organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[(2-Hy­dr­oxy­naphthalen-1-yl)methyl­­idene­amino]-5-(morpholin-4-yl­meth­yl)-1,3-oxazolidin-2-one

aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China
*Correspondence e-mail: shenglq@fync.edu.cn

(Received 16 May 2011; accepted 27 May 2011; online 18 June 2011)

The title compound, C19H21N3O4, crystallizes with two independent mol­ecules in the asymmetric unit. In both mol­ecules, there is an intra­molecular O—H⋯N hydrogen bond, which correlates with the fact that each mol­ecule adopts an E configuration with respect to the C=N bond. In the crystal, there are C—H⋯O and C—H⋯π inter­actions present.

Related literature

For background to the naphthalene group as a fluoro­phore, see: Li et al. (2010[Li, L., Dang, Y.-Q., Li, H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618-621.]); Iijima et al. (2010[Iijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603-1609.]). For related structures, see: Xu et al. (2009[Xu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047.]); Liu et al. (2011[Liu, Z.-D., Xu, H.-J., Song, C.-F., Huang, D.-Q., Sheng, L.-Q. & Shi, R.-H. (2011). Chem. Lett. 40, 75-77.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O4

  • Mr = 355.39

  • Monoclinic, P 21 /c

  • a = 10.7764 (6) Å

  • b = 12.0953 (8) Å

  • c = 26.7606 (14) Å

  • β = 93.452 (5)°

  • V = 3481.7 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 291 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.797, Tmax = 0.857

  • 15194 measured reflections

  • 6408 independent reflections

  • 4362 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.03

  • 6408 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C14/C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3 0.82 1.82 2.535 (3) 145
O8—H8⋯N6 0.82 1.84 2.549 (2) 144
C3—H3B⋯O2 0.97 2.49 3.141 (3) 124
C9—H9⋯O7 0.93 2.54 3.472 (3) 177
C18—H18⋯O7 0.93 2.57 3.500 (3) 174
C26—H26A⋯O3i 0.97 2.49 3.403 (3) 157
C36—H36⋯O5ii 0.93 2.48 3.371 (3) 161
C23—H23BCg3iii 0.97 2.65 3.589 (2) 162
Symmetry codes: (i) x, y+1, z; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x-1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The naphthalene group as a fluorophore has been studied extensively due to its characteristic photophysical properties and the competitive stability in the environment (Li et al., 2010; Iijima et al., 2010). As part of an ongoing study of such compounds based on the naphthalene group (Xu et al., 2009; Liu et al., 2011), we report herein on the crystal structure of the title compound.

The molecular structure of the two independent molecules (A and B) of the title compound is shown in Fig. 1. Both molecules display a trans configuration about the CN bond. The bond distances are within the normal range (Allen et al., 1987). In each molecule there is an intramolecular N-H···O hydrogen bond (Table 1), graph set S(5) (Bernstein et al., 1995), and the oxazolidine rings have chair conformations.

In the crystal molecules are linked via C-H···O and C-H···π interactions (Table 1).

Related literature top

For background to the naphthalene group as a fluorophore, see: Li et al. (2010); Iijima et al. (2010). For related structures, see: Xu et al. (2009); Liu et al. (2011). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 3-amino-5-(morpholinomethyl)oxazolidin-2-one (0.10 g, 0.5 mmol) in 5 ml of ethanol was added slowly to a solution of 2-hydro-1- naphthaldehyde (0.086 g,1 mmol) in 10 ml of absolute ethanol under heating and stirring. The mixture was then refluxed for 2 h. The mixture was then cooled to room temperature and the resulting solution was left to stand in air for 15 days. Colourless needle-shaped crystals of the title compound were formed, on slow evaporation of the solvent.

Refinement top

All H-atoms were placed in calculated positions and treated as riding: O—H = 0.82 Å, C—H = 0.93, 0.97 and 0.98 Å, for CH(allyl and aromatic), CH2 and CH(methine) H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering scheme and 30% probability displacement ellipsoids.
(E)-3-[(2-Hydroxynaphthalen-1-yl)methylideneamino]-5- (morpholin-4-ylmethyl)-1,3-oxazolidin-2-one top
Crystal data top
C19H21N3O4F(000) = 1504
Mr = 355.39Dx = 1.356 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3493 reflections
a = 10.7764 (6) Åθ = 3.3–69.5°
b = 12.0953 (8) ŵ = 0.79 mm1
c = 26.7606 (14) ÅT = 291 K
β = 93.452 (5)°Needle, colourless
V = 3481.7 (4) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
6408 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source4362 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 15.9149 pixels mm-1θmax = 69.6°, θmin = 3.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 914
Tmin = 0.797, Tmax = 0.857l = 3032
15194 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.064P)2 + 0.4406P]
where P = (Fo2 + 2Fc2)/3
6408 reflections(Δ/σ)max < 0.001
469 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H21N3O4V = 3481.7 (4) Å3
Mr = 355.39Z = 8
Monoclinic, P21/cCu Kα radiation
a = 10.7764 (6) ŵ = 0.79 mm1
b = 12.0953 (8) ÅT = 291 K
c = 26.7606 (14) Å0.30 × 0.20 × 0.20 mm
β = 93.452 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
6408 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4362 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.857Rint = 0.025
15194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
6408 reflectionsΔρmin = 0.18 e Å3
469 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62286 (16)0.34555 (17)0.81506 (7)0.0786 (7)
O20.20078 (17)0.21656 (14)0.70793 (7)0.0813 (7)
O30.13641 (18)0.07867 (14)0.65635 (8)0.0913 (8)
O40.05112 (17)0.09323 (13)0.53191 (7)0.0750 (6)
N10.39342 (15)0.36978 (14)0.75659 (6)0.0505 (6)
N20.08791 (18)0.26098 (15)0.63996 (8)0.0623 (7)
N30.02095 (17)0.23670 (15)0.59634 (7)0.0579 (6)
C10.5528 (2)0.4447 (2)0.81593 (10)0.0772 (10)
C20.4769 (2)0.4632 (2)0.76757 (9)0.0639 (8)
C30.4683 (2)0.26956 (19)0.75485 (9)0.0605 (8)
C40.5440 (2)0.2549 (2)0.80360 (10)0.0746 (9)
C50.31806 (19)0.38797 (19)0.71005 (8)0.0543 (7)
C60.1915 (2)0.33664 (19)0.70922 (9)0.0565 (7)
C70.10901 (19)0.36726 (18)0.66250 (8)0.0532 (7)
C80.1404 (2)0.1756 (2)0.66643 (10)0.0652 (9)
C90.03316 (19)0.31476 (18)0.57062 (8)0.0511 (7)
C100.10268 (18)0.28679 (17)0.52363 (8)0.0491 (7)
C110.1052 (2)0.17841 (18)0.50616 (9)0.0558 (7)
C120.1633 (2)0.1521 (2)0.45919 (9)0.0615 (8)
C130.2248 (2)0.2300 (2)0.43115 (9)0.0606 (8)
C140.23216 (19)0.34089 (19)0.44830 (8)0.0536 (7)
C150.3021 (2)0.4208 (2)0.42112 (9)0.0653 (8)
C160.3099 (2)0.5264 (2)0.43826 (9)0.0705 (9)
C170.2449 (2)0.5578 (2)0.48293 (9)0.0645 (8)
C180.1759 (2)0.48169 (18)0.51017 (8)0.0566 (7)
C190.16845 (18)0.37009 (17)0.49475 (7)0.0481 (6)
O50.49733 (15)0.85981 (17)0.44678 (6)0.0775 (7)
O60.11211 (15)0.71887 (13)0.57561 (6)0.0656 (6)
O70.00827 (14)0.58282 (13)0.61659 (6)0.0619 (5)
O80.12904 (18)0.58845 (14)0.75372 (7)0.0786 (7)
N40.32867 (16)0.82782 (15)0.53162 (7)0.0535 (6)
N50.01269 (17)0.76087 (15)0.64712 (7)0.0573 (6)
N60.05424 (16)0.73496 (15)0.69042 (6)0.0540 (6)
C200.3661 (2)0.8667 (3)0.44285 (10)0.0776 (10)
C210.3015 (2)0.9028 (2)0.49156 (9)0.0677 (9)
C220.4630 (2)0.8218 (2)0.53528 (9)0.0633 (8)
C230.5233 (2)0.7863 (2)0.48603 (10)0.0721 (10)
C240.2674 (2)0.8597 (2)0.57977 (9)0.0602 (8)
C250.1316 (2)0.83732 (19)0.58221 (9)0.0603 (8)
C260.0655 (2)0.86595 (18)0.63313 (9)0.0601 (8)
C270.04061 (19)0.67765 (18)0.61369 (8)0.0519 (7)
C280.09393 (18)0.81280 (19)0.71992 (8)0.0506 (7)
C290.16142 (18)0.78432 (18)0.76693 (8)0.0497 (7)
C300.21472 (18)0.86931 (19)0.79892 (7)0.0492 (7)
C310.2073 (2)0.9832 (2)0.78744 (8)0.0581 (8)
C320.2594 (2)1.0612 (2)0.81902 (9)0.0653 (8)
C330.3214 (2)1.0305 (3)0.86422 (10)0.0759 (10)
C340.3312 (2)0.9217 (3)0.87660 (9)0.0742 (9)
C350.27911 (19)0.8393 (2)0.84512 (8)0.0583 (8)
C360.2897 (2)0.7256 (2)0.85764 (9)0.0703 (9)
C370.2390 (2)0.6468 (2)0.82728 (10)0.0719 (9)
C380.1749 (2)0.6743 (2)0.78163 (9)0.0599 (8)
H1A0.608800.506700.822000.0930*
H1B0.497700.441500.843300.0930*
H2A0.532000.472200.740500.0770*
H2B0.428600.530400.770000.0770*
H3A0.523300.274600.727500.0730*
H3B0.414500.206100.748900.0730*
H40.022600.115300.559200.1120*
H4A0.593900.188500.801800.0900*
H4B0.488200.245100.830400.0900*
H5A0.362000.358200.682500.0650*
H5B0.308800.466900.704700.0650*
H60.150200.359100.739200.0680*
H7A0.151700.416500.640700.0640*
H7B0.031800.401300.671300.0640*
H90.028200.387600.581700.0610*
H120.159500.080000.447200.0740*
H130.262700.210800.400200.0730*
H150.343800.401400.391000.0780*
H160.358500.577900.420200.0850*
H170.248800.630500.494000.0770*
H180.132700.503800.539600.0680*
H80.104600.610900.725900.1180*
H20A0.334500.795000.433500.0930*
H20B0.348200.919000.416800.0930*
H21A0.212400.904900.488100.0810*
H21B0.328500.976800.499800.0810*
H22A0.482400.769400.561100.0760*
H22B0.494700.893700.544400.0760*
H23A0.494100.712900.478000.0860*
H23B0.612600.782200.488800.0860*
H24A0.304700.819300.606300.0720*
H24B0.280900.937900.585300.0720*
H250.093000.878200.555600.0720*
H26A0.001900.921700.629900.0720*
H26B0.123900.891000.656900.0720*
H280.079700.886400.711300.0610*
H310.166001.005500.757600.0700*
H320.253501.135600.810400.0780*
H330.355801.084200.885700.0910*
H340.373300.901500.906600.0890*
H360.332600.705000.887400.0840*
H370.246500.572900.836700.0860*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0620 (10)0.0986 (14)0.0718 (11)0.0009 (10)0.0250 (9)0.0030 (10)
O20.0908 (12)0.0537 (10)0.0932 (13)0.0157 (9)0.0465 (10)0.0248 (9)
O30.0974 (14)0.0482 (10)0.1223 (17)0.0019 (9)0.0434 (12)0.0119 (10)
O40.0911 (12)0.0492 (9)0.0823 (12)0.0125 (8)0.0134 (10)0.0102 (9)
N10.0469 (9)0.0519 (10)0.0513 (10)0.0038 (8)0.0090 (7)0.0022 (8)
N20.0703 (12)0.0490 (10)0.0641 (12)0.0070 (9)0.0241 (10)0.0024 (9)
N30.0594 (11)0.0526 (10)0.0593 (11)0.0059 (9)0.0153 (9)0.0007 (9)
C10.0710 (16)0.0869 (19)0.0712 (17)0.0147 (15)0.0160 (13)0.0086 (15)
C20.0573 (13)0.0593 (14)0.0731 (15)0.0080 (11)0.0119 (11)0.0028 (12)
C30.0598 (13)0.0573 (14)0.0625 (14)0.0048 (11)0.0112 (11)0.0029 (11)
C40.0751 (16)0.0746 (17)0.0713 (16)0.0082 (14)0.0195 (13)0.0090 (14)
C50.0528 (12)0.0549 (13)0.0538 (12)0.0030 (10)0.0090 (10)0.0088 (10)
C60.0524 (12)0.0575 (13)0.0579 (13)0.0036 (10)0.0113 (10)0.0111 (11)
C70.0495 (11)0.0494 (12)0.0588 (13)0.0014 (9)0.0128 (10)0.0045 (10)
C80.0605 (14)0.0513 (14)0.0808 (17)0.0043 (11)0.0214 (12)0.0129 (12)
C90.0509 (11)0.0476 (11)0.0535 (12)0.0022 (9)0.0071 (9)0.0029 (10)
C100.0464 (11)0.0506 (12)0.0494 (11)0.0000 (9)0.0038 (9)0.0026 (9)
C110.0543 (12)0.0514 (13)0.0614 (13)0.0010 (10)0.0017 (10)0.0078 (11)
C120.0632 (14)0.0580 (13)0.0634 (14)0.0078 (11)0.0046 (11)0.0161 (12)
C130.0596 (13)0.0710 (15)0.0503 (12)0.0147 (12)0.0030 (10)0.0118 (12)
C140.0495 (11)0.0634 (14)0.0469 (11)0.0076 (10)0.0041 (9)0.0034 (10)
C150.0676 (14)0.0797 (17)0.0466 (12)0.0090 (13)0.0140 (11)0.0013 (12)
C160.0763 (16)0.0730 (17)0.0593 (14)0.0084 (13)0.0191 (12)0.0062 (13)
C170.0757 (15)0.0584 (14)0.0570 (13)0.0094 (12)0.0146 (12)0.0004 (11)
C180.0627 (13)0.0555 (13)0.0496 (12)0.0024 (10)0.0141 (10)0.0030 (10)
C190.0442 (10)0.0541 (12)0.0452 (11)0.0041 (9)0.0026 (8)0.0025 (9)
O50.0608 (10)0.1077 (15)0.0607 (10)0.0004 (10)0.0225 (8)0.0059 (10)
O60.0758 (10)0.0521 (9)0.0647 (10)0.0125 (8)0.0309 (8)0.0105 (8)
O70.0629 (9)0.0491 (9)0.0718 (10)0.0068 (7)0.0121 (8)0.0026 (8)
O80.0984 (13)0.0559 (10)0.0779 (12)0.0015 (9)0.0243 (10)0.0063 (9)
N40.0498 (10)0.0543 (10)0.0542 (10)0.0031 (8)0.0148 (8)0.0011 (9)
N50.0673 (11)0.0489 (10)0.0526 (10)0.0057 (9)0.0217 (9)0.0025 (8)
N60.0544 (10)0.0579 (11)0.0476 (10)0.0050 (8)0.0136 (8)0.0009 (9)
C200.0683 (16)0.104 (2)0.0593 (15)0.0006 (15)0.0062 (12)0.0150 (15)
C210.0546 (13)0.0737 (16)0.0728 (16)0.0042 (11)0.0128 (12)0.0118 (13)
C220.0520 (12)0.0773 (16)0.0594 (14)0.0004 (11)0.0074 (10)0.0008 (12)
C230.0527 (13)0.095 (2)0.0670 (16)0.0093 (13)0.0106 (11)0.0060 (15)
C240.0588 (13)0.0608 (14)0.0587 (13)0.0054 (11)0.0150 (10)0.0059 (11)
C250.0660 (14)0.0513 (12)0.0603 (13)0.0058 (10)0.0224 (11)0.0032 (11)
C260.0698 (14)0.0478 (12)0.0591 (13)0.0067 (10)0.0270 (11)0.0040 (10)
C270.0479 (11)0.0505 (13)0.0558 (12)0.0018 (9)0.0100 (9)0.0004 (10)
C280.0487 (11)0.0529 (12)0.0487 (11)0.0039 (9)0.0090 (9)0.0015 (10)
C290.0446 (11)0.0576 (12)0.0457 (11)0.0036 (9)0.0059 (9)0.0035 (10)
C300.0405 (10)0.0636 (13)0.0428 (11)0.0042 (9)0.0033 (8)0.0019 (10)
C310.0538 (12)0.0673 (15)0.0517 (12)0.0052 (11)0.0085 (10)0.0027 (11)
C320.0633 (14)0.0674 (15)0.0643 (15)0.0004 (12)0.0047 (11)0.0108 (12)
C330.0713 (16)0.091 (2)0.0638 (16)0.0079 (15)0.0089 (12)0.0207 (15)
C340.0665 (15)0.104 (2)0.0498 (13)0.0037 (15)0.0150 (11)0.0031 (14)
C350.0482 (12)0.0807 (16)0.0449 (11)0.0046 (11)0.0071 (9)0.0025 (11)
C360.0679 (15)0.0866 (19)0.0541 (14)0.0057 (13)0.0152 (12)0.0187 (13)
C370.0775 (17)0.0710 (16)0.0650 (15)0.0066 (13)0.0133 (13)0.0204 (13)
C380.0595 (13)0.0600 (14)0.0586 (13)0.0044 (11)0.0104 (11)0.0055 (11)
Geometric parameters (Å, º) top
O1—C11.418 (3)C4—H4B0.9700
O1—C41.410 (3)C4—H4A0.9700
O2—C61.456 (3)C5—H5A0.9700
O2—C81.347 (3)C5—H5B0.9700
O3—C81.203 (3)C6—H60.9800
O4—C111.352 (3)C7—H7A0.9700
O4—H40.8200C7—H7B0.9700
O5—C231.417 (3)C9—H90.9300
O5—C201.427 (3)C12—H120.9300
O6—C271.337 (3)C13—H130.9300
O6—C251.460 (3)C15—H150.9300
O7—C271.200 (3)C16—H160.9300
O8—C381.355 (3)C17—H170.9300
O8—H80.8200C18—H180.9300
N1—C51.462 (3)C20—C211.505 (4)
N1—C31.459 (3)C22—C231.497 (4)
N1—C21.463 (3)C24—C251.486 (3)
N2—C71.432 (3)C25—C261.539 (3)
N2—C81.356 (3)C28—C291.456 (3)
N2—N31.367 (3)C29—C301.435 (3)
N3—C91.287 (3)C29—C381.393 (3)
N4—C211.448 (3)C30—C311.413 (3)
N4—C241.464 (3)C30—C351.428 (3)
N4—C221.459 (3)C31—C321.365 (3)
N5—C271.368 (3)C32—C331.396 (4)
N5—N61.364 (2)C33—C341.360 (5)
N5—C261.433 (3)C34—C351.400 (4)
N6—C281.285 (3)C35—C361.418 (3)
C1—C21.506 (3)C36—C371.347 (3)
C3—C41.507 (3)C37—C381.407 (3)
C5—C61.498 (3)C20—H20A0.9700
C6—C71.535 (3)C20—H20B0.9700
C9—C101.464 (3)C21—H21A0.9700
C10—C111.392 (3)C21—H21B0.9700
C10—C191.431 (3)C22—H22A0.9700
C11—C121.407 (3)C22—H22B0.9700
C12—C131.353 (3)C23—H23A0.9700
C13—C141.421 (3)C23—H23B0.9700
C14—C191.428 (3)C24—H24A0.9700
C14—C151.402 (3)C24—H24B0.9700
C15—C161.361 (3)C25—H250.9800
C16—C171.401 (3)C26—H26A0.9700
C17—C181.366 (3)C26—H26B0.9700
C18—C191.415 (3)C28—H280.9300
C1—H1B0.9700C31—H310.9300
C1—H1A0.9700C32—H320.9300
C2—H2B0.9700C33—H330.9300
C2—H2A0.9700C34—H340.9300
C3—H3A0.9700C36—H360.9300
C3—H3B0.9700C37—H370.9300
C1—O1—C4110.29 (17)C14—C13—H13120.00
C6—O2—C8110.84 (18)C12—C13—H13120.00
C11—O4—H4109.00C16—C15—H15120.00
C20—O5—C23109.40 (19)C14—C15—H15120.00
C25—O6—C27110.75 (17)C15—C16—H16120.00
C38—O8—H8109.00C17—C16—H16120.00
C2—N1—C3108.28 (16)C16—C17—H17120.00
C2—N1—C5110.99 (17)C18—C17—H17120.00
C3—N1—C5112.20 (17)C17—C18—H18119.00
N3—N2—C8117.68 (19)C19—C18—H18119.00
C7—N2—C8114.4 (2)O5—C20—C21111.2 (2)
N3—N2—C7127.94 (18)N4—C21—C20110.9 (2)
N2—N3—C9119.86 (18)N4—C22—C23109.58 (19)
C21—N4—C24112.72 (18)O5—C23—C22112.21 (19)
C22—N4—C24110.55 (17)N4—C24—C25112.43 (19)
C21—N4—C22109.08 (17)O6—C25—C24108.78 (18)
N6—N5—C26127.38 (18)C24—C25—C26113.59 (19)
C26—N5—C27114.42 (18)O6—C25—C26105.41 (17)
N6—N5—C27118.08 (18)N5—C26—C25100.79 (17)
N5—N6—C28119.53 (18)O6—C27—N5108.55 (18)
O1—C1—C2112.0 (2)O7—C27—N5127.6 (2)
N1—C2—C1110.70 (19)O6—C27—O7123.9 (2)
N1—C3—C4109.99 (19)N6—C28—C29119.2 (2)
O1—C4—C3112.6 (2)C28—C29—C38120.6 (2)
N1—C5—C6114.14 (18)C30—C29—C38118.99 (19)
O2—C6—C5110.49 (18)C28—C29—C30120.46 (19)
O2—C6—C7104.98 (18)C29—C30—C35119.4 (2)
C5—C6—C7113.22 (19)C31—C30—C35117.03 (19)
N2—C7—C6101.30 (18)C29—C30—C31123.60 (18)
O2—C8—N2108.4 (2)C30—C31—C32121.6 (2)
O3—C8—N2128.1 (2)C31—C32—C33120.7 (2)
O2—C8—O3123.5 (2)C32—C33—C34119.6 (3)
N3—C9—C10118.80 (19)C33—C34—C35121.3 (2)
C9—C10—C11120.32 (19)C30—C35—C34119.8 (2)
C9—C10—C19120.81 (18)C34—C35—C36121.6 (2)
C11—C10—C19118.86 (19)C30—C35—C36118.6 (2)
O4—C11—C10123.2 (2)C35—C36—C37121.3 (2)
O4—C11—C12116.0 (2)C36—C37—C38121.1 (2)
C10—C11—C12120.8 (2)O8—C38—C37116.2 (2)
C11—C12—C13121.0 (2)C29—C38—C37120.6 (2)
C12—C13—C14120.9 (2)O8—C38—C29123.2 (2)
C13—C14—C19118.8 (2)O5—C20—H20A109.00
C15—C14—C19119.8 (2)O5—C20—H20B109.00
C13—C14—C15121.5 (2)C21—C20—H20A109.00
C14—C15—C16120.9 (2)C21—C20—H20B109.00
C15—C16—C17120.3 (2)H20A—C20—H20B108.00
C16—C17—C18120.0 (2)N4—C21—H21A109.00
C17—C18—C19121.7 (2)N4—C21—H21B109.00
C10—C19—C18123.29 (18)C20—C21—H21A109.00
C10—C19—C14119.50 (19)C20—C21—H21B110.00
C14—C19—C18117.20 (19)H21A—C21—H21B108.00
O1—C1—H1A109.00N4—C22—H22A110.00
C2—C1—H1B109.00N4—C22—H22B110.00
H1A—C1—H1B108.00C23—C22—H22A110.00
O1—C1—H1B109.00C23—C22—H22B110.00
C2—C1—H1A109.00H22A—C22—H22B108.00
C1—C2—H2A109.00O5—C23—H23A109.00
N1—C2—H2A109.00O5—C23—H23B109.00
N1—C2—H2B110.00C22—C23—H23A109.00
H2A—C2—H2B108.00C22—C23—H23B109.00
C1—C2—H2B109.00H23A—C23—H23B108.00
C4—C3—H3A110.00N4—C24—H24A109.00
N1—C3—H3B110.00N4—C24—H24B109.00
N1—C3—H3A110.00C25—C24—H24A109.00
C4—C3—H3B110.00C25—C24—H24B109.00
H3A—C3—H3B108.00H24A—C24—H24B108.00
O1—C4—H4A109.00O6—C25—H25110.00
C3—C4—H4A109.00C24—C25—H25110.00
C3—C4—H4B109.00C26—C25—H25110.00
H4A—C4—H4B108.00N5—C26—H26A112.00
O1—C4—H4B109.00N5—C26—H26B112.00
N1—C5—H5B109.00C25—C26—H26A112.00
C6—C5—H5A109.00C25—C26—H26B112.00
N1—C5—H5A109.00H26A—C26—H26B109.00
H5A—C5—H5B108.00N6—C28—H28120.00
C6—C5—H5B109.00C29—C28—H28120.00
C7—C6—H6109.00C30—C31—H31119.00
O2—C6—H6109.00C32—C31—H31119.00
C5—C6—H6109.00C31—C32—H32120.00
N2—C7—H7A112.00C33—C32—H32120.00
N2—C7—H7B111.00C32—C33—H33120.00
C6—C7—H7A111.00C34—C33—H33120.00
C6—C7—H7B112.00C33—C34—H34119.00
H7A—C7—H7B109.00C35—C34—H34119.00
C10—C9—H9121.00C35—C36—H36119.00
N3—C9—H9121.00C37—C36—H36119.00
C11—C12—H12120.00C36—C37—H37119.00
C13—C12—H12119.00C38—C37—H37119.00
C4—O1—C1—C255.7 (3)C9—C10—C11—C12174.9 (2)
C1—O1—C4—C356.4 (3)C19—C10—C11—O4176.7 (2)
C8—O2—C6—C5119.8 (2)C19—C10—C11—C124.7 (3)
C8—O2—C6—C72.6 (2)C9—C10—C19—C14178.04 (19)
C6—O2—C8—O3178.7 (2)C9—C10—C19—C183.0 (3)
C6—O2—C8—N21.5 (3)O4—C11—C12—C13177.2 (2)
C23—O5—C20—C2157.0 (3)C10—C11—C12—C134.1 (3)
C20—O5—C23—C2258.4 (3)C11—C12—C13—C140.2 (3)
C27—O6—C25—C24125.1 (2)C12—C13—C14—C192.9 (3)
C25—O6—C27—N51.8 (2)C12—C13—C14—C15175.9 (2)
C27—O6—C25—C262.9 (2)C13—C14—C19—C102.2 (3)
C25—O6—C27—O7178.1 (2)C13—C14—C19—C18178.82 (19)
C3—N1—C2—C157.3 (2)C19—C14—C15—C160.3 (3)
C2—N1—C3—C457.1 (2)C13—C14—C15—C16179.1 (2)
C5—N1—C3—C4179.95 (17)C15—C14—C19—C10176.68 (19)
C5—N1—C2—C1179.14 (17)C15—C14—C19—C182.4 (3)
C3—N1—C5—C690.4 (2)C14—C15—C16—C171.8 (3)
C2—N1—C5—C6148.33 (19)C15—C16—C17—C181.7 (3)
N3—N2—C7—C6179.1 (2)C16—C17—C18—C190.5 (3)
C8—N2—N3—C9178.3 (2)C17—C18—C19—C142.5 (3)
C7—N2—N3—C90.6 (3)C17—C18—C19—C10176.5 (2)
N3—N2—C8—O30.4 (4)O5—C20—C21—N457.7 (3)
C8—N2—C7—C62.0 (2)N4—C22—C23—O559.0 (2)
N3—N2—C8—O2179.50 (18)N4—C24—C25—O660.8 (2)
C7—N2—C8—O20.5 (3)N4—C24—C25—C26177.82 (18)
C7—N2—C8—O3179.4 (2)O6—C25—C26—N52.7 (2)
N2—N3—C9—C10179.05 (18)C24—C25—C26—N5121.7 (2)
C22—N4—C21—C2056.9 (2)N6—C28—C29—C30175.43 (19)
C24—N4—C22—C23178.56 (19)N6—C28—C29—C384.8 (3)
C24—N4—C21—C20179.88 (19)C28—C29—C30—C310.7 (3)
C21—N4—C22—C2357.0 (2)C28—C29—C30—C35179.22 (18)
C21—N4—C24—C2573.4 (2)C38—C29—C30—C31179.5 (2)
C22—N4—C24—C25164.21 (19)C38—C29—C30—C350.6 (3)
N6—N5—C26—C25177.71 (19)C28—C29—C38—O80.9 (3)
C26—N5—N6—C2812.1 (3)C28—C29—C38—C37179.4 (2)
C27—N5—N6—C28172.20 (19)C30—C29—C38—O8179.3 (2)
N6—N5—C27—O73.7 (3)C30—C29—C38—C370.4 (3)
C27—N5—C26—C251.8 (2)C29—C30—C31—C32180.0 (2)
N6—N5—C27—O6176.41 (17)C35—C30—C31—C320.1 (3)
C26—N5—C27—O60.1 (3)C29—C30—C35—C34179.9 (2)
C26—N5—C27—O7180.0 (2)C29—C30—C35—C360.8 (3)
N5—N6—C28—C29177.79 (17)C31—C30—C35—C340.0 (3)
O1—C1—C2—N157.4 (2)C31—C30—C35—C36179.28 (19)
N1—C3—C4—O158.2 (2)C30—C31—C32—C330.5 (3)
N1—C5—C6—O268.9 (2)C31—C32—C33—C340.8 (3)
N1—C5—C6—C7173.73 (18)C32—C33—C34—C350.7 (3)
C5—C6—C7—N2118.0 (2)C33—C34—C35—C300.3 (3)
O2—C6—C7—N22.7 (2)C33—C34—C35—C36179.6 (2)
N3—C9—C10—C19177.52 (19)C30—C35—C36—C370.9 (3)
N3—C9—C10—C112.9 (3)C34—C35—C36—C37179.8 (2)
C9—C10—C11—O43.7 (3)C35—C36—C37—C380.8 (3)
C11—C10—C19—C141.6 (3)C36—C37—C38—O8179.2 (2)
C11—C10—C19—C18177.4 (2)C36—C37—C38—C290.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg8 and Cg9 are the centroids of the C10–C14/C19, C29/C30/C35–C38 and C30–C35 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.821.822.535 (3)145
O8—H8···N60.821.842.549 (2)144
C3—H3B···O20.972.493.141 (3)124
C9—H9···O70.932.543.472 (3)177
C18—H18···O70.932.573.500 (3)174
C26—H26A···O3i0.972.493.403 (3)157
C36—H36···O5ii0.932.483.371 (3)161
C2—H2A···Cg9iii0.972.993.936 (2)166
C3—H3A···Cg8iii0.972.973.854 (2)151
C23—H23B···Cg3iv0.972.653.589 (2)162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H21N3O4
Mr355.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.7764 (6), 12.0953 (8), 26.7606 (14)
β (°) 93.452 (5)
V3)3481.7 (4)
Z8
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.797, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
15194, 6408, 4362
Rint0.025
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.03
No. of reflections6408
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3, Cg8 and Cg9 are the centroids of the C10–C14/C19, C29/C30/C35–C38 and C30–C35 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.821.822.535 (3)145
O8—H8···N60.821.842.549 (2)144
C3—H3B···O20.972.493.141 (3)124
C9—H9···O70.932.543.472 (3)177
C18—H18···O70.932.573.500 (3)174
C26—H26A···O3i0.972.493.403 (3)157
C36—H36···O5ii0.932.483.371 (3)161
C2—H2A···Cg9iii0.972.993.936 (2)166
C3—H3A···Cg8iii0.972.973.854 (2)151
C23—H23B···Cg3iv0.972.653.589 (2)162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x1, y+1, z+1.
 

Acknowledgements

This work was supported by the Key Project of Science and Technology of Anhui, (grant No. 08010302218), the Natural Science Foundation of Anhui Provincial University (grant No. KJ2009A127) and the National Natural Science Foundation of China (grant No. 20971024).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationIijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603–1609.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, L., Dang, Y.-Q., Li, H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618–621.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Z.-D., Xu, H.-J., Song, C.-F., Huang, D.-Q., Sheng, L.-Q. & Shi, R.-H. (2011). Chem. Lett. 40, 75–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds