organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-2,3,5,6-tetra­fluoro-4-nitro­benzene

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, bInstitut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and cDepartment of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
*Correspondence e-mail: Edwin.Weber@chemie.tu-freiberg.de

(Received 24 May 2011; accepted 7 June 2011; online 18 June 2011)

In the title compound, C6BrF4NO2, the nitro group is twisted by 41.7 (3)° with reference to the arene ring mean plane. The main inter­actions stabilizing the crystal structure include O⋯Br contacts [3.150 (2) and 3.201 (2) Å], while F⋯F inter­actions are minor [2.863 (3)–2.908 (3) Å].

Related literature

For halogen inter­actions in mol­ecular crystal structures, see: Awwadi et al. (2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]); Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]); Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105-136. Berlin-Heidelberg: Springer.]). For fluorine-involved inter­actions, see: Schwarzer et al. (2010[Schwarzer, A., Bombicz, P. & Weber, E. (2010). J. Fluorine Chem. 131, 345-356.]); Merz & Vasylyeva (2010[Merz, K. & Vasylyeva, V. (2010). CrystEngComm, 12, 3989-4002.]); Schwarzer & Weber (2008[Schwarzer, A. & Weber, E. (2008). Cryst. Growth Des. 8, 2862-2874.]); Reichenbächer et al. (2005[Reichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22-30.]). For the synthesis, see: Shtark & Shteingarts (1976[Shtark, A. A. & Shteingarts, V. D. (1976). Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 4, 123-128.]).

[Scheme 1]

Experimental

Crystal data
  • C6BrF4NO2

  • Mr = 273.98

  • Orthorhombic, P n a 21

  • a = 5.6718 (3) Å

  • b = 10.9476 (6) Å

  • c = 12.2652 (8) Å

  • V = 761.58 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.44 mm−1

  • T = 93 K

  • 0.13 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.536, Tmax = 0.612

  • 4314 measured reflections

  • 1550 independent reflections

  • 1447 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.053

  • S = 1.00

  • 1550 reflections

  • 127 parameters

  • 1 restraint

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 636 Friedel pairs

  • Flack parameter: 0.026 (10)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogen interactions in molecular crystal structures have been the subject of a numer of studies (Awwadi et al., 2006; Brammer et al., 2001; Metrangolo et al., 2008). Fluorine involved interactions in particular have been studied by us and others (Schwarzer et al., 2010; Schwarzer & Weber, 2008; Reichenbächer et al., 2005; Merz & Vasylyeva, 2010). In continuation of that work we report herein on the crystal structure of the title tetrafluoro-benzene compound.

In the title compound (Fig. 1) the plane of the nitro group (O1—N1—O2) shows a twist of 41.68 (28)° with reference to the phenyl ring, owing to repulsive interactions between the ortho-positioned fluorine (F2 and F3) and oxygen atoms. The N—O bond lengths are different (O1—N1: 1.217 (4) Å; O2—N1: 1.234 (3) Å) as a result of different intermolecular interactions.

In the crystal oxygen O1 is involved in two strong intermolecular contacts to bromine Br1 [3.150 (2) and 3.201 (2) Å], giving rise to the formation of a three-dimensional molecular network (Table 1 and Fig. 2). On the other hand, atom O2 forms a weak contact to atom F3 [2.823 (3) Å].

The fluorine···fluorine contacts [2.863 (3) – 2.908 (3) Å] are close to the sum of their van-der-Waals radii hence, they do not contribute significantly to the stabilization of the crystal packing. Moreover, there is no indication for the presence of either πF···πF stacking or C—X···πF interactions (X = O, F, Br). Hence, except for the O···Br interactions, the crystal structure is mostly determined by maximum symmetry and close-packing principles, which is reflected in the low melting point of 321 K.

Related literature top

For halogen interactions in molecular crystal structures, see: Awwadi et al. (2006); Brammer et al. (2001); Metrangolo et al. (2008). For fluorine-involved interactions, see: Schwarzer et al. (2010); Merz & Vasylyeva (2010); Schwarzer & Weber (2008); Reichenbächer et al. (2005). For the synthesis, see: Shtark & Shteingarts (1976).

Experimental top

The title compound was synthesized according to the published procedure (Shtark & Shteingarts, 1976). 3-bromo-1,2,4,5-tetrafluorobenzene (2.80 g, 12 mmol) and NO2BF4 (6.45 g, 48 mmol) were dissolved in 45 ml of sulfolan and stirred for 2 h at 338 K. After cooling the solution to room temperature, 120 ml water was added and the phases separated. The aqueous layer was extracted with chloroform (3 × 50 ml), dried (Na2SO4) and evaporated under reduced pressure. The crude product was purified by water steam distillation to yield 2.66 g (81%) of the title compound. Sublimation techniques yielded single crystals suitable for X-ray crystallography.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with the atom numbering and showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial view, along the a axis, of the crystal packing of the title compound. The O···Br, and potential O···F and F···F contacts are shown as broken lines (see Table 1 for details).
1-Bromo-2,3,5,6-tetrafluoro-4-nitrobenzene top
Crystal data top
C6BrF4NO2F(000) = 520
Mr = 273.98Dx = 2.390 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2319 reflections
a = 5.6718 (3) Åθ = 3.7–32.8°
b = 10.9476 (6) ŵ = 5.44 mm1
c = 12.2652 (8) ÅT = 93 K
V = 761.58 (8) Å3Needle, colourless
Z = 40.13 × 0.13 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1550 independent reflections
Radiation source: fine-focus sealed tube1447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 77
Tmin = 0.536, Tmax = 0.612k = 1412
4314 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0208P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.008
S = 1.00Δρmax = 0.32 e Å3
1550 reflectionsΔρmin = 0.53 e Å3
127 parametersAbsolute structure: Flack (1983), 636 Friedel pairs
1 restraintAbsolute structure parameter: 0.026 (10)
Crystal data top
C6BrF4NO2V = 761.58 (8) Å3
Mr = 273.98Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 5.6718 (3) ŵ = 5.44 mm1
b = 10.9476 (6) ÅT = 93 K
c = 12.2652 (8) Å0.13 × 0.13 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1550 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1447 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.612Rint = 0.026
4314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0231 restraint
wR(F2) = 0.053Δρmax = 0.32 e Å3
S = 1.00Δρmin = 0.53 e Å3
1550 reflectionsAbsolute structure: Flack (1983), 636 Friedel pairs
127 parametersAbsolute structure parameter: 0.026 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.16169 (4)0.62891 (2)0.12241 (5)0.01760 (10)
F10.9560 (3)0.69267 (15)0.10033 (17)0.0188 (4)
F20.6066 (3)0.58458 (16)0.20909 (18)0.0178 (4)
F30.5004 (3)0.30738 (15)0.08418 (15)0.0181 (4)
F40.8565 (3)0.41466 (18)0.19058 (19)0.0192 (4)
N10.3610 (4)0.3813 (2)0.1276 (3)0.0148 (6)
O10.3925 (4)0.36408 (18)0.2245 (2)0.0181 (5)
O20.1833 (3)0.3518 (2)0.0760 (2)0.0207 (6)
C10.8465 (4)0.5971 (3)0.0542 (3)0.0134 (7)
C20.6671 (4)0.5405 (3)0.1118 (3)0.0136 (7)
C30.5498 (4)0.4424 (3)0.0658 (3)0.0128 (7)
C40.6105 (5)0.4023 (3)0.0374 (3)0.0146 (7)
C50.7936 (4)0.4574 (3)0.0933 (3)0.0129 (8)
C60.9119 (4)0.5558 (3)0.0468 (3)0.0146 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01516 (11)0.01875 (15)0.01890 (19)0.00140 (8)0.00323 (18)0.0046 (2)
F10.0214 (7)0.0153 (9)0.0198 (13)0.0066 (6)0.0011 (8)0.0038 (8)
F20.0241 (8)0.0159 (9)0.0135 (13)0.0005 (7)0.0031 (9)0.0027 (9)
F30.0224 (7)0.0155 (9)0.0164 (12)0.0057 (6)0.0040 (8)0.0017 (7)
F40.0256 (9)0.0177 (10)0.0142 (14)0.0018 (7)0.0024 (8)0.0009 (9)
N10.0150 (12)0.0158 (15)0.014 (2)0.0005 (8)0.0002 (11)0.0015 (13)
O10.0205 (8)0.0206 (12)0.0133 (16)0.0014 (7)0.0005 (10)0.0048 (10)
O20.0134 (9)0.0245 (14)0.0241 (17)0.0025 (7)0.0025 (10)0.0016 (11)
C10.0165 (12)0.0082 (15)0.016 (2)0.0009 (10)0.0038 (13)0.0006 (13)
C20.0160 (12)0.0125 (16)0.012 (2)0.0048 (9)0.0001 (12)0.0004 (14)
C30.0099 (10)0.0143 (15)0.014 (2)0.0018 (10)0.0001 (12)0.0040 (13)
C40.0169 (12)0.0107 (15)0.016 (2)0.0019 (10)0.0045 (13)0.0003 (13)
C50.0150 (10)0.0158 (15)0.008 (2)0.0030 (9)0.0001 (11)0.0003 (12)
C60.0110 (10)0.0169 (15)0.016 (2)0.0014 (10)0.0020 (12)0.0065 (13)
Geometric parameters (Å, º) top
Br1—C61.874 (3)F4—F3iii2.877 (2)
Br1—O1i3.150 (2)F4—F2vii2.901 (2)
Br1—O1ii3.201 (2)N1—O11.217 (4)
F3—O2iii2.823 (3)N1—O21.234 (3)
F1—C11.342 (3)N1—C31.472 (4)
F1—F2iv2.908 (3)O1—Br1ix3.150 (2)
F2—C21.332 (4)O1—Br1x3.201 (2)
F2—F3v2.863 (3)O2—F3viii2.823 (3)
F2—F4v2.901 (2)C1—C61.369 (5)
F2—F1vi2.908 (3)C1—C21.385 (4)
F3—C41.341 (3)C2—C31.385 (4)
F3—F2vii2.863 (3)C3—C41.383 (5)
F3—F4viii2.877 (2)C4—C51.382 (4)
F4—C51.331 (4)C5—C61.391 (4)
C6—Br1—O1i155.87 (10)N1—O1—Br1ix134.13 (18)
C6—Br1—O1ii124.16 (9)N1—O1—Br1x133.10 (18)
O1i—Br1—O1ii73.03 (6)Br1ix—O1—Br1x75.36 (6)
C1—F1—F2iv169.53 (15)N1—O2—F3viii144.98 (19)
C2—F2—F3v176.03 (17)F1—C1—C6120.9 (3)
C2—F2—F4v127.90 (16)F1—C1—C2118.2 (3)
F3v—F2—F4v55.33 (6)C6—C1—C2120.8 (3)
C2—F2—F1vi88.19 (17)F2—C2—C3121.5 (3)
F3v—F2—F1vi89.86 (7)F2—C2—C1119.0 (3)
F4v—F2—F1vi85.76 (7)C3—C2—C1119.5 (3)
C4—F3—O2iii90.56 (18)C4—C3—C2120.0 (3)
C4—F3—F2vii99.04 (18)C4—C3—N1120.6 (3)
O2iii—F3—F2vii161.63 (9)C2—C3—N1119.5 (3)
C4—F3—F4viii168.70 (16)F3—C4—C5118.4 (3)
O2iii—F3—F4viii84.17 (8)F3—C4—C3121.4 (3)
F2vii—F3—F4viii83.52 (8)C5—C4—C3120.1 (3)
C5—F4—F3iii88.06 (17)F4—C5—C4119.5 (3)
C5—F4—F2vii97.86 (13)F4—C5—C6120.7 (3)
F3iii—F4—F2vii116.85 (8)C4—C5—C6119.8 (3)
O1—N1—O2125.5 (3)C1—C6—C5119.7 (3)
O1—N1—C3117.8 (2)C1—C6—Br1120.8 (2)
O2—N1—C3116.6 (3)C5—C6—Br1119.5 (2)
O2—N1—O1—Br1ix164.81 (19)F4viii—F3—C4—C550.3 (12)
C3—N1—O1—Br1ix15.2 (4)O2iii—F3—C4—C365.5 (3)
O2—N1—O1—Br1x49.6 (4)F2vii—F3—C4—C3130.3 (3)
C3—N1—O1—Br1x130.4 (2)F4viii—F3—C4—C3127.4 (9)
O1—N1—O2—F3viii110.3 (4)C2—C3—C4—F3179.9 (3)
C3—N1—O2—F3viii69.7 (4)N1—C3—C4—F30.0 (4)
F2iv—F1—C1—C6133.4 (10)C2—C3—C4—C52.2 (4)
F2iv—F1—C1—C247.2 (13)N1—C3—C4—C5177.7 (3)
F3v—F2—C2—C3174 (2)F3iii—F4—C5—C465.3 (3)
F4v—F2—C2—C330.2 (4)F2vii—F4—C5—C451.5 (3)
F1vi—F2—C2—C3113.4 (3)F3iii—F4—C5—C6113.9 (3)
F3v—F2—C2—C14 (3)F2vii—F4—C5—C6129.2 (2)
F4v—F2—C2—C1147.6 (2)F3—C4—C5—F40.5 (4)
F1vi—F2—C2—C164.4 (3)C3—C4—C5—F4177.2 (2)
F1—C1—C2—F21.5 (4)F3—C4—C5—C6179.8 (3)
C6—C1—C2—F2179.1 (3)C3—C4—C5—C62.0 (4)
F1—C1—C2—C3179.4 (3)F1—C1—C6—C5179.2 (3)
C6—C1—C2—C31.2 (4)C2—C1—C6—C51.4 (4)
F2—C2—C3—C4177.2 (3)F1—C1—C6—Br11.6 (4)
C1—C2—C3—C40.6 (4)C2—C1—C6—Br1177.8 (2)
F2—C2—C3—N12.9 (4)F4—C5—C6—C1179.0 (3)
C1—C2—C3—N1179.2 (3)C4—C5—C6—C10.2 (4)
O1—N1—C3—C4138.6 (3)F4—C5—C6—Br10.2 (4)
O2—N1—C3—C441.4 (4)C4—C5—C6—Br1179.4 (2)
O1—N1—C3—C241.3 (4)O1i—Br1—C6—C1143.2 (2)
O2—N1—C3—C2138.7 (3)O1ii—Br1—C6—C186.1 (3)
O2iii—F3—C4—C5112.3 (3)O1i—Br1—C6—C536.0 (4)
F2vii—F3—C4—C552.0 (3)O1ii—Br1—C6—C594.7 (2)
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z; (v) x+1, y+1, z1/2; (vi) x1/2, y+3/2, z; (vii) x+1, y+1, z+1/2; (viii) x1/2, y+1/2, z; (ix) x+2, y+1, z1/2; (x) x+3/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6BrF4NO2
Mr273.98
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)93
a, b, c (Å)5.6718 (3), 10.9476 (6), 12.2652 (8)
V3)761.58 (8)
Z4
Radiation typeMo Kα
µ (mm1)5.44
Crystal size (mm)0.13 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.536, 0.612
No. of measured, independent and
observed [I > 2σ(I)] reflections
4314, 1550, 1447
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.053, 1.00
No. of reflections1550
No. of parameters127
No. of restraints1
Δρmax, Δρmin (e Å3)0.32, 0.53
Absolute structureFlack (1983), 636 Friedel pairs
Absolute structure parameter0.026 (10)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Br1—O1i3.150 (2)F2—F3v2.863 (3)
Br1—O1ii3.201 (2)F2—F4v2.901 (2)
F3—O2iii2.823 (3)F3—F4vi2.877 (2)
F1—F2iv2.908 (3)
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z; (v) x+1, y+1, z1/2; (vi) x1/2, y+1/2, z.
 

References

First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMerz, K. & Vasylyeva, V. (2010). CrystEngComm, 12, 3989–4002.  Web of Science CrossRef CAS Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin-Heidelberg: Springer.  Google Scholar
First citationReichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22–30.  Web of Science CrossRef PubMed Google Scholar
First citationSchwarzer, A., Bombicz, P. & Weber, E. (2010). J. Fluorine Chem. 131, 345–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwarzer, A. & Weber, E. (2008). Cryst. Growth Des. 8, 2862–2874.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtark, A. A. & Shteingarts, V. D. (1976). Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 4, 123–128.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds