organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-2-phenyl-4,5-di­hydro­pyridazin-3(2H)-one

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: elmostapha1@ymail.com

(Received 14 May 2011; accepted 7 June 2011; online 18 June 2011)

In the title mol­ecule, C11H12N2O, the pyridazine ring has a skew-boat conformation. The dihedral angle between the phenyl ring [r.m.s deviation = 0.0039 (15) Å] and the best mean-plane of the pyridazine ring [r.m.s deviations = 0.2629 (15) Å] is 53.27 (10)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions involving the methyl group and the phenyl ring of a symmetry-related mol­ecule.

Related literature

For the similar structure, 2-(4-meth­oxy­phen­yl)-6-(trifluoro­meth­yl)-4,5-dihydro­pyridazin-3(2H)-one, see: Wan et al. (2009[Wan, W., Hou, J., Jiang, H., Wang, Y., Zhu, S., Deng, H. & Hao, J. (2009). Tetrahedron, 65, 4212-4219.]). For conformation analysis of six-membered rings, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O

  • Mr = 188.23

  • Monoclinic, P 21

  • a = 6.4151 (2) Å

  • b = 7.9010 (2) Å

  • c = 10.1888 (3) Å

  • β = 106.607 (1)°

  • V = 494.89 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.24 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 7678 measured reflections

  • 1220 independent reflections

  • 1154 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.06

  • 1220 reflections

  • 129 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.54 3.371 (3) 149
C5—H5⋯O1ii 0.93 2.50 3.346 (2) 152
C8—H8B⋯O1iii 0.97 2.55 3.474 (3) 159
C11—H11BCg1iv 0.96 2.89 3.812 (3) 161
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The molecular structure of the title molecule is illustrated in Fig. 1. The bond distances and angles are simliar to those reported for 2-(4-Methoxyphenyl)-6-(trifluoromethyl)-4,5-dihydropyridazin-3(2H)-one (Wan et al., 2009). The pyridazine ring has a skew-boat conformation; Puckering Amplitude (Q) = 0.428 (2) Å, θ = 69.9 (2)°, ϕ = 207.6 (3) ° (Cremer and Pople, 1975). The dihedral angle between the phenyl ring and the best mean-plane of the pyridazine ring (r.m.s deviations: 0.2629 (15) Å) is 53.27 (10)°.

In the crystal molecules are linked via non-classical C—H···O hydrogen bonds (Table 1), forming a two-dimensional network (Fig. 2). Molecules are also linked by C—H···π interactions involving a methyl H-atom and the phenyl ring of a symmetry related molecule (Table 1).

Related literature top

For the similar structure, 2-(4-methoxyphenyl)-6-(trifluoromethyl)-4,5-dihydropyridazin-3(2H)-one, see: Wan et al. (2009). For conformation analysis of six-membered rings, see: Cremer & Pople (1975).

Experimental top

A mixture of phenylhydrazine (2.7 ml, 27 mmol) and levulinic acid (2.6 ml, 25 mmol) in 60 ml of ethanol were refluxed for 4 h. After cooling the reaction mixture was poured onto ice. The solid obtained was filtered off and recrystallized from methanol to give the title compound as colourless crystals: Yield 3.9 g (85%); Mp: 367–369 K. Spectroscopic data for the title compound is given in the archived CIF.

Refinement top

In the final cycles of refinement, in the absence of significant anomalous scattering effects, 906 Friedel pairs were merged and Δf " set to zero. H-atoms were positioned geometrically, with C–H = 0.93 Å for CH(aromatic), 0.97 Å for CH2 and 0.96 Å for CH3 H-atoms. They were constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the chain formed by C—H···O interactions (dashed lines; see Table 1 for details). H-atoms not involved in hydrogen bonding have been omitted for clarity.
6-Methyl-2-phenyl-4,5-dihydropyridazin-3(2H)-one top
Crystal data top
C11H12N2OF(000) = 200
Mr = 188.23Dx = 1.263 Mg m3
Monoclinic, P21Melting point: 397 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.4151 (2) ÅCell parameters from 256 reflections
b = 7.9010 (2) Åθ = 2.4–26.5°
c = 10.1888 (3) ŵ = 0.08 mm1
β = 106.607 (1)°T = 296 K
V = 494.89 (2) Å3Prism, colourless
Z = 20.24 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
1154 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω and ϕ scansh = 87
7678 measured reflectionsk = 810
1220 independent reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0443P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1220 reflectionsΔρmax = 0.15 e Å3
129 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.21 (2)
Crystal data top
C11H12N2OV = 494.89 (2) Å3
Mr = 188.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.4151 (2) ŵ = 0.08 mm1
b = 7.9010 (2) ÅT = 296 K
c = 10.1888 (3) Å0.24 × 0.15 × 0.12 mm
β = 106.607 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
1154 reflections with I > 2σ(I)
7678 measured reflectionsRint = 0.031
1220 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
1220 reflectionsΔρmin = 0.13 e Å3
129 parameters
Special details top

Experimental. Spectroscopic data for the title compound: 1H-NMR (CDCl3): δ 2.14 (s, 3H, CH3), 2.54–2.65 (m, 4H, –CH2—CH2-), 7.20–7.31 (m, 2H, H—Ar), 7.36–7–40 (m, 1H, H—Ar), 7.48–7.51 (m, 2H, H—Ar); 13C-NMR (CDCl3): δ 23.2 (CH3), 26.3 (CH2), 27.7 (CH2), 125 (2CH-Ar), 126.5 (CH—Ar), 128.6 (2CH-Ar), 141.1, 154 (2 C), 165 (CO).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4300 (3)0.0477 (3)0.83092 (17)0.0488 (5)
C100.4122 (2)0.2873 (2)0.59455 (17)0.0413 (4)
C110.1543 (3)0.1310 (3)0.2779 (2)0.0598 (6)
C20.4258 (4)0.0098 (3)0.95947 (18)0.0608 (6)
C30.2448 (4)0.0173 (4)1.00372 (19)0.0673 (7)
C40.0679 (4)0.1005 (4)0.92101 (19)0.0652 (6)
C50.0682 (3)0.1580 (3)0.79218 (17)0.0488 (4)
C60.2502 (3)0.1303 (2)0.74779 (15)0.0389 (4)
C70.0504 (3)0.1740 (2)0.38723 (16)0.0416 (4)
C80.2420 (3)0.2321 (3)0.34560 (17)0.0513 (4)
C90.3773 (3)0.3520 (3)0.45107 (18)0.0527 (5)
H10.55270.03070.80120.059*
H11A0.12650.03940.22330.090*
H11B0.20280.22820.22070.090*
H11C0.26460.09790.31950.090*
H20.54540.06661.01540.073*
H30.24250.02071.08970.081*
H40.05370.11870.95160.078*
H50.05220.21430.73650.059*
H8A0.19370.28870.25760.062*
H8B0.32950.13530.33590.062*
H9A0.51730.36790.43410.063*
H9B0.30530.46110.44200.063*
N10.25017 (19)0.18561 (19)0.61361 (12)0.0389 (3)
N20.0518 (2)0.1529 (2)0.51137 (14)0.0434 (4)
O10.5696 (2)0.3270 (2)0.68880 (14)0.0560 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0539 (9)0.0478 (11)0.0389 (8)0.0057 (8)0.0038 (7)0.0021 (8)
C100.0413 (7)0.0409 (9)0.0420 (8)0.0027 (7)0.0125 (6)0.0036 (7)
C110.0667 (12)0.0614 (14)0.0393 (9)0.0110 (11)0.0044 (8)0.0058 (9)
C20.0803 (13)0.0507 (11)0.0362 (8)0.0005 (11)0.0081 (8)0.0020 (9)
C30.0981 (17)0.0708 (15)0.0300 (7)0.0190 (14)0.0136 (9)0.0020 (9)
C40.0708 (12)0.0870 (17)0.0420 (9)0.0164 (12)0.0230 (9)0.0045 (11)
C50.0465 (8)0.0620 (11)0.0374 (8)0.0036 (9)0.0112 (6)0.0008 (8)
C60.0448 (8)0.0387 (8)0.0301 (7)0.0042 (7)0.0056 (6)0.0015 (6)
C70.0499 (8)0.0360 (8)0.0346 (7)0.0007 (7)0.0048 (6)0.0022 (7)
C80.0625 (10)0.0570 (11)0.0352 (7)0.0039 (9)0.0151 (7)0.0019 (8)
C90.0579 (10)0.0550 (11)0.0474 (9)0.0115 (9)0.0189 (8)0.0028 (9)
N10.0390 (6)0.0451 (8)0.0306 (6)0.0027 (6)0.0067 (5)0.0004 (6)
N20.0416 (7)0.0494 (9)0.0342 (6)0.0062 (7)0.0027 (5)0.0034 (6)
O10.0454 (6)0.0631 (9)0.0533 (7)0.0136 (7)0.0044 (5)0.0029 (7)
Geometric parameters (Å, º) top
C1—H10.9300C5—C41.389 (3)
C1—C21.394 (3)C6—N11.4351 (19)
C10—C91.504 (2)C6—C51.385 (2)
C10—N11.371 (2)C6—C11.384 (2)
C10—O11.219 (2)C7—C111.498 (2)
C11—H11C0.9600C7—C81.483 (2)
C11—H11B0.9600C7—N21.273 (2)
C11—H11A0.9600C8—H8B0.9700
C2—H20.9300C8—H8A0.9700
C2—C31.377 (4)C9—H9B0.9700
C3—H30.9300C9—H9A0.9700
C3—C41.373 (4)C9—C81.507 (3)
C4—H40.9300N2—N11.4191 (17)
C5—H50.9300
C2—C1—H1120.2C6—C5—C4119.07 (19)
C6—C1—H1120.2C5—C6—N1119.50 (15)
C6—C1—C2119.50 (19)C1—C6—N1119.99 (15)
N1—C10—C9115.39 (14)C1—C6—C5120.50 (15)
O1—C10—C9122.55 (16)C8—C7—C11118.64 (15)
O1—C10—N1122.02 (16)N2—C7—C11117.69 (17)
H11B—C11—H11C109.5N2—C7—C8123.63 (14)
H11A—C11—H11C109.5H8A—C8—H8B108.1
C7—C11—H11C109.5C9—C8—H8B109.6
H11A—C11—H11B109.5C7—C8—H8B109.6
C7—C11—H11B109.5C9—C8—H8A109.6
C7—C11—H11A109.5C7—C8—H8A109.6
C1—C2—H2120.0C7—C8—C9110.26 (15)
C3—C2—H2120.0H9A—C9—H9B107.9
C3—C2—C1120.08 (19)C8—C9—H9B109.2
C2—C3—H3120.0C10—C9—H9B109.2
C4—C3—H3120.0C8—C9—H9A109.2
C4—C3—C2120.02 (17)C10—C9—H9A109.2
C5—C4—H4119.6C10—C9—C8112.02 (17)
C3—C4—H4119.6N2—N1—C6113.57 (12)
C3—C4—C5120.8 (2)C10—N1—C6121.30 (13)
C4—C5—H5120.5C10—N1—N2124.06 (13)
C6—C5—H5120.5C7—N2—N1117.09 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.543.371 (3)149
C5—H5···O1ii0.932.503.346 (2)152
C8—H8B···O1iii0.972.553.474 (3)159
C11—H11B···Cg1iv0.962.893.812 (3)161
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x1, y, z; (iii) x+1, y1/2, z+1; (iv) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H12N2O
Mr188.23
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.4151 (2), 7.9010 (2), 10.1888 (3)
β (°) 106.607 (1)
V3)494.89 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7678, 1220, 1154
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.06
No. of reflections1220
No. of parameters129
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.543.371 (3)149
C5—H5···O1ii0.932.503.346 (2)152
C8—H8B···O1iii0.972.553.474 (3)159
C11—H11B···Cg1iv0.962.893.812 (3)161
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x1, y, z; (iii) x+1, y1/2, z+1; (iv) x, y+1/2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, W., Hou, J., Jiang, H., Wang, Y., Zhu, S., Deng, H. & Hao, J. (2009). Tetrahedron, 65, 4212–4219.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds