metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium piperidine-1-carbodi­thio­ate dihydrate

aInstituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense 400, Caixa Postal 780, 13560-970, São Carlos, SP, Brazil
*Correspondence e-mail: mafud@iqsc.usp.br

(Received 8 June 2011; accepted 10 June 2011; online 18 June 2011)

The asymmetric unit of the title compound, Na+·C6H10NS2·2H2O, is composed of a sodium cation, a piperidine­dithio­carbamate anion which exhibits positional disorder, and two lattice water mol­ecules. The atoms of the piperidine ring are divided over two sites with occupancy factors of 0.554 (6) and 0.446 (6). In the crystal, the sodium cation (coordination number of 6) and the piperidine­dithio­carbamate anion are linked, forming an infinite two-dimensional network extending parallel to (001). O—H⋯S hydrogen bonds, involving the lattice water mol­ecules, also aid in stabilizing the crystal sructure.

Related literature

For the crystal structures of similar compounds, see: Oskarsson et al. (1979[Oskarsson, A., Stahl, K., Svensson, C. & Ymén, I. (1979). Eur. Cryst. Meet. 5, 67.]); Albertsson et al. (1980[Albertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. & Ymén, I. (1980). Acta Cryst. B36, 3072-3078.]); Ymén (1982[Ymén, I. (1982). Acta Cryst. B38, 2671-2674.]); Mafud & Gambardella (2011[Mafud, A. C. & Gambardella, M. T. P. (2011). Acta Cryst. E67, o879.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • Na+·C6H10NS2·2H2O

  • Mr = 219.29

  • Monoclinic, P 21 /a

  • a = 12.241 (5) Å

  • b = 5.909 (5) Å

  • c = 14.690 (5) Å

  • β = 95.519 (5)°

  • V = 1057.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 290 K

  • 0.02 × 0.02 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 7553 measured reflections

  • 1863 independent reflections

  • 1482 reflections with I > 2σ(I)

  • Rint = 0.145

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.152

  • S = 1.02

  • 1863 reflections

  • 176 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11O⋯S2i 0.84 (2) 2.39 (2) 3.214 (2) 167 (3)
O1—H12O⋯S1ii 0.85 (2) 2.49 (2) 3.322 (3) 167 (3)
O2—H21O⋯S2ii 0.83 (2) 2.48 (2) 3.283 (2) 163 (3)
O2—H22O⋯S1iii 0.86 (2) 2.46 (2) 3.313 (2) 174 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (iii) x, y-1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is compossed of a piperidinedithiocarbamate anion, a sodium cation, and two lattice water molecules (Fig. 1). The crystal structures of similar compounds, for example sodium 1-pyrrolidinecarbodithioate dihydrate, has been reported on previously (Oskarsson et al., 1979; Albertsson et al., 1980; Ymén, 1982). The crystal structure of ammonium piperidine-1-carbodithioate dihydrate has been descibed by our group recently (Mafud & Gambardella, 2011).

The atoms of the piperidine ring are disordered, occupying two positions (A = C2',C3',C4',C5',N1' and B = C2,C3,C4,C5,N1) with occupancies of 0.554 (6)/0.446 (6). Both of these six-membered rings have a chair conformation, with puckering parameters, Q = 0.552 (13) Å, θ = 180.0 (13) °, ϕ2 = 128 (25) °, for ring A, and Q = 0.577 (15) Å, θ = 0.0 (15) °, ϕ2 = 313 (27) °, for ring B (Cremer & Pople, 1975).

The sodium atoms are coordinated to two sulfur atoms [Na1···S1 3.0649 (15) Å and Na1···S1i 2.9644 (15) Å; symmetry code: (i) -x+3/2, y-1/2, -z+1] and four oxygens [Na1···O2 2.360 (3) Å, Na1···O1 2.385 (2) Å, Na1···O1ii 2.416 (3) Å, Na1···O2iii 2.515 (2) Å; symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+1, -y-1, -z+1], with a bi-pyramidal reversed geometry. This configuration generates close packed layers which remain cohesive in crystal stacking by van der Waals interactions. The distances of these contacts are slightly less than the sum of the van der Waals radii.

In the crystal O-H···S hydrogen bonds, involving the lattice water molecules, aid in stabilizing the crystal structure (Table 1). The crystal packing gives rise to a supramolecular structure, whose infinite two-dimensional network, with base vectors: #1 = [0 1 0], #2 = [1 0 0], grows parallel to (001), as shown in Fig. 2.

Related literature top

For the crystal structures of similar compounds, see: Oskarsson et al. (1979); Albertsson et al. (1980); Ymén (1982); Mafud & Gambardella (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by slow addition of 0.1 mol of CS2 to a cold solution containing 0.2 mol of piperidine and a stoichiometric amount of sodium hydroxide in ethanol/water 1:1 (v/v). The reaction mixture was placed in the freezer for 12 h and then filtered through a Büchner funnel, washed with cold ether and the product recrystallized in an ethanol water mixture 1:1 (v/v). Colourless single crystals, suitable for X-ray diffraction analysis, were obtained. On heating they sublimed and decomposed.

Refinement top

The H-atom positions of the water molecules were located in a difference Fourier map, they were refined with distance restraints, O-H = 0.84 (2) Å, with Uiso(H) = 1.5Ueq(parent O-atom). The C-bound H-atoms of the anion were included in calculated positions and treated as riding atoms: C—H = 0.97 Å, with Uiso(H) = 1.2Ueq(parent C-atom).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of asymmetric unit of the molecular structure of the title compound, with the numbering scheme and displacement ellipsoids drawn at the 50% probability level. The two components (A = C2',C3',C4',C5',N1' and B = C2,C3,C4,C5,N1) of the disordered piperidine ring are shown.
[Figure 2] Fig. 2. A view along the b-axis of the crystal packing of the title compound. Only the minor (B) component of the disordered piperidine ring is shown. The O-H···S hydrogen bonds are shown as dashed cyan lines and the C-bound H atoms have been omitted for clarity.
Sodium piperidine-1-carbodithioate dihydrate top
Crystal data top
Na+·C6H10NS2·2H2OF(000) = 464
Mr = 219.29Dx = 1.377 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 24030 reflections
a = 12.241 (5) Åθ = 2.9–26.7°
b = 5.909 (5) ŵ = 0.51 mm1
c = 14.690 (5) ÅT = 290 K
β = 95.519 (5)°Prism, colourless
V = 1057.6 (11) Å30.02 × 0.02 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1482 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.145
Graphite monochromatorθmax = 25.1°, θmin = 3.3°
Detector resolution: 9 pixels mm-1h = 1414
CCD rotation images, thick slices scansk = 76
7553 measured reflectionsl = 1716
1863 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0964P)2]
where P = (Fo2 + 2Fc2)/3
1863 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = 0.36 e Å3
Crystal data top
Na+·C6H10NS2·2H2OV = 1057.6 (11) Å3
Mr = 219.29Z = 4
Monoclinic, P21/aMo Kα radiation
a = 12.241 (5) ŵ = 0.51 mm1
b = 5.909 (5) ÅT = 290 K
c = 14.690 (5) Å0.02 × 0.02 × 0.02 mm
β = 95.519 (5)°
Data collection top
Nonius KappaCCD
diffractometer
1482 reflections with I > 2σ(I)
7553 measured reflectionsRint = 0.145
1863 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0546 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.33 e Å3
1863 reflectionsΔρmin = 0.36 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.74854 (5)0.03097 (13)0.39216 (4)0.0481 (3)
S20.86593 (6)0.24242 (13)0.24400 (5)0.0577 (3)
Na10.57813 (8)0.24210 (16)0.48568 (8)0.0509 (4)
O10.41274 (14)0.0826 (4)0.41396 (13)0.0542 (5)
H11O0.403 (3)0.012 (5)0.3644 (17)0.081*
H12O0.369 (2)0.194 (4)0.418 (2)0.081*
O20.55132 (14)0.5918 (4)0.40928 (13)0.0533 (5)
H21O0.509 (2)0.604 (6)0.3618 (16)0.08*
H22O0.604 (2)0.687 (5)0.409 (2)0.08*
C10.7694 (2)0.0599 (5)0.27824 (18)0.0551 (7)
N10.6797 (6)0.0084 (12)0.2149 (4)0.0541 (16)0.446 (6)
C20.6746 (8)0.0673 (16)0.1177 (5)0.081 (3)0.446 (6)
H2A0.730.18070.10920.097*0.446 (6)
H2B0.60340.13360.09910.097*0.446 (6)
C30.6917 (19)0.128 (5)0.0585 (18)0.095 (8)0.446 (6)
H3A0.76570.18620.07160.114*0.446 (6)
H3B0.68180.08320.00530.114*0.446 (6)
C40.6069 (10)0.314 (3)0.0773 (10)0.079 (4)0.446 (6)
H4A0.53390.26160.05550.095*0.446 (6)
H4B0.62180.4490.0430.095*0.446 (6)
C50.6089 (7)0.3753 (16)0.1787 (6)0.076 (2)0.446 (6)
H5A0.55050.48180.18770.091*0.446 (6)
H5B0.67840.44510.19980.091*0.446 (6)
C60.5931 (7)0.1592 (18)0.2320 (6)0.067 (2)0.446 (6)
H6A0.52130.09580.21350.08*0.446 (6)
H6B0.59690.19320.29690.08*0.446 (6)
N1'0.7338 (4)0.1085 (10)0.2187 (3)0.0516 (13)0.554 (6)
C2'0.7582 (5)0.1213 (13)0.1240 (4)0.0677 (19)0.554 (6)
H2'10.79060.2670.11250.081*0.554 (6)
H2'20.81030.00420.11190.081*0.554 (6)
C3'0.6545 (14)0.091 (5)0.0626 (11)0.095 (6)0.554 (6)
H3'10.67170.10860.00020.115*0.554 (6)
H3'20.62910.06290.06930.115*0.554 (6)
C4'0.5616 (9)0.249 (3)0.0778 (10)0.111 (5)0.554 (6)
H4'10.57980.40260.06160.133*0.554 (6)
H4'20.49540.20370.04070.133*0.554 (6)
C5'0.5447 (6)0.2350 (14)0.1783 (6)0.082 (2)0.554 (6)
H5'10.51570.08690.19120.098*0.554 (6)
H5'20.49090.34710.19220.098*0.554 (6)
C6'0.6494 (6)0.2736 (13)0.2392 (4)0.0629 (18)0.554 (6)
H6'10.63490.25920.30270.075*0.554 (6)
H6'20.67590.42580.22990.075*0.554 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0420 (4)0.0551 (5)0.0476 (4)0.0008 (3)0.0057 (3)0.0027 (3)
S20.0586 (5)0.0585 (6)0.0565 (5)0.0121 (3)0.0090 (3)0.0002 (3)
Na10.0465 (6)0.0453 (8)0.0609 (7)0.0002 (4)0.0053 (5)0.0005 (5)
O10.0534 (11)0.0470 (13)0.0608 (12)0.0039 (9)0.0015 (9)0.0059 (10)
O20.0502 (10)0.0497 (13)0.0597 (12)0.0060 (9)0.0033 (8)0.0031 (10)
C10.0574 (15)0.056 (2)0.0512 (15)0.0111 (13)0.0027 (12)0.0035 (14)
N10.062 (4)0.052 (4)0.047 (3)0.008 (3)0.001 (3)0.000 (2)
C20.108 (6)0.080 (7)0.051 (4)0.026 (5)0.008 (4)0.007 (4)
C30.104 (14)0.107 (13)0.079 (10)0.051 (11)0.044 (10)0.030 (8)
C40.077 (8)0.090 (9)0.070 (6)0.033 (7)0.003 (6)0.028 (7)
C50.070 (5)0.070 (6)0.088 (6)0.017 (5)0.014 (4)0.000 (5)
C60.053 (4)0.086 (7)0.061 (4)0.022 (5)0.010 (4)0.010 (5)
N1'0.052 (3)0.056 (3)0.047 (2)0.011 (2)0.0082 (18)0.007 (2)
C2'0.071 (4)0.084 (5)0.050 (3)0.020 (3)0.016 (3)0.018 (3)
C3'0.105 (12)0.130 (13)0.049 (6)0.041 (9)0.004 (7)0.016 (7)
C4'0.082 (8)0.148 (14)0.096 (7)0.042 (7)0.030 (6)0.037 (7)
C5'0.061 (4)0.077 (6)0.107 (6)0.020 (4)0.007 (4)0.002 (4)
C6'0.066 (4)0.060 (5)0.061 (4)0.027 (3)0.000 (3)0.009 (3)
Geometric parameters (Å, º) top
S1—C11.726 (3)C3—H3A0.97
S1—Na1i2.9644 (15)C3—H3B0.97
S1—Na13.0649 (15)C4—C51.530 (18)
S2—C11.710 (3)C4—H4A0.97
Na1—O22.360 (3)C4—H4B0.97
Na1—O12.385 (2)C5—C61.521 (14)
Na1—O1ii2.416 (3)C5—H5A0.97
Na1—O2iii2.515 (2)C5—H5B0.97
Na1—S1iv2.9644 (15)C6—H6A0.97
Na1—Na1ii3.490 (3)C6—H6B0.97
Na1—Na1iii3.644 (3)N1'—C2'1.452 (6)
Na1—H12O2.67 (3)N1'—C6'1.473 (7)
O1—Na1ii2.416 (3)C2'—C3'1.495 (19)
O1—H11O0.839 (17)C2'—H2'10.97
O1—H12O0.852 (17)C2'—H2'20.97
O2—Na1iii2.515 (2)C3'—C4'1.50 (3)
O2—H21O0.834 (17)C3'—H3'10.97
O2—H22O0.856 (17)C3'—H3'20.97
C1—N1'1.368 (5)C4'—C5'1.512 (17)
C1—N11.403 (6)C4'—H4'10.97
N1—C21.465 (9)C4'—H4'20.97
N1—C61.489 (10)C5'—C6'1.507 (11)
C2—C31.47 (3)C5'—H5'10.97
C2—H2A0.97C5'—H5'20.97
C2—H2B0.97C6'—H6'10.97
C3—C41.55 (3)C6'—H6'20.97
C1—S1—Na1i112.20 (10)C3—C2—H2A108.9
C1—S1—Na1131.13 (10)N1—C2—H2B108.9
Na1i—S1—Na1116.43 (4)C3—C2—H2B108.9
O2—Na1—O193.59 (8)H2A—C2—H2B107.8
O2—Na1—O1ii169.15 (8)C2—C3—C4108.3 (14)
O1—Na1—O1ii86.75 (8)C2—C3—H3A110
O2—Na1—O2iii83.29 (8)C4—C3—H3A110
O1—Na1—O2iii82.36 (7)C2—C3—H3B110
O1ii—Na1—O2iii86.01 (8)C4—C3—H3B110
O2—Na1—S1iv87.16 (7)H3A—C3—H3B108.4
O1—Na1—S1iv166.91 (6)C5—C4—C3113.1 (13)
O1ii—Na1—S1iv90.09 (7)C5—C4—H4A109
O2iii—Na1—S1iv84.76 (6)C3—C4—H4A109
O2—Na1—S1108.51 (7)C5—C4—H4B109
O1—Na1—S1100.34 (7)C3—C4—H4B109
O1ii—Na1—S182.06 (7)H4A—C4—H4B107.8
O2iii—Na1—S1167.57 (6)C6—C5—C4108.2 (9)
S1iv—Na1—S191.78 (4)C6—C5—H5A110.1
O2—Na1—Na1ii136.28 (8)C4—C5—H5A110.1
O1—Na1—Na1ii43.73 (6)C6—C5—H5B110.1
O1ii—Na1—Na1ii43.02 (5)C4—C5—H5B110.1
O2iii—Na1—Na1ii82.00 (7)H5A—C5—H5B108.4
S1iv—Na1—Na1ii131.81 (6)N1—C6—C5110.1 (6)
S1—Na1—Na1ii91.55 (6)N1—C6—H6A109.6
O2—Na1—Na1iii43.27 (6)C5—C6—H6A109.6
O1—Na1—Na1iii87.06 (7)N1—C6—H6B109.6
O1ii—Na1—Na1iii126.00 (8)C5—C6—H6B109.6
O2iii—Na1—Na1iii40.02 (5)H6A—C6—H6B108.2
S1iv—Na1—Na1iii84.54 (5)C1—N1'—C2'124.6 (4)
S1—Na1—Na1iii151.58 (5)C1—N1'—C6'122.6 (4)
Na1ii—Na1—Na1iii111.83 (7)C2'—N1'—C6'111.9 (5)
O2—Na1—H12O80.3 (6)N1'—C2'—C3'109.4 (7)
O1—Na1—H12O18.4 (4)N1'—C2'—H2'1109.8
O1ii—Na1—H12O97.4 (7)C3'—C2'—H2'1109.8
O2iii—Na1—H12O68.4 (5)N1'—C2'—H2'2109.8
S1iv—Na1—H12O151.4 (5)C3'—C2'—H2'2109.8
S1—Na1—H12O116.5 (5)H2'1—C2'—H2'2108.2
Na1ii—Na1—H12O56.0 (6)C2'—C3'—C4'116.5 (14)
Na1iii—Na1—H12O68.7 (4)C2'—C3'—H3'1108.2
Na1—O1—Na1ii93.25 (8)C4'—C3'—H3'1108.2
Na1—O1—H11O129 (2)C2'—C3'—H3'2108.2
Na1ii—O1—H11O97 (3)C4'—C3'—H3'2108.2
Na1—O1—H12O100 (2)H3'1—C3'—H3'2107.3
Na1ii—O1—H12O124 (2)C3'—C4'—C5'106.7 (11)
H11O—O1—H12O114 (3)C3'—C4'—H4'1110.4
Na1—O2—Na1iii96.71 (8)C5'—C4'—H4'1110.4
Na1—O2—H21O121 (3)C3'—C4'—H4'2110.4
Na1iii—O2—H21O96 (2)C5'—C4'—H4'2110.4
Na1—O2—H22O121 (2)H4'1—C4'—H4'2108.6
Na1iii—O2—H22O106 (2)C6'—C5'—C4'112.5 (7)
H21O—O2—H22O111 (2)C6'—C5'—H5'1109.1
N1'—C1—N140.3 (3)C4'—C5'—H5'1109.1
N1'—C1—S2117.2 (3)C6'—C5'—H5'2109.1
N1—C1—S2117.4 (3)C4'—C5'—H5'2109.1
N1'—C1—S1118.6 (3)H5'1—C5'—H5'2107.8
N1—C1—S1116.2 (3)N1'—C6'—C5'110.6 (5)
S2—C1—S1121.25 (16)N1'—C6'—H6'1109.5
C1—N1—C2123.5 (5)C5'—C6'—H6'1109.5
C1—N1—C6123.9 (6)N1'—C6'—H6'2109.5
C2—N1—C6111.0 (6)C5'—C6'—H6'2109.5
N1—C2—C3113.2 (13)H6'1—C6'—H6'2108.1
N1—C2—H2A108.9
C1—S1—Na1—O238.84 (16)Na1i—S1—C1—S210.8 (2)
Na1i—S1—Na1—O2135.11 (7)Na1—S1—C1—S2175.08 (10)
C1—S1—Na1—O158.52 (16)N1'—C1—N1—C289.0 (9)
Na1i—S1—Na1—O1127.53 (7)S2—C1—N1—C211.7 (9)
C1—S1—Na1—O1ii143.72 (15)S1—C1—N1—C2166.8 (6)
Na1i—S1—Na1—O1ii42.34 (6)N1'—C1—N1—C675.0 (8)
C1—S1—Na1—O2iii160.0 (3)S2—C1—N1—C6175.6 (6)
Na1i—S1—Na1—O2iii26.0 (3)S1—C1—N1—C629.3 (9)
C1—S1—Na1—S1iv126.44 (14)C1—N1—C2—C3104.9 (12)
Na1i—S1—Na1—S1iv47.50 (6)C6—N1—C2—C360.8 (14)
C1—S1—Na1—Na1ii101.64 (15)N1—C2—C3—C455 (2)
Na1i—S1—Na1—Na1ii84.41 (5)C2—C3—C4—C553 (2)
C1—S1—Na1—Na1iii44.63 (19)C3—C4—C5—C654.8 (15)
Na1i—S1—Na1—Na1iii129.32 (11)C1—N1—C6—C5105.1 (9)
O2—Na1—O1—Na1ii169.13 (8)C2—N1—C6—C560.6 (11)
O1ii—Na1—O1—Na1ii0C4—C5—C6—N157.2 (11)
O2iii—Na1—O1—Na1ii86.40 (8)N1—C1—N1'—C2'90.7 (8)
S1iv—Na1—O1—Na1ii76.2 (3)S2—C1—N1'—C2'10.6 (7)
S1—Na1—O1—Na1ii81.31 (7)S1—C1—N1'—C2'171.6 (4)
Na1iii—Na1—O1—Na1ii126.33 (8)N1—C1—N1'—C6'77.5 (6)
O1—Na1—O2—Na1iii81.86 (8)S2—C1—N1'—C6'178.7 (4)
O1ii—Na1—O2—Na1iii9.6 (5)S1—C1—N1'—C6'20.2 (7)
O2iii—Na1—O2—Na1iii0C1—N1'—C2'—C3'113.5 (12)
S1iv—Na1—O2—Na1iii85.05 (6)C6'—N1'—C2'—C3'55.7 (13)
S1—Na1—O2—Na1iii175.98 (6)N1'—C2'—C3'—C4'55 (2)
Na1ii—Na1—O2—Na1iii70.99 (11)C2'—C3'—C4'—C5'52.4 (19)
Na1i—S1—C1—N1'149.5 (3)C3'—C4'—C5'—C6'52.4 (15)
Na1—S1—C1—N1'24.6 (4)C1—N1'—C6'—C5'110.7 (7)
Na1i—S1—C1—N1164.9 (4)C2'—N1'—C6'—C5'58.7 (9)
Na1—S1—C1—N121.0 (5)C4'—C5'—C6'—N1'57.7 (11)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x+1, y1, z+1; (iv) x+3/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11O···S2v0.84 (2)2.39 (2)3.214 (2)167 (3)
O1—H12O···S1vi0.85 (2)2.49 (2)3.322 (3)167 (3)
O2—H21O···S2vi0.83 (2)2.48 (2)3.283 (2)163 (3)
O2—H22O···S1vii0.86 (2)2.46 (2)3.313 (2)174 (3)
Symmetry codes: (v) x1/2, y+1/2, z; (vi) x1/2, y1/2, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formulaNa+·C6H10NS2·2H2O
Mr219.29
Crystal system, space groupMonoclinic, P21/a
Temperature (K)290
a, b, c (Å)12.241 (5), 5.909 (5), 14.690 (5)
β (°) 95.519 (5)
V3)1057.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.02 × 0.02 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7553, 1863, 1482
Rint0.145
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.152, 1.02
No. of reflections1863
No. of parameters176
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11O···S2i0.839 (17)2.390 (18)3.214 (2)167 (3)
O1—H12O···S1ii0.852 (17)2.49 (2)3.322 (3)167 (3)
O2—H21O···S2ii0.834 (17)2.48 (2)3.283 (2)163 (3)
O2—H22O···S1iii0.856 (17)2.461 (18)3.313 (2)174 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x, y1, z.
 

Acknowledgements

We are grateful to the Instituto de Química de São Carlos and the Universidade de São Paulo for supporting this study.

References

First citationAlbertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. & Ymén, I. (1980). Acta Cryst. B36, 3072–3078.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMafud, A. C. & Gambardella, M. T. P. (2011). Acta Cryst. E67, o879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOskarsson, A., Stahl, K., Svensson, C. & Ymén, I. (1979). Eur. Cryst. Meet. 5, 67.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYmén, I. (1982). Acta Cryst. B38, 2671–2674.  CSD CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds