organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-5-(p-tol­yl)-1,3,4-oxa­diazole

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: amzs@st-and.ac.uk

(Received 1 June 2011; accepted 16 June 2011; online 22 June 2011)

The title compound, C15H12N2O, adopts the expected near-planar geometry, the phenyl and tolyl rings being inclined relative to the oxadiazole ring by 3.8 (3) and 8.3 (2)°, respectively. This allows adjacent mol­ecules to pack in a parallel fashion and form stacking along [010] via ππ inter­actions [centroid–centroid distances = 3.629 (2) and 3.723 (2) Å]. Further inter­molecular inter­actions include C—H⋯π inter­actions and weak C—H⋯N hydrogen bonds, giving rise to a crossed herringbone packing motif.

Related literature

For synthesis of the starting material N′-benzoyl-4-methyl­benzohydrazide, see: Hua et al. (2009[Hua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612-1618.]). For a review of synthetic routes to the title compound, see: Weaver (2004[Weaver, G. W. (2004). Sci. Synth. 13, 219-251.]). For related structures, see: Kuznetsov et al. (1998[Kuznetsov, V. P., Patsenker, L. D., Lokshin, A. I. & Tolmachev, A. V. (1998). Kristallografiya, 43, 468-477.]); Franco et al. (2003[Franco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct. 649, 219-230.]); Reck et al. (2003[Reck, G., Orgzall, I. & Schulz, B. (2003). Acta Cryst. E59, o1135-o1136.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O

  • Mr = 236.27

  • Monoclinic, P 21 /c

  • a = 19.733 (5) Å

  • b = 5.1441 (12) Å

  • c = 12.436 (3) Å

  • β = 107.477 (6)°

  • V = 1204.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.20 × 0.04 × 0.02 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.998

  • 7407 measured reflections

  • 2256 independent reflections

  • 1293 reflections with I > 2σ(I)

  • Rint = 0.207

Refinement
  • R[F2 > 2σ(F2)] = 0.109

  • wR(F2) = 0.307

  • S = 1.02

  • 2256 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C8 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N2i 0.95 2.61 3.322 (4) 132
C9—H9BCg1ii 0.98 2.80 3.731 (4) 158
C14—H14⋯Cg2iii 0.95 2.99 3.783 (4) 141
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (Fig. 1), previously prepared by a number of different routes (Weaver, 2004), has been prepared by a new method, reacting Woollins' reagent with N'-benzoyl-4-methylbenzohydrazide (Hua et al., 2009). It adopts an offset π-stacked packing motif, similar to those seen in related structures (Kuznetsov et al., 1998, Franco et al., 2003, and Reck et al., 2003), the oxadiazole ring interacting with both the tolyl (x, 1 + y, z) and the phenyl (x, -1 + y, z) rings of adjacent molecules [centroid-centroid distances of 3.629 (2) and 3.723 (2) Å, respectively]. As a result of this arrangement, one of the tolyl methyl H atoms forms a C—H···π interaction with the adjacent tolyl π-system (Table 1). The stacks run along the [0 1 0] direction, and form herringbone sheets in the (0 0 1) plane (Fig. 2), via further C—H···π interactions (Table 1). These sheets resemble the herringbone packing motif seen previously in the structures of 2,5-diphenyl-1,3,4-oxadiazole (Kuznetsov et al., 1998, and Franco et al., 2003). However, adjacent sheets do not align, and instead are offset, forming a crossed herringbone pattern (Fig. 3), interacting via C—H···N hydrogen bonds (Table 1).

Footnote to Table 1: Cg1 = centroid of ring (C3-C8); Cg2 = centroid of ring (C10-C15).

Related literature top

For synthesis of the starting material N'-benzoyl-4-methylbenzohydrazide, see: Hua et al. (2009). For a review of synthetic routes to the title compound, see: Weaver (2004). For related structures, see: Kuznetsov et al. (1998); Franco et al. (2003); Reck et al. (2003).

Experimental top

A red suspension of N'-benzoyl-4-methylbenzohydrazide (0.25 g, 1.0 mmol, Hua et al., 2009) and Woollins' reagent (0.54 g, 1.0 mmol) in 20 ml of dry toluene was refluxed for 7 h. Following cooling to room temperature and removal of the solvent in vacuuo the residue was purified by silica gel column chromatography (1: 9 ethyl acetate/dichloromethane eluent) to give 2-phenyl-5-p-tolyl-1,3,4-selenadiazole as a dark yellow solid in good yield (0.270 g, 90%). The title compound was formed from this by air oxidation during the growth of X-ray quality crystals from the diffusion of hexane into a dichloromethane solution of 2-phenyl-5-p-tolyl-1,3,4-selenadiazole.

Refinement top

The crystal initially chosen appeared to be poorly diffracting at higher angles, so several others were also tried. All were found to be weakly diffracting, resulting in a number of missing independent data in the experimentally measured range. One low angle reflection (1 0 4) was omitted due to being partially behind the beamstop. All H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms and 0.95 Å for phenyl H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom, phenyl H atoms) or Uiso(H) = 1.5 Ueq (parent atom, methyl H atoms). The highest electron density peak is located 1.19 Å from atom O1.

Computing details top

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View down the c-axis showing the π-stacking of adjacent molecules and the formation of the herringbone sheet.
[Figure 3] Fig. 3. Packing diagram of the title compound showing the crossed herringbone pattern arising from offset of adjacent herringbone sheets. Hydrogen atoms were omitted for clarity.
2-Phenyl-5-(p-tolyl)-1,3,4-oxadiazole top
Crystal data top
C15H12N2OF(000) = 496
Mr = 236.27Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2748 reflections
a = 19.733 (5) Åθ = 3.3–28.2°
b = 5.1441 (12) ŵ = 0.08 mm1
c = 12.436 (3) ÅT = 93 K
β = 107.477 (6)°Chip, colourless
V = 1204.1 (5) Å30.20 × 0.04 × 0.02 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2256 independent reflections
Radiation source: rotating anode1293 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.207
Detector resolution: 14.7059 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω and ϕ scansh = 2424
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 36
Tmin = 0.984, Tmax = 0.998l = 1114
7407 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.109Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.307H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1532P)2]
where P = (Fo2 + 2Fc2)/3
2256 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C15H12N2OV = 1204.1 (5) Å3
Mr = 236.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.733 (5) ŵ = 0.08 mm1
b = 5.1441 (12) ÅT = 93 K
c = 12.436 (3) Å0.20 × 0.04 × 0.02 mm
β = 107.477 (6)°
Data collection top
Rigaku Mercury CCD
diffractometer
2256 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
1293 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.998Rint = 0.207
7407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1090 restraints
wR(F2) = 0.307H-atom parameters constrained
S = 1.02Δρmax = 0.85 e Å3
2256 reflectionsΔρmin = 0.48 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26886 (13)0.5359 (5)0.70037 (19)0.0337 (8)
N10.24323 (17)0.4502 (6)0.5190 (3)0.0374 (9)
N20.29187 (16)0.6544 (6)0.5435 (2)0.0334 (9)
C10.2307 (2)0.3862 (7)0.6126 (3)0.0322 (10)
C20.30560 (19)0.6981 (7)0.6502 (3)0.0299 (10)
C30.18313 (19)0.1875 (8)0.6309 (3)0.0306 (10)
C40.1822 (2)0.1219 (7)0.7391 (3)0.0330 (10)
H40.21320.20770.80270.040*
C50.1364 (2)0.0672 (8)0.7541 (3)0.0354 (10)
H50.13690.11090.82850.042*
C60.0898 (2)0.1957 (8)0.6643 (3)0.0344 (10)
C70.0919 (2)0.1274 (8)0.5552 (3)0.0413 (11)
H70.06060.21200.49170.050*
C80.1378 (2)0.0573 (8)0.5385 (3)0.0374 (11)
H80.13880.09670.46430.045*
C90.0394 (2)0.3978 (8)0.6791 (3)0.0421 (11)
H9A0.04160.40780.75880.063*
H9B0.05240.56650.65440.063*
H9C0.00900.35200.63390.063*
C100.35306 (19)0.8918 (7)0.7193 (3)0.0307 (10)
C110.3641 (2)0.9055 (7)0.8354 (3)0.0368 (11)
H110.34000.78950.87080.044*
C120.4102 (2)1.0888 (8)0.8982 (3)0.0400 (11)
H120.41911.09450.97760.048*
C130.4437 (2)1.2640 (8)0.8470 (3)0.0392 (11)
H130.47431.39240.89100.047*
C140.4327 (2)1.2533 (7)0.7316 (3)0.0347 (10)
H140.45651.37100.69640.042*
C150.3871 (2)1.0705 (7)0.6692 (3)0.0344 (10)
H150.37851.06570.58980.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0369 (16)0.0242 (16)0.0432 (18)0.0030 (12)0.0167 (13)0.0033 (11)
N10.041 (2)0.032 (2)0.042 (2)0.0020 (17)0.0165 (16)0.0037 (14)
N20.042 (2)0.035 (2)0.0250 (19)0.0011 (16)0.0129 (14)0.0061 (13)
C10.034 (2)0.023 (2)0.040 (2)0.0001 (18)0.0135 (17)0.0024 (17)
C20.034 (2)0.019 (2)0.044 (2)0.0064 (17)0.0223 (18)0.0073 (16)
C30.032 (2)0.027 (2)0.036 (2)0.0054 (17)0.0139 (16)0.0013 (16)
C40.035 (2)0.032 (2)0.035 (2)0.0026 (18)0.0156 (17)0.0019 (16)
C50.039 (2)0.032 (2)0.036 (2)0.0031 (19)0.0132 (18)0.0024 (17)
C60.037 (2)0.026 (2)0.045 (3)0.0041 (18)0.0200 (18)0.0008 (17)
C70.040 (3)0.031 (3)0.050 (3)0.002 (2)0.0088 (19)0.0091 (18)
C80.043 (3)0.035 (3)0.033 (2)0.001 (2)0.0103 (18)0.0036 (17)
C90.039 (2)0.035 (3)0.052 (3)0.003 (2)0.013 (2)0.0038 (18)
C100.035 (2)0.022 (2)0.040 (2)0.0086 (17)0.0188 (18)0.0012 (16)
C110.046 (3)0.027 (2)0.043 (3)0.005 (2)0.0228 (19)0.0003 (17)
C120.051 (3)0.033 (3)0.040 (3)0.005 (2)0.017 (2)0.0025 (18)
C130.042 (3)0.032 (3)0.044 (3)0.000 (2)0.0139 (19)0.0099 (18)
C140.038 (2)0.030 (2)0.035 (2)0.0008 (19)0.0098 (17)0.0056 (17)
C150.040 (2)0.033 (2)0.030 (2)0.0092 (19)0.0103 (17)0.0068 (17)
Geometric parameters (Å, º) top
O1—C11.363 (4)C7—H70.9500
O1—C21.372 (4)C8—H80.9500
N1—C11.304 (4)C9—H9A0.9800
N1—N21.393 (4)C9—H9B0.9800
N2—C21.293 (4)C9—H9C0.9800
C1—C31.451 (5)C10—C151.391 (5)
C2—C101.458 (5)C10—C111.396 (5)
C3—C41.394 (5)C11—C121.379 (6)
C3—C81.397 (5)C11—H110.9500
C4—C51.378 (5)C12—C131.381 (5)
C4—H40.9500C12—H120.9500
C5—C61.383 (5)C13—C141.386 (5)
C5—H50.9500C13—H130.9500
C6—C71.414 (5)C14—C151.371 (5)
C6—C91.488 (5)C14—H140.9500
C7—C81.371 (5)C15—H150.9500
C1—O1—C2102.7 (3)C3—C8—H8120.1
C1—N1—N2107.3 (3)C6—C9—H9A109.5
C2—N2—N1105.9 (3)C6—C9—H9B109.5
N1—C1—O1111.4 (3)H9A—C9—H9B109.5
N1—C1—C3128.5 (4)C6—C9—H9C109.5
O1—C1—C3120.1 (3)H9A—C9—H9C109.5
N2—C2—O1112.6 (3)H9B—C9—H9C109.5
N2—C2—C10128.6 (3)C15—C10—C11118.9 (4)
O1—C2—C10118.8 (3)C15—C10—C2119.9 (3)
C4—C3—C8119.2 (4)C11—C10—C2121.1 (3)
C4—C3—C1121.2 (4)C12—C11—C10119.5 (4)
C8—C3—C1119.6 (3)C12—C11—H11120.3
C5—C4—C3120.0 (4)C10—C11—H11120.3
C5—C4—H4120.0C11—C12—C13120.7 (4)
C3—C4—H4120.0C11—C12—H12119.6
C4—C5—C6122.2 (3)C13—C12—H12119.6
C4—C5—H5118.9C12—C13—C14120.3 (4)
C6—C5—H5118.9C12—C13—H13119.9
C5—C6—C7116.9 (4)C14—C13—H13119.9
C5—C6—C9122.8 (3)C15—C14—C13119.0 (3)
C7—C6—C9120.4 (4)C15—C14—H14120.5
C8—C7—C6121.9 (4)C13—C14—H14120.5
C8—C7—H7119.0C14—C15—C10121.5 (3)
C6—C7—H7119.0C14—C15—H15119.2
C7—C8—C3119.7 (3)C10—C15—H15119.2
C7—C8—H8120.1
C1—N1—N2—C20.4 (4)C5—C6—C7—C80.0 (6)
N2—N1—C1—O10.4 (4)C9—C6—C7—C8179.8 (4)
N2—N1—C1—C3179.0 (4)C6—C7—C8—C31.4 (6)
C2—O1—C1—N10.3 (4)C4—C3—C8—C71.7 (6)
C2—O1—C1—C3179.3 (3)C1—C3—C8—C7178.9 (3)
N1—N2—C2—O10.2 (4)N2—C2—C10—C154.1 (6)
N1—N2—C2—C10179.9 (4)O1—C2—C10—C15175.5 (3)
C1—O1—C2—N20.0 (4)N2—C2—C10—C11177.2 (4)
C1—O1—C2—C10179.7 (3)O1—C2—C10—C113.2 (5)
N1—C1—C3—C4172.1 (4)C15—C10—C11—C122.3 (5)
O1—C1—C3—C48.5 (5)C2—C10—C11—C12179.0 (3)
N1—C1—C3—C87.3 (6)C10—C11—C12—C132.2 (6)
O1—C1—C3—C8172.1 (3)C11—C12—C13—C141.8 (6)
C8—C3—C4—C50.7 (5)C12—C13—C14—C151.5 (6)
C1—C3—C4—C5179.9 (3)C13—C14—C15—C101.7 (6)
C3—C4—C5—C60.7 (6)C11—C10—C15—C142.1 (5)
C4—C5—C6—C71.1 (6)C2—C10—C15—C14179.2 (3)
C4—C5—C6—C9179.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···N2i0.952.613.322 (4)132
C9—H9B···Cg1ii0.982.803.731 (4)158
C14—H14···Cg2iii0.952.993.783 (4)141
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H12N2O
Mr236.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)19.733 (5), 5.1441 (12), 12.436 (3)
β (°) 107.477 (6)
V3)1204.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.04 × 0.02
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2010)
Tmin, Tmax0.984, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
7407, 2256, 1293
Rint0.207
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.109, 0.307, 1.02
No. of reflections2256
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.48

Computer programs: CrystalClear (Rigaku, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···N2i0.952.613.322 (4)131.9
C9—H9B···Cg1ii0.982.803.731 (4)158.2
C14—H14···Cg2iii0.952.993.783 (4)141.4
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the University of St. Andrews and the Engineering and Physical Science Research Council (EPSRC, UK) for financial support.

References

First citationFranco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct. 649, 219–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationHua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612–1618.  Web of Science CrossRef Google Scholar
First citationKuznetsov, V. P., Patsenker, L. D., Lokshin, A. I. & Tolmachev, A. V. (1998). Kristallografiya, 43, 468–477.  CAS Google Scholar
First citationReck, G., Orgzall, I. & Schulz, B. (2003). Acta Cryst. E59, o1135–o1136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeaver, G. W. (2004). Sci. Synth. 13, 219-251.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds