organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­phenyl-4-(piperidin-1-yl)butanamide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 097, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 June 2011; accepted 22 June 2011; online 25 June 2011)

In the title compound, C21H26N2O, the dihedral angle between the mean planes of the two benzene rings is 81.1 (9)°. The piperidine ring is in a chair conformation. The crystal packing is stabilized by N—H⋯N and N—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity and pharmaceutical applications of compounds similar to the title compound, see: Guzel et al. (2006[Guzel, O., Ilhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795-801.]). For related structures, see: Akkurt et al. (2007[Akkurt, M., Karaca, S., Şahin, E., Güzel, Ö., Salman, A. & İlhan, E. (2007). Acta Cryst. E63, o3379-o3380.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o499.]); Gerkin (1998[Gerkin, R. E. (1998). Acta Cryst. C54, 1887-1889.]); Krigbaum et al. (1968[Krigbaum, W. R., Roe, R.-J. & Woods, J. D. (1968). Acta Cryst. B24, 1304-1312.]); Narasegowda et al. (2005[Narasegowda, R. S., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o939-o940.]); Yathirajan et al. (2005[Yathirajan, H. S., Nagaraj, B., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o1193-o1195.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O

  • Mr = 322.44

  • Orthorhombic, P c a 21

  • a = 18.1070 (12) Å

  • b = 10.3025 (9) Å

  • c = 9.6150 (6) Å

  • V = 1793.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.40 × 0.32 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.971, Tmax = 0.986

  • 19279 measured reflections

  • 4817 independent reflections

  • 4547 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.02

  • 4817 reflections

  • 224 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NB⋯N2i 0.87 (1) 2.08 (1) 2.9457 (13) 177 (2)
N1—H1NA⋯O1ii 0.84 (1) 2.38 (1) 3.1971 (14) 164 (2)
C3—H3B⋯O1ii 0.99 2.47 3.3738 (14) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an intermediate used in the synthesis of biologically and pharmaceutically active compounds viz., loperamide, darifenacin, fenpiverine, etc. The synthesis and antimycobacterial activity of some new related 2,2-diphenylacetamide derivatives has been described (Guzel et al., 2006). The crystal structures of N,N-diphenylacetamide (Krigbaum et al., 1968), 4,4'-dimethylbiphenyl-2,2'-dicarboxylic acid (Gerkin, 1998), 4'-methylbiphenyl-2-carboxylic acid (Narasegowda et al., 2005) and 4'-(2-butyl-4-chloro-5-formylimidazol-1-ylmethyl) biphenyl-2-carbonitrile (Yathirajan et al., 2005), 2-hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide (Akkurt et al., 2007) and 2-chloro-N-[4-chloro-2-(2-chlorobenzoyl) phenyl]acetamide (Dutkiewicz et al., 2010) have been reported. In view of the importance of the title compound, (I), C21H26N2O, a new crystal structure determination is reported.

In the title compound, (I), the dihedral angle between the mean planes of the two benzene rings is 81.1 (9)° (Fig. 1). The piperidin-1-yl ring is in a chair conformation (Cremer & Pople (1975), puckering parameters Q, θ, and ϕ = 0.5689 (15)A%, 3.89 (16)° and 14 (2)° respectively). For an ideal chair θ has a value of 0 or 180°. Bond lengths are normal (Allen et al., 1987). Crystal packing is stabilized by N—H···N, N—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Fig. 2, Table 1).

Related literature top

For the biological activity and pharmaceutical applications of compounds similar to the title compound, see: Guzel et al. (2006). For related structures, see: Akkurt et al. (2007); Dutkiewicz et al. (2010); Gerkin (1998); Krigbaum et al. (1968); Narasegowda et al. (2005); Yathirajan et al. (2005). For standard bond lengths, see Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore. X-ray quality crystals were obtained by slow evaporation of (1:1) methanol and dichloromethane solution (m.p.: 458-460 K).

Refinement top

The N–H atoms were located by Fourier analysis and refined isotropically with DFIX = 0.86Å and DANG - 1.40Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom–H lengths of 0.95Å (CH), or 0.99Å (CH2). Isotropic displacement parameters for these atoms were set to 1.18-1.20 (CH) or (CH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram od the title compound viewed down the b axis. Dashed lines represent N—H···N, N—H···O hydrogen bonds and weak C—H···O intermolecular interactions.
2,2-Diphenyl-4-(piperidin-1-yl)butanamide top
Crystal data top
C21H26N2OF(000) = 696
Mr = 322.44Dx = 1.194 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9220 reflections
a = 18.1070 (12) Åθ = 3.4–32.5°
b = 10.3025 (9) ŵ = 0.07 mm1
c = 9.6150 (6) ÅT = 173 K
V = 1793.7 (2) Å3Block, colorless
Z = 40.40 × 0.32 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4817 independent reflections
Radiation source: Enhance (Mo) X-ray Source4547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.1500 pixels mm-1θmax = 29.1°, θmin = 3.7°
ω scansh = 2424
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1314
Tmin = 0.971, Tmax = 0.986l = 1313
19279 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1453P]
where P = (Fo2 + 2Fc2)/3
4817 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.22 e Å3
4 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H26N2OV = 1793.7 (2) Å3
Mr = 322.44Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.1070 (12) ŵ = 0.07 mm1
b = 10.3025 (9) ÅT = 173 K
c = 9.6150 (6) Å0.40 × 0.32 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4817 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
4547 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.986Rint = 0.020
19279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0364 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
4817 reflectionsΔρmin = 0.16 e Å3
224 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68400 (5)0.34583 (11)0.96707 (9)0.0432 (2)
N10.75885 (6)0.33139 (12)0.78130 (11)0.0375 (2)
H1NB0.7944 (8)0.2941 (16)0.8267 (16)0.045*
H1NA0.7651 (9)0.3416 (16)0.6956 (14)0.045*
N20.62349 (5)0.19366 (9)0.43291 (9)0.02659 (18)
C10.69459 (6)0.36080 (11)0.84208 (11)0.0287 (2)
C20.63630 (5)0.42567 (10)0.74607 (9)0.02408 (18)
C30.64319 (6)0.37719 (10)0.59391 (10)0.02621 (19)
H3A0.60580.42190.53610.031*
H3B0.69250.40110.55770.031*
C40.63287 (7)0.23102 (11)0.57931 (11)0.0318 (2)
H4A0.67640.18580.61830.038*
H4B0.58890.20360.63300.038*
C50.54694 (6)0.21203 (12)0.38868 (13)0.0356 (2)
H5A0.53200.30300.40650.043*
H5B0.51440.15470.44400.043*
C60.53738 (9)0.18176 (15)0.23557 (15)0.0470 (3)
H6A0.56710.24330.17970.056*
H6B0.48490.19280.20940.056*
C70.56157 (11)0.04385 (16)0.20378 (18)0.0579 (4)
H7A0.52700.01820.24770.070*
H7B0.56060.02920.10200.070*
C80.63853 (10)0.02107 (16)0.25826 (18)0.0578 (4)
H8A0.67400.07260.20280.069*
H8B0.65130.07180.24710.069*
C90.64546 (8)0.05852 (13)0.41083 (16)0.0438 (3)
H9A0.61380.00090.46770.053*
H9B0.69720.04650.44140.053*
C100.55575 (5)0.40102 (11)0.78870 (11)0.0274 (2)
C110.53249 (7)0.30304 (12)0.87673 (13)0.0371 (2)
H11A0.56780.25060.92350.044*
C120.45683 (8)0.28120 (16)0.89694 (16)0.0494 (3)
H12A0.44140.21480.95890.059*
C130.40475 (7)0.35405 (17)0.82879 (16)0.0498 (4)
H13A0.35370.33670.84170.060*
C140.42691 (7)0.45219 (15)0.74177 (16)0.0455 (3)
H14A0.39120.50380.69510.055*
C150.50184 (6)0.47598 (12)0.72201 (13)0.0361 (2)
H15A0.51670.54450.66210.043*
C160.65362 (5)0.57150 (11)0.76043 (11)0.0287 (2)
C170.63429 (7)0.63353 (13)0.88404 (14)0.0404 (3)
H17A0.61080.58560.95590.048*
C180.64896 (8)0.76405 (15)0.90339 (19)0.0528 (4)
H18A0.63550.80500.98820.063*
C190.68294 (9)0.83480 (15)0.8005 (2)0.0565 (4)
H19A0.69220.92480.81330.068*
C200.70346 (9)0.77430 (15)0.6784 (2)0.0544 (4)
H20A0.72720.82280.60730.065*
C210.68962 (7)0.64287 (13)0.65859 (15)0.0400 (3)
H21A0.70490.60180.57490.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0344 (4)0.0706 (6)0.0246 (4)0.0036 (4)0.0032 (3)0.0074 (4)
N10.0269 (4)0.0567 (6)0.0288 (5)0.0099 (4)0.0038 (4)0.0007 (4)
N20.0269 (4)0.0282 (4)0.0246 (4)0.0000 (3)0.0001 (3)0.0028 (3)
C10.0264 (5)0.0341 (5)0.0256 (5)0.0012 (4)0.0037 (4)0.0008 (4)
C20.0227 (4)0.0304 (5)0.0191 (4)0.0022 (3)0.0005 (3)0.0003 (3)
C30.0299 (5)0.0296 (5)0.0192 (4)0.0006 (4)0.0005 (3)0.0002 (4)
C40.0431 (6)0.0296 (5)0.0228 (5)0.0013 (4)0.0025 (4)0.0018 (4)
C50.0285 (5)0.0430 (6)0.0352 (6)0.0008 (4)0.0033 (4)0.0015 (5)
C60.0552 (8)0.0479 (7)0.0380 (6)0.0021 (6)0.0164 (6)0.0029 (6)
C70.0775 (11)0.0478 (8)0.0485 (8)0.0076 (7)0.0186 (7)0.0154 (6)
C80.0703 (10)0.0462 (8)0.0569 (9)0.0083 (7)0.0041 (8)0.0266 (7)
C90.0501 (7)0.0324 (6)0.0490 (7)0.0079 (5)0.0094 (6)0.0099 (5)
C100.0248 (4)0.0335 (5)0.0239 (4)0.0001 (4)0.0009 (4)0.0062 (4)
C110.0374 (6)0.0427 (6)0.0311 (6)0.0058 (5)0.0018 (4)0.0010 (5)
C120.0445 (7)0.0618 (8)0.0419 (7)0.0220 (6)0.0100 (5)0.0038 (6)
C130.0299 (6)0.0715 (10)0.0480 (7)0.0109 (6)0.0058 (5)0.0213 (7)
C140.0272 (5)0.0587 (8)0.0506 (7)0.0074 (5)0.0032 (5)0.0175 (6)
C150.0285 (5)0.0397 (6)0.0402 (6)0.0047 (4)0.0014 (4)0.0032 (5)
C160.0245 (4)0.0322 (5)0.0293 (5)0.0009 (4)0.0038 (4)0.0028 (4)
C170.0371 (6)0.0442 (7)0.0399 (7)0.0008 (5)0.0004 (5)0.0117 (5)
C180.0443 (7)0.0509 (8)0.0632 (9)0.0003 (6)0.0042 (6)0.0278 (7)
C190.0467 (8)0.0382 (7)0.0846 (12)0.0066 (6)0.0075 (8)0.0158 (7)
C200.0576 (9)0.0411 (7)0.0646 (10)0.0136 (6)0.0005 (7)0.0018 (6)
C210.0440 (6)0.0380 (6)0.0379 (6)0.0065 (5)0.0011 (5)0.0018 (5)
Geometric parameters (Å, º) top
O1—C11.2267 (14)C8—H8A0.9900
N1—C11.3368 (14)C8—H8B0.9900
N1—H1NB0.867 (12)C9—H9A0.9900
N1—H1NA0.838 (13)C9—H9B0.9900
N2—C51.4621 (14)C10—C111.3830 (16)
N2—C91.4635 (14)C10—C151.4002 (16)
N2—C41.4692 (13)C11—C121.4017 (18)
C1—C21.5534 (13)C11—H11A0.9500
C2—C101.5362 (13)C12—C131.372 (2)
C2—C161.5411 (14)C12—H12A0.9500
C2—C31.5509 (13)C13—C141.372 (2)
C3—C41.5239 (15)C13—H13A0.9500
C3—H3A0.9900C14—C151.3918 (17)
C3—H3B0.9900C14—H14A0.9500
C4—H4A0.9900C15—H15A0.9500
C4—H4B0.9900C16—C211.3871 (17)
C5—C61.5147 (18)C16—C171.3941 (16)
C5—H5A0.9900C17—C181.3832 (19)
C5—H5B0.9900C17—H17A0.9500
C6—C71.518 (2)C18—C191.375 (3)
C6—H6A0.9900C18—H18A0.9500
C6—H6B0.9900C19—C201.380 (3)
C7—C81.507 (2)C19—H19A0.9500
C7—H7A0.9900C20—C211.390 (2)
C7—H7B0.9900C20—H20A0.9500
C8—C91.522 (2)C21—H21A0.9500
C1—N1—H1NB121.7 (11)C9—C8—H8A109.3
C1—N1—H1NA121.3 (11)C7—C8—H8B109.3
H1NB—N1—H1NA116.7 (15)C9—C8—H8B109.3
C5—N2—C9109.79 (9)H8A—C8—H8B107.9
C5—N2—C4110.75 (9)N2—C9—C8111.01 (12)
C9—N2—C4110.90 (10)N2—C9—H9A109.4
O1—C1—N1122.40 (10)C8—C9—H9A109.4
O1—C1—C2122.01 (10)N2—C9—H9B109.4
N1—C1—C2115.41 (9)C8—C9—H9B109.4
C10—C2—C16109.30 (8)H9A—C9—H9B108.0
C10—C2—C3105.96 (8)C11—C10—C15118.07 (10)
C16—C2—C3112.46 (8)C11—C10—C2124.97 (10)
C10—C2—C1114.55 (8)C15—C10—C2116.65 (10)
C16—C2—C1103.17 (8)C10—C11—C12119.97 (12)
C3—C2—C1111.55 (8)C10—C11—H11A120.0
C4—C3—C2113.28 (8)C12—C11—H11A120.0
C4—C3—H3A108.9C13—C12—C11121.18 (14)
C2—C3—H3A108.9C13—C12—H12A119.4
C4—C3—H3B108.9C11—C12—H12A119.4
C2—C3—H3B108.9C12—C13—C14119.56 (12)
H3A—C3—H3B107.7C12—C13—H13A120.2
N2—C4—C3111.18 (8)C14—C13—H13A120.2
N2—C4—H4A109.4C13—C14—C15119.87 (13)
C3—C4—H4A109.4C13—C14—H14A120.1
N2—C4—H4B109.4C15—C14—H14A120.1
C3—C4—H4B109.4C14—C15—C10121.33 (12)
H4A—C4—H4B108.0C14—C15—H15A119.3
N2—C5—C6111.37 (11)C10—C15—H15A119.3
N2—C5—H5A109.4C21—C16—C17118.48 (11)
C6—C5—H5A109.4C21—C16—C2123.31 (10)
N2—C5—H5B109.4C17—C16—C2118.18 (10)
C6—C5—H5B109.4C18—C17—C16120.80 (14)
H5A—C5—H5B108.0C18—C17—H17A119.6
C5—C6—C7110.82 (12)C16—C17—H17A119.6
C5—C6—H6A109.5C19—C18—C17120.31 (15)
C7—C6—H6A109.5C19—C18—H18A119.8
C5—C6—H6B109.5C17—C18—H18A119.8
C7—C6—H6B109.5C18—C19—C20119.56 (14)
H6A—C6—H6B108.1C18—C19—H19A120.2
C8—C7—C6110.04 (12)C20—C19—H19A120.2
C8—C7—H7A109.7C19—C20—C21120.52 (16)
C6—C7—H7A109.7C19—C20—H20A119.7
C8—C7—H7B109.7C21—C20—H20A119.7
C6—C7—H7B109.7C16—C21—C20120.29 (13)
H7A—C7—H7B108.2C16—C21—H21A119.9
C7—C8—C9111.82 (13)C20—C21—H21A119.9
C7—C8—H8A109.3
O1—C1—C2—C1032.45 (15)C3—C2—C10—C1568.02 (12)
N1—C1—C2—C10152.28 (10)C1—C2—C10—C15168.56 (10)
O1—C1—C2—C1686.24 (13)C15—C10—C11—C120.03 (17)
N1—C1—C2—C1689.03 (11)C2—C10—C11—C12173.31 (11)
O1—C1—C2—C3152.81 (11)C10—C11—C12—C131.2 (2)
N1—C1—C2—C331.92 (13)C11—C12—C13—C141.6 (2)
C10—C2—C3—C465.67 (11)C12—C13—C14—C150.8 (2)
C16—C2—C3—C4174.97 (8)C13—C14—C15—C100.40 (19)
C1—C2—C3—C459.61 (12)C11—C10—C15—C140.80 (17)
C5—N2—C4—C382.56 (11)C2—C10—C15—C14173.09 (11)
C9—N2—C4—C3155.28 (10)C10—C2—C16—C21133.26 (11)
C2—C3—C4—N2167.45 (9)C3—C2—C16—C2115.87 (14)
C9—N2—C5—C660.68 (14)C1—C2—C16—C21104.46 (12)
C4—N2—C5—C6176.51 (10)C10—C2—C16—C1748.96 (12)
N2—C5—C6—C757.66 (16)C3—C2—C16—C17166.35 (10)
C5—C6—C7—C852.61 (19)C1—C2—C16—C1773.32 (11)
C6—C7—C8—C952.17 (19)C21—C16—C17—C181.61 (19)
C5—N2—C9—C859.41 (15)C2—C16—C17—C18179.50 (11)
C4—N2—C9—C8177.87 (12)C16—C17—C18—C190.0 (2)
C7—C8—C9—N256.18 (18)C17—C18—C19—C201.1 (2)
C16—C2—C10—C11133.19 (11)C18—C19—C20—C210.4 (3)
C3—C2—C10—C11105.40 (11)C17—C16—C21—C202.26 (19)
C1—C2—C10—C1118.01 (15)C2—C16—C21—C20179.98 (12)
C16—C2—C10—C1553.39 (12)C19—C20—C21—C161.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NB···N2i0.87 (1)2.08 (1)2.9457 (13)177 (2)
N1—H1NA···O1ii0.84 (1)2.38 (1)3.1971 (14)164 (2)
C3—H3B···O1ii0.992.473.3738 (14)152
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC21H26N2O
Mr322.44
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)18.1070 (12), 10.3025 (9), 9.6150 (6)
V3)1793.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.32 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.971, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
19279, 4817, 4547
Rint0.020
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.02
No. of reflections4817
No. of parameters224
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NB···N2i0.867 (12)2.080 (13)2.9457 (13)176.5 (16)
N1—H1NA···O1ii0.838 (13)2.383 (14)3.1971 (14)164.0 (15)
C3—H3B···O1ii0.992.473.3738 (14)152
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+3/2, y, z1/2.
 

Acknowledgements

MSS thanks the University of Mysore for research facilities and HSY thanks R. L. Fine Chem, Bangalore, India, for the gift sample. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAkkurt, M., Karaca, S., Şahin, E., Güzel, Ö., Salman, A. & İlhan, E. (2007). Acta Cryst. E63, o3379–o3380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGerkin, R. E. (1998). Acta Cryst. C54, 1887–1889.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuzel, O., Ilhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795–801.  Google Scholar
First citationKrigbaum, W. R., Roe, R.-J. & Woods, J. D. (1968). Acta Cryst. B24, 1304–1312.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNarasegowda, R. S., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o939–o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Nagaraj, B., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o1193–o1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds