C5121.0 (5)C16—C15—H15120.4
C7—C6—H6119.5N3—C16—C15122.9 (5)
C5—C6—H6119.5N3—C16—H16118.5
C6—C7—C8120.0 (5)C15—C16—H16118.5
C6—C7—H7120.0N3—C17—C13125.4 (4)
C8—C7—H7120.0N3—C17—H17117.3
C9—C8—C7120.7 (5)C13—C17—H17117.3
C9—C8—H8119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.565 (4)146
N2—H2···N3i0.90 (1)2.20 (2)3.066 (5)161 (4)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC17H13N3O2
Mr291.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.253 (2), 12.335 (4), 18.511 (7)
V3)1427.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8787, 1810, 921
Rint0.081
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.131, 0.99
No. of reflections1810
No. of parameters204
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.565 (4)146
N2—H2···N3i0.898 (10)2.204 (19)3.066 (5)161 (4)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge the Undergraduate Innovation Group Project of Zhejiang Province (project No. 2010R428015).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHillmer, A. S., Putcha, P., Levin, J., Hogen, T., Hyman, B. T., Kretzschmar, H., McLean, P. J. & Giese, A. (2010). Biochem. Biophys. Res. Commun. 391, 461–466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhaledi, H., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2009). Pol. J. Chem. 83, 1233–1240.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds