organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­methyl 5,5′-[4,5-di­cyano-1,2-phenyl­enebis(­­oxy)]diisophthalate chloro­form monosolvate

aMarine College, Shandong University at Weihai, Weihai 264209, People's Republic of China, and bSchool of Chemistry & Chemical Technology, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: ming_bai@sdu.edu.cn

(Received 5 May 2011; accepted 23 June 2011; online 30 June 2011)

In the title compound, C28H20N2O10·CHCl3, the phen­oxy rings are inclined to the central phenyl ring at dihedral angles of 84.71 (13) and 80.56 (13)°. In the crystal, pairs of weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules related by an inversion center, forming dimers. There are also C—H⋯π inter­actions present.

Related literature

For general structural and background information on phthalocyanines, including properties and appplications, see: Kobayashi (2001[Kobayashi, N. (2001). Coord. Chem. Rev. 219-221, 99-103.]); LukCentyanets (1999[LukCentyanets, E. A. (1999). J. Porphyrins Phthalocyanines, 3, 424-432.]); Suda et al. (2009[Suda, K., Nakajima, S., Satoh, Y. & Takanami, T. (2009). Chem. Commun. pp. 1255-1227.]); Zhang et al. (2009[Zhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837.]). For the synthesis of the title compound, see: del Rey et al. (1998[Rey, B. del, Keller, U., Torres, T., Rojo, G., Agulló-López, F., Nonell, S., Martí, C., Brasselet, S., Ledoux, I. & Zyss, J. (1998). J. Am. Chem. Soc. 120, 12808-12817.]). For the crystal structure of a similar compound, dimethyl 2,2′-(4,5-dicyano-o-phenyl­enedi­oxy)dibenzoate, see: Ocak et al. (2004[Ocak, N., Büyükgüngör, O., Akdemir, N., Ağar, E., Özil, M. & Erdönmez, A. (2004). Acta Cryst. E60, o505-o507.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20N2O10·CHCl3

  • Mr = 663.85

  • Triclinic, [P \overline 1]

  • a = 9.9223 (13) Å

  • b = 11.4374 (15) Å

  • c = 13.9398 (19) Å

  • α = 96.860 (2)°

  • β = 94.578 (2)°

  • γ = 105.326 (2)°

  • V = 1504.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.15 × 0.12 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 7568 measured reflections

  • 5257 independent reflections

  • 3557 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.159

  • S = 1.08

  • 5257 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O7i 0.93 2.60 3.455 (4) 154
C29—H29⋯O3ii 0.98 2.26 3.182 (5) 157
C19—H19ACg2iii 0.98 2.90 3.709 (4) 143
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z+1; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dicyano compounds have been widely used to synthesize many useful materials such as phthalocyanines. Phthalocyanines are an interesting class of compounds, with increasingly diverse industrial and biomedical applications, for instance as dyes and pigments, materials for optical storage (Kobayashi et al. 2001), photodynamic therapy agents (LukCentyanets et al. 1999), catalysis (Suda et al. 2009), and corrosion inhibitors (Zhang et al. 2009). The title compound was prepared according to the method reported in the literature (del Rey et al., 1998), and its crystal structure is described herein. The crystal structure of a similar compound, Dimethyl 2,2'-(4,5-dicyano-o-phenylenedioxy)dibenzoate, has been described by (Ocak et al., 2004).

The molecular structure of the title compound is shown in Fig. 1. It has a kite-like configuration with the aromatic rings and two cyanide groups being the head and the substituted 3,5-Bismethoxycarbonyl phenoxy groups being the tails. The mean planes of the phenoxy rings [A = (C5-C10) and C = (C23-C28)] are inclinded to the mean plane of the central phenyl ring [B = (C11-C16)], with dihedral angles of A/B = 84.71 (13) ° and C/B = 80.56 (13) °, while planes A and C are inclined to one another by 11.93 (13) °.

In the crystal weak intermolecular C—H···O hydrogen bonds link molecules related by an inversion center to form dimers (Table 1). There is also a C-H···π interaction present in the crystal structure (Table 1).

Related literature top

For general structural and background information on phthalocyanines, including properties and appplications, see: Kobayashi (2001); LukCentyanets (1999); Suda et al. (2009); Zhang et al. (2009). For the synthesis of the title compound, see: del Rey et al. (1998). For the crystal structure of a similar compound, dimethyl 2,2'-(4,5-dicyano-o-phenylenedioxy)dibenzoate, see: Ocak et al. (2004).

Experimental top

The title compound was prepared according to a published procedure (del Rey et al., 1998). Colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution of the title compound in chloroform.

Refinement top

H-atoms were placed in calculated positions and refined using a riding-model approximation: C—H = 0.93 and 0.97 Å, for CH(aromatic) and CH3 H-atoms, respectively, with Uiso = k × Ueq(C) where k = 1.5 for CH3 H-atoms and k = 1.2 for CH(aromatic) H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Tetramethyl 5,5'-[4,5-dicyano-1,2-phenylenebis(oxy)]diisophthalate chloroform monosolvate top
Crystal data top
C28H20N2O10·CHCl3Z = 2
Mr = 663.85F(000) = 680
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9223 (13) ÅCell parameters from 1932 reflections
b = 11.4374 (15) Åθ = 2.7–23.6°
c = 13.9398 (19) ŵ = 0.37 mm1
α = 96.860 (2)°T = 298 K
β = 94.578 (2)°Block, colourless
γ = 105.326 (2)°0.15 × 0.12 × 0.05 mm
V = 1504.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3557 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
ϕ and ω scansh = 1111
7568 measured reflectionsk = 713
5257 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.6098P]
where P = (Fo2 + 2Fc2)/3
5257 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C28H20N2O10·CHCl3γ = 105.326 (2)°
Mr = 663.85V = 1504.5 (3) Å3
Triclinic, P1Z = 2
a = 9.9223 (13) ÅMo Kα radiation
b = 11.4374 (15) ŵ = 0.37 mm1
c = 13.9398 (19) ÅT = 298 K
α = 96.860 (2)°0.15 × 0.12 × 0.05 mm
β = 94.578 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3557 reflections with I > 2σ(I)
7568 measured reflectionsRint = 0.029
5257 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
5257 reflectionsΔρmin = 0.49 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33835 (13)0.52563 (10)0.60702 (9)0.0890 (4)
Cl20.27318 (15)0.33393 (13)0.44608 (10)0.1086 (5)
Cl30.25891 (16)0.27612 (12)0.63996 (12)0.1147 (5)
O10.0551 (2)0.25073 (18)0.19677 (15)0.0442 (5)
O20.2198 (2)0.12734 (18)0.26465 (14)0.0449 (5)
O30.3694 (3)0.2971 (3)0.4139 (3)0.0968 (11)
O40.1564 (2)0.2758 (2)0.37967 (19)0.0617 (6)
O50.7479 (3)0.2270 (2)0.3509 (2)0.0726 (7)
O60.7752 (2)0.0552 (2)0.39934 (19)0.0641 (7)
O70.2002 (2)0.7618 (2)0.09592 (19)0.0631 (7)
O80.3489 (2)0.6556 (2)0.1366 (2)0.0668 (7)
O90.3096 (2)0.5709 (2)0.0965 (2)0.0718 (8)
O100.3797 (2)0.3866 (2)0.14128 (19)0.0609 (7)
N10.0918 (4)0.1109 (3)0.2174 (2)0.0726 (9)
N20.3628 (4)0.0670 (3)0.1112 (2)0.0697 (9)
C10.0951 (4)0.3963 (3)0.4050 (3)0.0742 (11)
H1A0.00570.41470.39560.111*
H1B0.12550.39750.47190.111*
H1C0.12470.45640.36430.111*
C20.2951 (4)0.2372 (3)0.3889 (2)0.0520 (8)
C30.9268 (4)0.1075 (4)0.4124 (3)0.0765 (12)
H3A0.97120.04930.43530.115*
H3B0.95120.18070.45910.115*
H3C0.95840.12690.35140.115*
C40.6988 (3)0.1245 (3)0.3676 (2)0.0480 (8)
C50.5452 (3)0.0611 (3)0.3552 (2)0.0423 (7)
C60.4918 (3)0.0554 (3)0.3781 (2)0.0427 (7)
H60.55260.09710.40260.051*
C70.3471 (3)0.1105 (3)0.3645 (2)0.0406 (7)
C80.2562 (3)0.0503 (3)0.3263 (2)0.0414 (7)
H80.15970.08680.31630.050*
C90.3125 (3)0.0655 (3)0.3032 (2)0.0405 (7)
C100.4542 (3)0.1227 (3)0.3169 (2)0.0440 (7)
H100.48890.20090.30090.053*
C110.1995 (3)0.1196 (2)0.1661 (2)0.0344 (6)
C120.2607 (3)0.0520 (2)0.1030 (2)0.0383 (7)
H120.31800.00720.12720.046*
C130.2363 (3)0.0511 (2)0.0030 (2)0.0370 (7)
C140.1470 (3)0.1163 (2)0.0330 (2)0.0388 (7)
C150.0845 (3)0.1825 (2)0.0309 (2)0.0390 (7)
H150.02350.22430.00690.047*
C160.1129 (3)0.1864 (2)0.1303 (2)0.0334 (6)
C170.3050 (3)0.0161 (3)0.0612 (2)0.0461 (8)
C180.1171 (3)0.1129 (3)0.1363 (3)0.0475 (8)
C190.5227 (3)0.3945 (4)0.1327 (4)0.0805 (13)
H19A0.58410.32030.14740.121*
H19B0.54970.40570.06750.121*
H19C0.52960.46270.17740.121*
C200.2831 (3)0.4828 (3)0.1232 (2)0.0460 (8)
C210.4657 (4)0.7573 (3)0.1234 (3)0.0764 (12)
H21A0.55250.73680.13640.115*
H21B0.46590.82860.16740.115*
H21C0.45600.77380.05760.115*
C220.2215 (3)0.6710 (3)0.1206 (2)0.0444 (7)
C230.1085 (3)0.5622 (3)0.1353 (2)0.0383 (7)
C240.1361 (3)0.4546 (3)0.1580 (2)0.0423 (7)
H240.22800.44890.16480.051*
C250.0262 (3)0.3570 (2)0.1704 (2)0.0369 (7)
C260.1108 (3)0.3622 (2)0.1620 (2)0.0378 (7)
H260.18360.29590.17170.045*
C270.1380 (3)0.4696 (2)0.1384 (2)0.0368 (6)
C280.0290 (3)0.5684 (2)0.1264 (2)0.0388 (7)
H280.04840.64010.11210.047*
C290.3476 (4)0.3780 (3)0.5670 (3)0.0693 (10)
H290.44650.37750.57140.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1033 (9)0.0602 (6)0.0974 (8)0.0206 (6)0.0056 (7)0.0035 (6)
Cl20.1101 (10)0.1139 (10)0.0909 (9)0.0277 (8)0.0109 (7)0.0198 (7)
Cl30.1220 (11)0.0944 (9)0.1517 (13)0.0433 (8)0.0374 (10)0.0686 (9)
O10.0507 (12)0.0411 (11)0.0573 (13)0.0295 (10)0.0204 (10)0.0252 (10)
O20.0547 (13)0.0479 (12)0.0438 (12)0.0335 (10)0.0024 (10)0.0111 (9)
O30.0627 (17)0.084 (2)0.172 (3)0.0375 (16)0.0266 (19)0.082 (2)
O40.0492 (14)0.0522 (14)0.0856 (17)0.0126 (11)0.0005 (12)0.0264 (12)
O50.0580 (16)0.0530 (16)0.105 (2)0.0099 (12)0.0025 (14)0.0214 (15)
O60.0420 (13)0.0696 (16)0.0866 (18)0.0209 (12)0.0016 (12)0.0266 (13)
O70.0543 (14)0.0385 (13)0.103 (2)0.0147 (11)0.0114 (13)0.0288 (13)
O80.0338 (12)0.0472 (13)0.126 (2)0.0116 (10)0.0160 (13)0.0335 (14)
O90.0484 (14)0.0574 (15)0.122 (2)0.0277 (12)0.0034 (14)0.0368 (15)
O100.0321 (12)0.0536 (14)0.1036 (19)0.0167 (10)0.0065 (12)0.0268 (13)
N10.082 (2)0.080 (2)0.054 (2)0.0174 (18)0.0012 (17)0.0185 (17)
N20.086 (2)0.0566 (19)0.071 (2)0.0247 (17)0.0272 (18)0.0006 (16)
C10.070 (3)0.056 (2)0.095 (3)0.0055 (19)0.008 (2)0.031 (2)
C20.053 (2)0.052 (2)0.060 (2)0.0240 (17)0.0074 (16)0.0210 (16)
C30.039 (2)0.095 (3)0.097 (3)0.024 (2)0.0019 (19)0.015 (2)
C40.0483 (19)0.054 (2)0.0447 (18)0.0195 (16)0.0031 (14)0.0065 (15)
C50.0466 (18)0.0496 (18)0.0354 (16)0.0211 (14)0.0027 (13)0.0076 (13)
C60.0463 (18)0.0498 (18)0.0391 (17)0.0234 (14)0.0016 (13)0.0140 (14)
C70.0435 (17)0.0455 (17)0.0384 (16)0.0203 (14)0.0013 (13)0.0121 (13)
C80.0399 (16)0.0476 (18)0.0424 (17)0.0208 (14)0.0026 (13)0.0104 (14)
C90.0484 (18)0.0467 (18)0.0356 (16)0.0282 (14)0.0029 (13)0.0100 (13)
C100.0507 (19)0.0427 (17)0.0421 (17)0.0190 (14)0.0020 (14)0.0087 (13)
C110.0367 (15)0.0290 (14)0.0402 (16)0.0120 (12)0.0027 (12)0.0109 (12)
C120.0387 (16)0.0300 (15)0.0505 (18)0.0163 (12)0.0004 (13)0.0109 (13)
C130.0371 (15)0.0272 (14)0.0470 (18)0.0087 (12)0.0040 (13)0.0074 (12)
C140.0389 (16)0.0318 (15)0.0446 (17)0.0054 (12)0.0005 (13)0.0135 (13)
C150.0356 (15)0.0354 (15)0.0513 (18)0.0135 (13)0.0029 (13)0.0195 (13)
C160.0283 (14)0.0265 (14)0.0493 (18)0.0101 (11)0.0082 (12)0.0127 (12)
C170.0505 (19)0.0365 (17)0.0507 (19)0.0117 (14)0.0047 (15)0.0058 (14)
C180.0485 (19)0.0425 (18)0.052 (2)0.0108 (14)0.0024 (15)0.0151 (15)
C190.0315 (19)0.082 (3)0.135 (4)0.0209 (18)0.005 (2)0.037 (3)
C200.0372 (17)0.0388 (17)0.065 (2)0.0164 (14)0.0021 (15)0.0103 (15)
C210.042 (2)0.054 (2)0.133 (4)0.0035 (17)0.024 (2)0.024 (2)
C220.0426 (17)0.0368 (17)0.058 (2)0.0137 (14)0.0111 (14)0.0116 (14)
C230.0390 (16)0.0352 (15)0.0458 (17)0.0151 (13)0.0076 (13)0.0129 (13)
C240.0336 (16)0.0441 (17)0.0582 (19)0.0209 (13)0.0106 (14)0.0159 (14)
C250.0403 (16)0.0339 (15)0.0460 (17)0.0209 (13)0.0110 (13)0.0159 (13)
C260.0354 (15)0.0314 (15)0.0501 (18)0.0126 (12)0.0073 (13)0.0114 (13)
C270.0347 (15)0.0357 (15)0.0444 (17)0.0163 (12)0.0035 (12)0.0089 (13)
C280.0411 (17)0.0316 (15)0.0508 (18)0.0196 (13)0.0047 (13)0.0126 (13)
C290.061 (2)0.068 (2)0.087 (3)0.028 (2)0.011 (2)0.018 (2)
Geometric parameters (Å, º) top
Cl1—C291.743 (4)C7—C81.383 (4)
Cl2—C291.744 (4)C8—C91.381 (4)
Cl3—C291.747 (4)C8—H80.9300
O1—C161.369 (3)C9—C101.372 (4)
O1—C251.403 (3)C10—H100.9300
O2—C111.362 (3)C11—C121.383 (4)
O2—C91.411 (3)C11—C161.392 (4)
O3—C21.191 (4)C12—C131.394 (4)
O4—C21.320 (4)C12—H120.9300
O4—C11.449 (4)C13—C141.400 (4)
O5—C41.203 (4)C13—C171.438 (4)
O6—C41.322 (4)C14—C151.389 (4)
O6—C31.452 (4)C14—C181.440 (4)
O7—C221.196 (4)C15—C161.385 (4)
O8—C221.327 (4)C15—H150.9300
O8—C211.450 (4)C19—H19A0.9600
O9—C201.199 (4)C19—H19B0.9600
O10—C201.320 (4)C19—H19C0.9600
O10—C191.442 (4)C20—C271.488 (4)
N1—C181.135 (4)C21—H21A0.9600
N2—C171.139 (4)C21—H21B0.9600
C1—H1A0.9600C21—H21C0.9600
C1—H1B0.9600C22—C231.486 (4)
C1—H1C0.9600C23—C281.382 (4)
C2—C71.493 (4)C23—C241.395 (4)
C3—H3A0.9600C24—C251.377 (4)
C3—H3B0.9600C24—H240.9300
C3—H3C0.9600C25—C261.373 (4)
C4—C51.492 (4)C26—C271.396 (4)
C5—C61.383 (4)C26—H260.9300
C5—C101.395 (4)C27—C281.379 (4)
C6—C71.395 (4)C28—H280.9300
C6—H60.9300C29—H290.9800
C16—O1—C25116.6 (2)C15—C14—C18119.7 (3)
C11—O2—C9117.2 (2)C13—C14—C18120.3 (3)
C2—O4—C1116.7 (3)C16—C15—C14120.0 (3)
C4—O6—C3116.7 (3)C16—C15—H15120.0
C22—O8—C21116.1 (3)C14—C15—H15120.0
C20—O10—C19116.2 (3)O1—C16—C15122.6 (2)
O4—C1—H1A109.5O1—C16—C11117.3 (2)
O4—C1—H1B109.5C15—C16—C11120.0 (3)
H1A—C1—H1B109.5N2—C17—C13178.1 (4)
O4—C1—H1C109.5N1—C18—C14178.9 (4)
H1A—C1—H1C109.5O10—C19—H19A109.5
H1B—C1—H1C109.5O10—C19—H19B109.5
O3—C2—O4123.5 (3)H19A—C19—H19B109.5
O3—C2—C7124.3 (3)O10—C19—H19C109.5
O4—C2—C7112.3 (3)H19A—C19—H19C109.5
O6—C3—H3A109.5H19B—C19—H19C109.5
O6—C3—H3B109.5O9—C20—O10123.5 (3)
H3A—C3—H3B109.5O9—C20—C27123.7 (3)
O6—C3—H3C109.5O10—C20—C27112.8 (2)
H3A—C3—H3C109.5O8—C21—H21A109.5
H3B—C3—H3C109.5O8—C21—H21B109.5
O5—C4—O6123.8 (3)H21A—C21—H21B109.5
O5—C4—C5124.0 (3)O8—C21—H21C109.5
O6—C4—C5112.2 (3)H21A—C21—H21C109.5
C6—C5—C10119.9 (3)H21B—C21—H21C109.5
C6—C5—C4122.6 (3)O7—C22—O8123.6 (3)
C10—C5—C4117.4 (3)O7—C22—C23123.9 (3)
C5—C6—C7120.1 (3)O8—C22—C23112.4 (2)
C5—C6—H6119.9C28—C23—C24119.0 (3)
C7—C6—H6119.9C28—C23—C22118.5 (2)
C8—C7—C6120.3 (3)C24—C23—C22122.6 (3)
C8—C7—C2121.6 (3)C25—C24—C23119.5 (3)
C6—C7—C2118.0 (3)C25—C24—H24120.2
C9—C8—C7118.3 (3)C23—C24—H24120.2
C9—C8—H8120.8C26—C25—C24122.1 (2)
C7—C8—H8120.8C26—C25—O1118.6 (2)
C10—C9—C8122.7 (3)C24—C25—O1119.2 (2)
C10—C9—O2118.9 (3)C25—C26—C27118.2 (3)
C8—C9—O2118.4 (3)C25—C26—H26120.9
C9—C10—C5118.6 (3)C27—C26—H26120.9
C9—C10—H10120.7C28—C27—C26120.5 (3)
C5—C10—H10120.7C28—C27—C20117.0 (2)
O2—C11—C12123.7 (2)C26—C27—C20122.5 (3)
O2—C11—C16116.0 (2)C27—C28—C23120.8 (2)
C12—C11—C16120.3 (3)C27—C28—H28119.6
C11—C12—C13119.9 (2)C23—C28—H28119.6
C11—C12—H12120.0Cl1—C29—Cl2109.5 (2)
C13—C12—H12120.0Cl1—C29—Cl3109.9 (2)
C12—C13—C14119.7 (3)Cl2—C29—Cl3110.2 (2)
C12—C13—C17119.1 (3)Cl1—C29—H29109.1
C14—C13—C17121.2 (3)Cl2—C29—H29109.1
C15—C14—C13120.0 (3)Cl3—C29—H29109.1
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O7i0.932.603.455 (4)154
C29—H29···O3ii0.982.263.182 (5)157
C19—H19A···Cg2iii0.982.903.709 (4)143
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H20N2O10·CHCl3
Mr663.85
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.9223 (13), 11.4374 (15), 13.9398 (19)
α, β, γ (°)96.860 (2), 94.578 (2), 105.326 (2)
V3)1504.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.15 × 0.12 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7568, 5257, 3557
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.08
No. of reflections5257
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.49

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O7i0.932.603.455 (4)154
C29—H29···O3ii0.982.263.182 (5)157
C19—H19A···Cg2iii0.982.903.709 (4)143
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Independent Innovation Foundation of Shandong University, IIFSDU.

References

First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKobayashi, N. (2001). Coord. Chem. Rev. 219–221, 99–103.  CrossRef CAS Google Scholar
First citationLukCentyanets, E. A. (1999). J. Porphyrins Phthalocyanines, 3, 424–432.  Google Scholar
First citationOcak, N., Büyükgüngör, O., Akdemir, N., Ağar, E., Özil, M. & Erdönmez, A. (2004). Acta Cryst. E60, o505–o507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRey, B. del, Keller, U., Torres, T., Rojo, G., Agulló-López, F., Nonell, S., Martí, C., Brasselet, S., Ledoux, I. & Zyss, J. (1998). J. Am. Chem. Soc. 120, 12808–12817.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuda, K., Nakajima, S., Satoh, Y. & Takanami, T. (2009). Chem. Commun. pp. 1255–1227.  CrossRef Google Scholar
First citationZhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds