organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1760-o1761

5,9-Dihy­dr­oxy-9-methyl-3,6-di­methyl­ene-3a,4,5,6,6a,7,8,9,9a,9b-deca­hydro­azuleno[4,5-b]furan-2(3H)-one

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliqueé, Faculté des Sciences, Avenue Ibn, Battouta BP 1014 Rabat, Morocco, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 13 June 2011; accepted 16 June 2011; online 22 June 2011)

The title compound, C15H20O4, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The seven-membered ring has a chair conformation, while the five-membered rings display twisted conformations. The dihedral angle between the seven-membered ring and the lactone ring is 21.69 (10)°. In the crystal, mol­ecules are linked into chains propagating along the c axis by inter­molecular O—H⋯O hydrogen bonds; an intra­molecular O—H⋯O link also occurs.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); Bellakhdar (1997[Bellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272-274. Paris: Edition Ibis Press.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the reactivity of this sesquiterpene, see: El Haib et al. (2011[El Haib, A., Benharref, A., Sandra, P.-M., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20O4

  • Mr = 264.31

  • Orthorhombic, P 21 21 21

  • a = 6.4210 (14) Å

  • b = 13.504 (3) Å

  • c = 15.619 (3) Å

  • V = 1354.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.33 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 14445 measured reflections

  • 1610 independent reflections

  • 1473 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.08

  • 1610 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 2.42 3.015 (2) 131
O4—H4⋯O2i 0.82 2.03 2.819 (2) 162
Symmetry code: (i) [-x-{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.])and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Anvillea radiata is a plant that grows in northern Africa and particularly in the two Maghreb countries, Morocco and Algeria. This plant is used in traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), and hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumor activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany, et al., 2004). In order to prepare products with high added value that can be used in the pharmacology and cosmetics industries, we have studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene with methane sulfonic acid (MSA) or p-toluene sulfonic acid (PTSA) in dichloromethane (El Haib et al., 2011) led to 5,9-dihydroxy-9-methyl- 3,6-dimethylene-decahydro-azulene [4,5-b] furan-2-one with a yield of 45%. The molecule contains three fused rings which exhibit different conformations. The molecular structure of (I), Fig.1, shows the five membered rings to adopt a twisted conformations, as indicated by the Cremer & Pople (1975) puckering parameters Q = 0.233 (2) Å and ϕ = 121.1 (5)° for the lactone ring and Q = 0.426 (2) Å, ϕ = 264.5 (3)° for the other five-membered ring. The seven-membered ring has a chair conformation with QT = 0.8255 (20) Å, θ2 = 36.20 (15)°, ϕ2 = 89.3 (2)° and ϕ3 =207.07 (18). In the crystal structure, molecules are linked into chains (Fig. 2) running along the c axis by intermolecular O4—H2···O3 hydrogen bonds. In addition an intramolecular O2—H2···O3 hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene, see: El Haib et al. (2011). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

Methane sulfonic acid (MSA) or p-toluene sulfonic acid (PTSA) (6x10-2mmol) was added to a stirred solution of 9α-hydroxyparthenolide (1 g, 4 mmol) in dichloromethane (10 ml). The reaction mixture is left stirring for two hours at room temperature. After completion of the reaction, a saturated solution of NaHCO3 was added and the resulting mixture is extracted three times (3x20mL) with dichloromethane. The organic phases are combined and dried over Na2SO4 and evaporated under vacuum. Chromatography of the residue obtained on a column of silica gel eluting with hexane - ethyl acetate (40/60) allowed the isolation of pure 5,9-dihydroxy-9-methyl- 3,6-dimethylene-decahydro-azulene [4,5-b] furan-2-one (446 mg, 1.80 mmol). The title compound was recrystallized from its ethyl acetate solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1148 Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997)and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Partial packing view showing the O –H···O interactions (dashed lines) and the formation of a chain parallel to the c axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) -x - 1/2,-y,+z + 1/2].
5,9-Dihydroxy-9-methyl-3,6-dimethylene-3a,4,5,6,6a,7,8,9,9a,9b- decahydroazuleno[4,5-b]furan-2(3H)-one top
Crystal data top
C15H20O4F(000) = 568
Mr = 264.31Dx = 1.296 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 14445 reflections
a = 6.4210 (14) Åθ = 2–26.4°
b = 13.504 (3) ŵ = 0.09 mm1
c = 15.619 (3) ÅT = 298 K
V = 1354.4 (5) Å3Platelet, colourless
Z = 40.50 × 0.33 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1473 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 26.4°, θmin = 2.0°
ϕ and ω scansh = 88
14445 measured reflectionsk = 1616
1610 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1199P]
where P = (Fo2 + 2Fc2)/3
1610 reflections(Δ/σ)max = 0.002
175 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H20O4V = 1354.4 (5) Å3
Mr = 264.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4210 (14) ŵ = 0.09 mm1
b = 13.504 (3) ÅT = 298 K
c = 15.619 (3) Å0.50 × 0.33 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1473 reflections with I > 2σ(I)
14445 measured reflectionsRint = 0.051
1610 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
1610 reflectionsΔρmin = 0.18 e Å3
175 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.5094 (4)0.2383 (2)0.65504 (15)0.0622 (7)
H13A0.61620.26660.62310.075*
H13B0.50240.24930.71380.075*
C140.0186 (5)0.14917 (17)0.73734 (18)0.0636 (7)
H14A0.02770.20200.70420.076*
H14B0.10630.16060.78370.076*
C150.0444 (4)0.12759 (19)0.47662 (17)0.0613 (7)
H15A0.00150.17050.43090.092*
H15B0.05700.16520.52850.092*
H15C0.17640.09840.46270.092*
C10.1819 (3)0.02941 (14)0.64505 (12)0.0357 (4)
H10.28190.01850.66810.043*
C20.0403 (3)0.05775 (15)0.71848 (12)0.0398 (5)
C30.0356 (4)0.02616 (16)0.77685 (13)0.0459 (5)
H30.07530.00280.83200.055*
C40.2238 (4)0.08094 (17)0.74103 (12)0.0434 (5)
H4A0.34010.03530.73780.052*
H4B0.26190.13340.78050.052*
C50.1881 (3)0.12596 (13)0.65264 (11)0.0318 (4)
H50.06650.16970.65530.038*
C60.1518 (3)0.04783 (12)0.58217 (11)0.0293 (4)
H60.22840.01260.59670.035*
C70.0736 (3)0.02223 (12)0.56617 (11)0.0299 (4)
H70.14760.08450.55570.036*
C80.1172 (3)0.04621 (14)0.48887 (12)0.0379 (4)
C90.3311 (4)0.08880 (16)0.51157 (14)0.0466 (5)
H9A0.44010.04030.50220.056*
H9B0.36100.14740.47790.056*
C100.3114 (4)0.11414 (17)0.60591 (14)0.0514 (6)
H10A0.24130.17720.61340.062*
H10B0.44760.11780.63260.062*
C110.3685 (3)0.18293 (14)0.61722 (12)0.0369 (4)
C120.3756 (3)0.16406 (15)0.52329 (12)0.0387 (5)
O10.4807 (3)0.20235 (13)0.46923 (10)0.0620 (5)
O20.1301 (3)0.00763 (13)0.40985 (9)0.0566 (5)
H20.05220.05570.41180.085*
O30.2403 (2)0.09088 (10)0.50419 (7)0.0362 (3)
O40.1222 (3)0.09798 (12)0.79206 (10)0.0573 (5)
H40.21620.07300.82030.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.0621 (16)0.0839 (17)0.0406 (11)0.0351 (15)0.0006 (12)0.0034 (12)
C140.0740 (17)0.0480 (12)0.0688 (16)0.0014 (13)0.0178 (15)0.0204 (12)
C150.0588 (15)0.0567 (13)0.0685 (15)0.0020 (13)0.0073 (13)0.0282 (13)
C10.0348 (10)0.0377 (9)0.0347 (9)0.0005 (8)0.0039 (8)0.0039 (7)
C20.0418 (11)0.0429 (10)0.0347 (9)0.0039 (9)0.0016 (9)0.0100 (8)
C30.0584 (13)0.0511 (11)0.0283 (8)0.0074 (11)0.0002 (9)0.0092 (8)
C40.0480 (12)0.0531 (11)0.0292 (9)0.0102 (10)0.0060 (9)0.0037 (9)
C50.0326 (9)0.0346 (8)0.0283 (8)0.0027 (8)0.0017 (8)0.0018 (7)
C60.0300 (9)0.0315 (8)0.0263 (8)0.0003 (7)0.0007 (7)0.0036 (7)
C70.0325 (9)0.0270 (8)0.0301 (8)0.0001 (7)0.0023 (7)0.0016 (7)
C80.0394 (11)0.0406 (10)0.0338 (9)0.0087 (9)0.0016 (9)0.0016 (8)
C90.0423 (11)0.0463 (11)0.0511 (12)0.0115 (10)0.0062 (10)0.0023 (10)
C100.0473 (12)0.0564 (12)0.0505 (12)0.0189 (11)0.0014 (10)0.0076 (10)
C110.0365 (11)0.0393 (9)0.0348 (9)0.0051 (8)0.0011 (8)0.0024 (8)
C120.0385 (11)0.0425 (10)0.0350 (9)0.0077 (9)0.0004 (9)0.0033 (8)
O10.0665 (11)0.0793 (12)0.0403 (8)0.0341 (10)0.0092 (8)0.0057 (8)
O20.0708 (11)0.0656 (10)0.0333 (7)0.0277 (9)0.0134 (7)0.0038 (7)
O30.0387 (7)0.0427 (7)0.0273 (6)0.0079 (6)0.0026 (6)0.0006 (5)
O40.0700 (11)0.0567 (9)0.0453 (8)0.0069 (9)0.0244 (9)0.0022 (7)
Geometric parameters (Å, º) top
C13—C111.314 (3)C5—C111.497 (3)
C13—H13A0.9300C5—C61.542 (2)
C13—H13B0.9300C5—H50.9800
C14—C21.324 (3)C6—O31.464 (2)
C14—H14A0.9300C6—C71.509 (3)
C14—H14B0.9300C6—H60.9800
C15—C81.523 (3)C7—C81.546 (2)
C15—H15A0.9600C7—H70.9800
C15—H15B0.9600C8—O21.435 (2)
C15—H15C0.9600C8—C91.530 (3)
C1—C21.513 (3)C9—C101.518 (3)
C1—C101.541 (3)C9—H9A0.9700
C1—C71.577 (2)C9—H9B0.9700
C1—H10.9800C10—H10A0.9700
C2—C31.534 (3)C10—H10B0.9700
C3—O41.423 (3)C11—C121.490 (3)
C3—C41.523 (3)C12—O11.198 (2)
C3—H30.9800C12—O31.349 (2)
C4—C51.526 (2)O2—H20.8200
C4—H4A0.9700O4—H40.8200
C4—H4B0.9700
C11—C13—H13A120.0O3—C6—C7109.01 (14)
C11—C13—H13B120.0O3—C6—C5105.27 (13)
H13A—C13—H13B120.0C7—C6—C5114.82 (15)
C2—C14—H14A120.0O3—C6—H6109.2
C2—C14—H14B120.0C7—C6—H6109.2
H14A—C14—H14B120.0C5—C6—H6109.2
C8—C15—H15A109.5C6—C7—C8116.10 (15)
C8—C15—H15B109.5C6—C7—C1113.26 (15)
H15A—C15—H15B109.5C8—C7—C1105.42 (14)
C8—C15—H15C109.5C6—C7—H7107.2
H15A—C15—H15C109.5C8—C7—H7107.2
H15B—C15—H15C109.5C1—C7—H7107.2
C2—C1—C10115.94 (17)O2—C8—C15107.27 (18)
C2—C1—C7116.03 (16)O2—C8—C9109.74 (17)
C10—C1—C7104.85 (15)C15—C8—C9111.66 (17)
C2—C1—H1106.4O2—C8—C7112.29 (14)
C10—C1—H1106.4C15—C8—C7113.96 (17)
C7—C1—H1106.4C9—C8—C7101.90 (16)
C14—C2—C1125.2 (2)C10—C9—C8103.59 (18)
C14—C2—C3117.8 (2)C10—C9—H9A111.0
C1—C2—C3117.04 (16)C8—C9—H9A111.0
O4—C3—C4107.17 (17)C10—C9—H9B111.0
O4—C3—C2112.13 (18)C8—C9—H9B111.0
C4—C3—C2113.11 (17)H9A—C9—H9B109.0
O4—C3—H3108.1C9—C10—C1105.22 (17)
C4—C3—H3108.1C9—C10—H10A110.7
C2—C3—H3108.1C1—C10—H10A110.7
C3—C4—C5113.99 (17)C9—C10—H10B110.7
C3—C4—H4A108.8C1—C10—H10B110.7
C5—C4—H4A108.8H10A—C10—H10B108.8
C3—C4—H4B108.8C13—C11—C12121.3 (2)
C5—C4—H4B108.8C13—C11—C5131.25 (19)
H4A—C4—H4B107.6C12—C11—C5107.44 (16)
C11—C5—C4115.01 (16)O1—C12—O3121.53 (18)
C11—C5—C6101.82 (14)O1—C12—C11129.6 (2)
C4—C5—C6113.31 (15)O3—C12—C11108.86 (16)
C11—C5—H5108.8C8—O2—H2109.5
C4—C5—H5108.8C12—O3—C6110.91 (13)
C6—C5—H5108.8C3—O4—H4109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.423.015 (2)131
O4—H4···O2i0.822.032.819 (2)162
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H20O4
Mr264.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.4210 (14), 13.504 (3), 15.619 (3)
V3)1354.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.33 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14445, 1610, 1473
Rint0.051
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.08
No. of reflections1610
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2005), APEX2 and SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997)and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.423.015 (2)131
O4—H4···O2i0.822.032.819 (2)162
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationBellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.  Google Scholar
First citationBruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Haib, A., Benharref, A., Sandra, P.-M., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1760-o1761
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds