organic compounds
1-Bromo-2,3,5,6-tetrafluoro-4-nitrobenzene
aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, bInstitut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and cDepartment of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
*Correspondence e-mail: Edwin.Weber@chemie.tu-freiberg.de
In the title compound, C6BrF4NO2, the nitro group is twisted by 41.7 (3)° with reference to the arene ring mean plane. The main interactions stabilizing the include O⋯Br contacts [3.150 (2) and 3.201 (2) Å], while F⋯F interactions are minor [2.863 (3)–2.908 (3) Å].
Related literature
For halogen interactions in molecular crystal structures, see: Awwadi et al. (2006); Brammer et al. (2001); Metrangolo et al. (2008). For fluorine-involved interactions, see: Schwarzer et al. (2010); Merz & Vasylyeva (2010); Schwarzer & Weber (2008); Reichenbächer et al. (2005). For the synthesis, see: Shtark & Shteingarts (1976).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681102201X/su2278sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681102201X/su2278Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681102201X/su2278Isup3.cml
The title compound was synthesized according to the published procedure (Shtark & Shteingarts, 1976). 3-bromo-1,2,4,5-tetrafluorobenzene (2.80 g, 12 mmol) and NO2BF4 (6.45 g, 48 mmol) were dissolved in 45 ml of sulfolan and stirred for 2 h at 338 K. After cooling the solution to room temperature, 120 ml water was added and the phases separated. The aqueous layer was extracted with chloroform (3 × 50 ml), dried (Na2SO4) and evaporated under reduced pressure. The crude product was purified by water steam distillation to yield 2.66 g (81%) of the title compound.
techniques yielded single crystals suitable for X-ray crystallography.Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C6BrF4NO2 | F(000) = 520 |
Mr = 273.98 | Dx = 2.390 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2319 reflections |
a = 5.6718 (3) Å | θ = 3.7–32.8° |
b = 10.9476 (6) Å | µ = 5.44 mm−1 |
c = 12.2652 (8) Å | T = 93 K |
V = 761.58 (8) Å3 | Needle, colourless |
Z = 4 | 0.13 × 0.13 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 1550 independent reflections |
Radiation source: fine-focus sealed tube | 1447 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
phi and ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −7→7 |
Tmin = 0.536, Tmax = 0.612 | k = −14→12 |
4314 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0208P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.053 | (Δ/σ)max = 0.008 |
S = 1.00 | Δρmax = 0.32 e Å−3 |
1550 reflections | Δρmin = −0.53 e Å−3 |
127 parameters | Absolute structure: Flack (1983), 636 Friedel pairs |
1 restraint | Absolute structure parameter: 0.026 (10) |
C6BrF4NO2 | V = 761.58 (8) Å3 |
Mr = 273.98 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 5.6718 (3) Å | µ = 5.44 mm−1 |
b = 10.9476 (6) Å | T = 93 K |
c = 12.2652 (8) Å | 0.13 × 0.13 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 1550 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1447 reflections with I > 2σ(I) |
Tmin = 0.536, Tmax = 0.612 | Rint = 0.026 |
4314 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 1 restraint |
wR(F2) = 0.053 | Δρmax = 0.32 e Å−3 |
S = 1.00 | Δρmin = −0.53 e Å−3 |
1550 reflections | Absolute structure: Flack (1983), 636 Friedel pairs |
127 parameters | Absolute structure parameter: 0.026 (10) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.16169 (4) | 0.62891 (2) | 0.12241 (5) | 0.01760 (10) | |
F1 | 0.9560 (3) | 0.69267 (15) | −0.10033 (17) | 0.0188 (4) | |
F2 | 0.6066 (3) | 0.58458 (16) | −0.20909 (18) | 0.0178 (4) | |
F3 | 0.5004 (3) | 0.30738 (15) | 0.08418 (15) | 0.0181 (4) | |
F4 | 0.8565 (3) | 0.41466 (18) | 0.19058 (19) | 0.0192 (4) | |
N1 | 0.3610 (4) | 0.3813 (2) | −0.1276 (3) | 0.0148 (6) | |
O1 | 0.3925 (4) | 0.36408 (18) | −0.2245 (2) | 0.0181 (5) | |
O2 | 0.1833 (3) | 0.3518 (2) | −0.0760 (2) | 0.0207 (6) | |
C1 | 0.8465 (4) | 0.5971 (3) | −0.0542 (3) | 0.0134 (7) | |
C2 | 0.6671 (4) | 0.5405 (3) | −0.1118 (3) | 0.0136 (7) | |
C3 | 0.5498 (4) | 0.4424 (3) | −0.0658 (3) | 0.0128 (7) | |
C4 | 0.6105 (5) | 0.4023 (3) | 0.0374 (3) | 0.0146 (7) | |
C5 | 0.7936 (4) | 0.4574 (3) | 0.0933 (3) | 0.0129 (8) | |
C6 | 0.9119 (4) | 0.5558 (3) | 0.0468 (3) | 0.0146 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01516 (11) | 0.01875 (15) | 0.01890 (19) | −0.00140 (8) | −0.00323 (18) | −0.0046 (2) |
F1 | 0.0214 (7) | 0.0153 (9) | 0.0198 (13) | −0.0066 (6) | 0.0011 (8) | 0.0038 (8) |
F2 | 0.0241 (8) | 0.0159 (9) | 0.0135 (13) | −0.0005 (7) | −0.0031 (9) | 0.0027 (9) |
F3 | 0.0224 (7) | 0.0155 (9) | 0.0164 (12) | −0.0057 (6) | 0.0040 (8) | 0.0017 (7) |
F4 | 0.0256 (9) | 0.0177 (10) | 0.0142 (14) | 0.0018 (7) | −0.0024 (8) | 0.0009 (9) |
N1 | 0.0150 (12) | 0.0158 (15) | 0.014 (2) | −0.0005 (8) | −0.0002 (11) | −0.0015 (13) |
O1 | 0.0205 (8) | 0.0206 (12) | 0.0133 (16) | −0.0014 (7) | −0.0005 (10) | −0.0048 (10) |
O2 | 0.0134 (9) | 0.0245 (14) | 0.0241 (17) | −0.0025 (7) | 0.0025 (10) | −0.0016 (11) |
C1 | 0.0165 (12) | 0.0082 (15) | 0.016 (2) | −0.0009 (10) | 0.0038 (13) | 0.0006 (13) |
C2 | 0.0160 (12) | 0.0125 (16) | 0.012 (2) | 0.0048 (9) | 0.0001 (12) | −0.0004 (14) |
C3 | 0.0099 (10) | 0.0143 (15) | 0.014 (2) | 0.0018 (10) | 0.0001 (12) | −0.0040 (13) |
C4 | 0.0169 (12) | 0.0107 (15) | 0.016 (2) | 0.0019 (10) | 0.0045 (13) | 0.0003 (13) |
C5 | 0.0150 (10) | 0.0158 (15) | 0.008 (2) | 0.0030 (9) | 0.0001 (11) | −0.0003 (12) |
C6 | 0.0110 (10) | 0.0169 (15) | 0.016 (2) | 0.0014 (10) | −0.0020 (12) | −0.0065 (13) |
Br1—C6 | 1.874 (3) | F4—F3iii | 2.877 (2) |
Br1—O1i | 3.150 (2) | F4—F2vii | 2.901 (2) |
Br1—O1ii | 3.201 (2) | N1—O1 | 1.217 (4) |
F3—O2iii | 2.823 (3) | N1—O2 | 1.234 (3) |
F1—C1 | 1.342 (3) | N1—C3 | 1.472 (4) |
F1—F2iv | 2.908 (3) | O1—Br1ix | 3.150 (2) |
F2—C2 | 1.332 (4) | O1—Br1x | 3.201 (2) |
F2—F3v | 2.863 (3) | O2—F3viii | 2.823 (3) |
F2—F4v | 2.901 (2) | C1—C6 | 1.369 (5) |
F2—F1vi | 2.908 (3) | C1—C2 | 1.385 (4) |
F3—C4 | 1.341 (3) | C2—C3 | 1.385 (4) |
F3—F2vii | 2.863 (3) | C3—C4 | 1.383 (5) |
F3—F4viii | 2.877 (2) | C4—C5 | 1.382 (4) |
F4—C5 | 1.331 (4) | C5—C6 | 1.391 (4) |
C6—Br1—O1i | 155.87 (10) | N1—O1—Br1ix | 134.13 (18) |
C6—Br1—O1ii | 124.16 (9) | N1—O1—Br1x | 133.10 (18) |
O1i—Br1—O1ii | 73.03 (6) | Br1ix—O1—Br1x | 75.36 (6) |
C1—F1—F2iv | 169.53 (15) | N1—O2—F3viii | 144.98 (19) |
C2—F2—F3v | 176.03 (17) | F1—C1—C6 | 120.9 (3) |
C2—F2—F4v | 127.90 (16) | F1—C1—C2 | 118.2 (3) |
F3v—F2—F4v | 55.33 (6) | C6—C1—C2 | 120.8 (3) |
C2—F2—F1vi | 88.19 (17) | F2—C2—C3 | 121.5 (3) |
F3v—F2—F1vi | 89.86 (7) | F2—C2—C1 | 119.0 (3) |
F4v—F2—F1vi | 85.76 (7) | C3—C2—C1 | 119.5 (3) |
C4—F3—O2iii | 90.56 (18) | C4—C3—C2 | 120.0 (3) |
C4—F3—F2vii | 99.04 (18) | C4—C3—N1 | 120.6 (3) |
O2iii—F3—F2vii | 161.63 (9) | C2—C3—N1 | 119.5 (3) |
C4—F3—F4viii | 168.70 (16) | F3—C4—C5 | 118.4 (3) |
O2iii—F3—F4viii | 84.17 (8) | F3—C4—C3 | 121.4 (3) |
F2vii—F3—F4viii | 83.52 (8) | C5—C4—C3 | 120.1 (3) |
C5—F4—F3iii | 88.06 (17) | F4—C5—C4 | 119.5 (3) |
C5—F4—F2vii | 97.86 (13) | F4—C5—C6 | 120.7 (3) |
F3iii—F4—F2vii | 116.85 (8) | C4—C5—C6 | 119.8 (3) |
O1—N1—O2 | 125.5 (3) | C1—C6—C5 | 119.7 (3) |
O1—N1—C3 | 117.8 (2) | C1—C6—Br1 | 120.8 (2) |
O2—N1—C3 | 116.6 (3) | C5—C6—Br1 | 119.5 (2) |
O2—N1—O1—Br1ix | −164.81 (19) | F4viii—F3—C4—C5 | −50.3 (12) |
C3—N1—O1—Br1ix | 15.2 (4) | O2iii—F3—C4—C3 | 65.5 (3) |
O2—N1—O1—Br1x | −49.6 (4) | F2vii—F3—C4—C3 | −130.3 (3) |
C3—N1—O1—Br1x | 130.4 (2) | F4viii—F3—C4—C3 | 127.4 (9) |
O1—N1—O2—F3viii | 110.3 (4) | C2—C3—C4—F3 | −179.9 (3) |
C3—N1—O2—F3viii | −69.7 (4) | N1—C3—C4—F3 | 0.0 (4) |
F2iv—F1—C1—C6 | −133.4 (10) | C2—C3—C4—C5 | −2.2 (4) |
F2iv—F1—C1—C2 | 47.2 (13) | N1—C3—C4—C5 | 177.7 (3) |
F3v—F2—C2—C3 | 174 (2) | F3iii—F4—C5—C4 | 65.3 (3) |
F4v—F2—C2—C3 | 30.2 (4) | F2vii—F4—C5—C4 | −51.5 (3) |
F1vi—F2—C2—C3 | 113.4 (3) | F3iii—F4—C5—C6 | −113.9 (3) |
F3v—F2—C2—C1 | −4 (3) | F2vii—F4—C5—C6 | 129.2 (2) |
F4v—F2—C2—C1 | −147.6 (2) | F3—C4—C5—F4 | 0.5 (4) |
F1vi—F2—C2—C1 | −64.4 (3) | C3—C4—C5—F4 | −177.2 (2) |
F1—C1—C2—F2 | −1.5 (4) | F3—C4—C5—C6 | 179.8 (3) |
C6—C1—C2—F2 | 179.1 (3) | C3—C4—C5—C6 | 2.0 (4) |
F1—C1—C2—C3 | −179.4 (3) | F1—C1—C6—C5 | 179.2 (3) |
C6—C1—C2—C3 | 1.2 (4) | C2—C1—C6—C5 | −1.4 (4) |
F2—C2—C3—C4 | −177.2 (3) | F1—C1—C6—Br1 | −1.6 (4) |
C1—C2—C3—C4 | 0.6 (4) | C2—C1—C6—Br1 | 177.8 (2) |
F2—C2—C3—N1 | 2.9 (4) | F4—C5—C6—C1 | 179.0 (3) |
C1—C2—C3—N1 | −179.2 (3) | C4—C5—C6—C1 | −0.2 (4) |
O1—N1—C3—C4 | −138.6 (3) | F4—C5—C6—Br1 | −0.2 (4) |
O2—N1—C3—C4 | 41.4 (4) | C4—C5—C6—Br1 | −179.4 (2) |
O1—N1—C3—C2 | 41.3 (4) | O1i—Br1—C6—C1 | −143.2 (2) |
O2—N1—C3—C2 | −138.7 (3) | O1ii—Br1—C6—C1 | 86.1 (3) |
O2iii—F3—C4—C5 | −112.3 (3) | O1i—Br1—C6—C5 | 36.0 (4) |
F2vii—F3—C4—C5 | 52.0 (3) | O1ii—Br1—C6—C5 | −94.7 (2) |
Symmetry codes: (i) −x+2, −y+1, z+1/2; (ii) −x+3/2, y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z; (iv) x+1/2, −y+3/2, z; (v) −x+1, −y+1, z−1/2; (vi) x−1/2, −y+3/2, z; (vii) −x+1, −y+1, z+1/2; (viii) x−1/2, −y+1/2, z; (ix) −x+2, −y+1, z−1/2; (x) −x+3/2, y−1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C6BrF4NO2 |
Mr | 273.98 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 93 |
a, b, c (Å) | 5.6718 (3), 10.9476 (6), 12.2652 (8) |
V (Å3) | 761.58 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.44 |
Crystal size (mm) | 0.13 × 0.13 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.536, 0.612 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4314, 1550, 1447 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.053, 1.00 |
No. of reflections | 1550 |
No. of parameters | 127 |
No. of restraints | 1 |
Δρmax, Δρmin (e Å−3) | 0.32, −0.53 |
Absolute structure | Flack (1983), 636 Friedel pairs |
Absolute structure parameter | 0.026 (10) |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Br1—O1i | 3.150 (2) | F2—F3v | 2.863 (3) |
Br1—O1ii | 3.201 (2) | F2—F4v | 2.901 (2) |
F3—O2iii | 2.823 (3) | F3—F4vi | 2.877 (2) |
F1—F2iv | 2.908 (3) |
Symmetry codes: (i) −x+2, −y+1, z+1/2; (ii) −x+3/2, y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z; (iv) x+1/2, −y+3/2, z; (v) −x+1, −y+1, z−1/2; (vi) x−1/2, −y+1/2, z. |
References
Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. Web of Science CrossRef PubMed CAS Google Scholar
Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290. Web of Science CrossRef CAS Google Scholar
Bruker (2007). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Merz, K. & Vasylyeva, V. (2010). CrystEngComm, 12, 3989–4002. Web of Science CrossRef CAS Google Scholar
Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin-Heidelberg: Springer. Google Scholar
Reichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22–30. Web of Science CrossRef PubMed Google Scholar
Schwarzer, A., Bombicz, P. & Weber, E. (2010). J. Fluorine Chem. 131, 345–356. Web of Science CSD CrossRef CAS Google Scholar
Schwarzer, A. & Weber, E. (2008). Cryst. Growth Des. 8, 2862–2874. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shtark, A. A. & Shteingarts, V. D. (1976). Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 4, 123–128. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Halogen interactions in molecular crystal structures have been the subject of a numer of studies (Awwadi et al., 2006; Brammer et al., 2001; Metrangolo et al., 2008). Fluorine involved interactions in particular have been studied by us and others (Schwarzer et al., 2010; Schwarzer & Weber, 2008; Reichenbächer et al., 2005; Merz & Vasylyeva, 2010). In continuation of that work we report herein on the crystal structure of the title tetrafluoro-benzene compound.
In the title compound (Fig. 1) the plane of the nitro group (O1—N1—O2) shows a twist of 41.68 (28)° with reference to the phenyl ring, owing to repulsive interactions between the ortho-positioned fluorine (F2 and F3) and oxygen atoms. The N—O bond lengths are different (O1—N1: 1.217 (4) Å; O2—N1: 1.234 (3) Å) as a result of different intermolecular interactions.
In the crystal oxygen O1 is involved in two strong intermolecular contacts to bromine Br1 [3.150 (2) and 3.201 (2) Å], giving rise to the formation of a three-dimensional molecular network (Table 1 and Fig. 2). On the other hand, atom O2 forms a weak contact to atom F3 [2.823 (3) Å].
The fluorine···fluorine contacts [2.863 (3) – 2.908 (3) Å] are close to the sum of their van-der-Waals radii hence, they do not contribute significantly to the stabilization of the crystal packing. Moreover, there is no indication for the presence of either πF···πF stacking or C—X···πF interactions (X = O, F, Br). Hence, except for the O···Br interactions, the crystal structure is mostly determined by maximum symmetry and close-packing principles, which is reflected in the low melting point of 321 K.