metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m826-m827

Poly[[(1,10-phenanthroline){μ3-2,2′,2′′-[1,3,5-triazine-2,4,6-triyltris(sulfane­diyl)]tri­acetato}­cadmium] 0.42-hydrate]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: sundezhi@lcu.edu.cn

(Received 9 May 2011; accepted 20 May 2011; online 4 June 2011)

The asymmetric unit of the title complex, {[Cd(C9H7N3O6S3)(C12H8N2)]·0.42H2O}n, contains a CdII atom, one doubly deprotonated 2,2′,2′′-[1,3,5-triazine-2,4,6-triyltris(sulfanediyl)]triacetic acid ligand (HTTTA2−), a 1,10-phenanthroline (phen) ligand and a fractionally occupied water mol­ecule [site occupancy = 0.421 (15)]. The CdII atom is six-coordinated within a distorted octa­hedral coordination geometry. Six coordination arises from four O atoms derived from three different HTTTA2− ligands, and two N atoms of the chelating phen mol­ecule. The incompletely deprotonated triazine ligand adopts a μ3-η1:η1:η2 coordination mode, resulting in the formation of chains along the c axis based on Cd2O2 dimeric units. Adjacent chains are stacked through ππ stacking [3.533 (2) Å between phen and triazine rings] and C—H⋯O inter­actions, forming supra­molecular sheets in the ab plane. Intra-and intermolecular O—H⋯O hydrogen bonds are also observed.

Related literature

For background to metal-organic frameworks, see: Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Rowsell & Yaghi (2005[Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670-4679.]); Wu et al. (2009[Wu, S., Ma, L., Long, L., Zheng, L. & Lin, W. (2009). Inorg. Chem. 48, 2436-2442.]). For similar structures, see: Lu et al. (2010[Lu, Q., Wang, D. & Wang, S. (2010). Acta Cryst. C66, m351-m354.]); Wang et al. (2007[Wang, S. N., Sun, R., Wang, X. S., Li, Y. Z., Pan, Y., Bai, J. F., Scheer, M. & You, X. Z. (2007). CrystEngComm, 9, 1051-1061.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H7N3O6S3)(C12H8N2)]·0.42H2O

  • Mr = 649.53

  • Triclinic, [P \overline 1]

  • a = 10.618 (2) Å

  • b = 10.987 (2) Å

  • c = 12.601 (2) Å

  • α = 95.815 (3)°

  • β = 114.197 (2)°

  • γ = 113.909 (2)°

  • V = 1161.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.691, Tmax = 0.720

  • 6114 measured reflections

  • 4024 independent reflections

  • 3322 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.071

  • S = 1.07

  • 4024 reflections

  • 343 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.447 (2)
Cd1—O1i 2.274 (2)
Cd1—O4i 2.490 (3)
Cd1—O5ii 2.295 (2)
Cd1—N4 2.331 (3)
Cd1—N5 2.320 (3)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6iii 0.82 1.68 2.439 (4) 154
O7—H71⋯O2iv 0.75 (2) 2.35 (12) 2.984 (11) 142 (18)
C15—H15⋯O2v 0.93 2.50 3.294 (6) 143
C17—H17⋯O2v 0.93 2.57 3.353 (6) 142
Symmetry codes: (iii) x, y+1, z; (iv) -x+2, -y+2, -z+2; (v) x-1, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The assembly of coordination architectures has attracted much attention in recent years due to their potential applications in separation, sorption, hydrogen storage, and catalysis, as well as due to their intriguing topologies such as molecular ladders, grids, rings, boxes, honeycombs, and diamondoids (Rowsell & Yaghi, 2005). Flexible multi-functional carboxylic acids are widely investigated in this regard (Rao et al., 2004; Rowsell & Yaghi 2005; Wu et al., 2009). Previous reports of an alkaline earth and a series of lanthanide coordination complexes based on H3TTTA, 2,2',2''-[1,3,5-triazine-2,4,6-triyltris(sulfanediyl)]tris-acetic acid, have appeared (Lu, et al., 2010; Wang, et al., 2007). Herein, we obtained a new CdII complex assembled from this flexible ligand.

As shown in Fig.1, the asymmetric unit consists of one CdII ion, one HTTTA2- dianion, a chelating 1,10-phenanthroline (phen) ligand and approximately half a disordered water molecule (site occupancy = 0.421 (15)). The Cd center is six-coordinated defined by four oxygen atoms derived from three different HTTTA2- anions, and two nitrogen atoms of a chelating phen molecule; Table 1. The N5—Cd1—N4 angle is acute at 71.86 (9)° and consequently, the coordination geometry around the metal center is much distorted. The HTTTA2- ligands act as µ3-bridges, connecting neighboring Cd centers to generate 1-D chains along the c axis. The H atom of the carboxylic group of the HTTTA2- ligand was assigned to O3 according to the long C7—O3 distance of 1.283 (4) Å as well as O3—H3···O6 hydrogen bonding interactions, Table 2. Within the chains, Cd2O2 units are formed through the η2-bridged carboxylate oxygen atoms O1, with the Cd1···Cd1i distance and Cd1—O1—Cd1i (symmetry code: i, 1 - x, 2 - y, 2 - z.) angle being 3.829 (3) Å and 108.3 (3) °, respectively.

Neighboring chains are connected to each other through weak intermolecular ππ stacking interactions between phen and triazine rings with the average interplanar separation of 3.533 (2) Å. As a result, two-dimensional supramolecular sheets are formed along the ab plane, Fig. 2. These sheets are reinforced via nonclassical weak C—H···O interactions Table 2.

Related literature top

For background to metal-organic frameworks, see: Rao et al. (2004); Rowsell & Yaghi (2005); Wu et al. (2009). For similar structures, see: Lu et al. (2010); Wang et al. (2007).

Experimental top

A mixture of 2,2',2''-((1,3,5-triazine-2,4,6-triyl)tris(sulfanediyl))triacetic acid (0.010 g, 0.025 mmol), phenanthroline (0.008 g, 0.05 mmol) and Cd(OAc)2.6H2O (0.013 g, 0.025 mmol) in 10 mL H2O was placed in a Parr Teflon-lined stainless steel vessel and heated to 80 °C for 24 h. The reaction system was cooled to room temperature slowly and yellow blocks were obtained. After filtration, the crystals were washed with water and dried in air. (Yield 64% based on Cd(OAc)2.6H2O). Calcd.: C 38.80, H 2.44, N 10.78; C21H15.84CdN5O6.42S3 requires: C 38.43, H 2.70, N 10.42 %. IR (KBr pellet): 3421 (m,br), 2908 (w), 1591 (m), 1517 (vw), 1425 (m), 1381 (m), 1266 (m), 1246 (m), 1222 (m), 855 (m), 785 (w), 730 (m), 669 (w) cm-1.

Refinement top

The O7 water molecule was fractionally disordered and was refined isotropically to an occupancy of 0.421 (15). The H atoms on this water molecule were located from a difference Fourier Map. The O—H bond distances were fixed to 0.75 (2) Å, and the H—O7—H angle was fixed to 109.79 (4) °; only one of the H atoms was found to be engaged in hydrogen bonding interactions. The remaining H-atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93 - 0.97 Å and O—H = 0.82 (2) Å, and with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title complex extended to show i) the coordination geometry about the Cd1 atom and ii) the coordinating mode of the µ3-ligand. The figure shows atom labels and 30% probability displacement ellipsoids for non-hydrogen atoms. Only the H3 atom is shown with the others omitted for clarity. Symmetry codes: (i) 2 - x, 1 - y, 1 - z and (ii) x, 1/2 - y, 1/2 + z.
[Figure 2] Fig. 2. The two-dimensional sheet in the title complex connected by C—H···O and π-π stacking interactions (dashed blue lines). Hydrogen atoms are omitted for clarity.
Poly[[(1,10-phenanthroline){µ3-2,2',2''-[1,3,5-triazine-2,4,6- triyltris(sulfanediyl)]triacetato}cadmium] 0.42-hydrate] top
Crystal data top
[Cd(C9H7N3O6S3)(C12H8N2)]·0.42H2OZ = 2
Mr = 649.53F(000) = 648
Triclinic, P1Dx = 1.858 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.618 (2) ÅCell parameters from 3004 reflections
b = 10.987 (2) Åθ = 2.3–27.8°
c = 12.601 (2) ŵ = 1.26 mm1
α = 95.815 (3)°T = 298 K
β = 114.197 (2)°Block, yellow
γ = 113.909 (2)°0.30 × 0.28 × 0.26 mm
V = 1161.1 (4) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
4024 independent reflections
Radiation source: fine-focus sealed tube3322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 126
Tmin = 0.691, Tmax = 0.720k = 1113
6114 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
4024 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.44 e Å3
3 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cd(C9H7N3O6S3)(C12H8N2)]·0.42H2Oγ = 113.909 (2)°
Mr = 649.53V = 1161.1 (4) Å3
Triclinic, P1Z = 2
a = 10.618 (2) ÅMo Kα radiation
b = 10.987 (2) ŵ = 1.26 mm1
c = 12.601 (2) ÅT = 298 K
α = 95.815 (3)°0.30 × 0.28 × 0.26 mm
β = 114.197 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4024 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3322 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.720Rint = 0.018
6114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
4024 reflectionsΔρmin = 0.47 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.42035 (3)0.85652 (2)1.06635 (2)0.03328 (10)
C10.4810 (4)0.6039 (3)0.8043 (3)0.0323 (8)
C20.4472 (4)0.6269 (3)0.6212 (3)0.0359 (8)
C30.3023 (4)0.4203 (3)0.6345 (3)0.0356 (8)
C40.7363 (4)0.8372 (3)0.9962 (3)0.0331 (8)
H4A0.82050.86561.07980.040*
H4B0.77820.82750.94240.040*
C50.6972 (4)0.9555 (3)0.9826 (3)0.0346 (8)
C60.6109 (4)0.8984 (3)0.6309 (3)0.0426 (9)
H6A0.69080.90230.70730.051*
H6B0.66610.95860.59550.051*
C70.5189 (4)0.9579 (4)0.6602 (3)0.0385 (8)
C80.1498 (4)0.1658 (4)0.6678 (3)0.0418 (9)
H8A0.19360.23770.74380.050*
H8B0.04170.09900.64460.050*
C90.2466 (4)0.0902 (3)0.6898 (3)0.0362 (8)
C100.1914 (4)0.7138 (4)0.7677 (3)0.0456 (9)
H100.24750.80420.76720.055*
C110.0686 (5)0.6091 (5)0.6563 (3)0.0555 (11)
H110.04390.63020.58330.067*
C120.0148 (4)0.4762 (4)0.6546 (3)0.0501 (10)
H120.09690.40630.58060.060*
C130.0238 (4)0.4452 (4)0.7654 (3)0.0374 (8)
C140.0603 (4)0.3101 (4)0.7722 (4)0.0484 (10)
H140.14140.23640.70030.058*
C150.0245 (4)0.2871 (4)0.8809 (4)0.0458 (9)
H150.08170.19810.88320.055*
C160.1006 (4)0.3981 (3)0.9934 (3)0.0350 (8)
C170.1391 (4)0.3790 (4)1.1094 (4)0.0418 (9)
H170.08250.29211.11530.050*
C180.2594 (4)0.4883 (4)1.2119 (3)0.0415 (9)
H180.28710.47691.28900.050*
C190.3412 (4)0.6180 (4)1.2008 (3)0.0385 (8)
H190.42360.69221.27200.046*
C200.1881 (3)0.5322 (3)0.9908 (3)0.0278 (7)
C210.1479 (4)0.5563 (3)0.8738 (3)0.0296 (7)
N10.5244 (3)0.6901 (3)0.7429 (2)0.0339 (7)
N20.3350 (4)0.4923 (3)0.5603 (3)0.0425 (7)
N30.3688 (3)0.4680 (3)0.7551 (2)0.0365 (7)
N40.2304 (3)0.6890 (3)0.8734 (2)0.0344 (6)
N50.3072 (3)0.6407 (3)1.0937 (2)0.0311 (6)
O10.5578 (3)0.9325 (2)0.9501 (2)0.0360 (5)
O20.8069 (3)1.0707 (3)1.0042 (3)0.0579 (7)
O30.3680 (3)0.8904 (3)0.5892 (2)0.0601 (8)
H30.32810.92980.61190.072*
O40.5906 (3)1.0653 (3)0.7466 (2)0.0525 (7)
O50.3310 (3)0.1012 (3)0.7971 (2)0.0483 (6)
O60.2284 (3)0.0185 (3)0.5955 (2)0.0665 (8)
S10.57763 (10)0.66671 (9)0.96406 (7)0.0340 (2)
S20.49678 (13)0.72178 (10)0.52847 (9)0.0503 (3)
S30.14725 (13)0.24605 (10)0.55044 (9)0.0552 (3)
O70.9389 (12)0.8880 (13)0.7511 (12)0.098 (5)0.421 (15)
H710.97 (2)0.876 (19)0.813 (8)0.17 (10)*0.421 (15)
H720.95 (3)0.85 (2)0.711 (15)0.3 (2)*0.421 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03706 (16)0.02399 (14)0.03189 (15)0.01304 (11)0.01291 (11)0.01064 (10)
C10.0352 (19)0.0324 (19)0.0380 (19)0.0237 (16)0.0181 (15)0.0130 (15)
C20.047 (2)0.035 (2)0.037 (2)0.0277 (18)0.0229 (17)0.0142 (16)
C30.040 (2)0.0288 (18)0.037 (2)0.0221 (16)0.0128 (16)0.0106 (15)
C40.0322 (18)0.0341 (19)0.0313 (18)0.0170 (15)0.0137 (15)0.0098 (15)
C50.047 (2)0.0301 (19)0.0312 (18)0.0199 (18)0.0213 (16)0.0127 (15)
C60.052 (2)0.034 (2)0.047 (2)0.0192 (18)0.0299 (18)0.0166 (17)
C70.047 (2)0.0312 (19)0.0337 (19)0.0173 (18)0.0175 (17)0.0140 (16)
C80.043 (2)0.033 (2)0.043 (2)0.0192 (17)0.0150 (17)0.0107 (16)
C90.0319 (19)0.0278 (18)0.035 (2)0.0100 (15)0.0105 (16)0.0074 (15)
C100.050 (2)0.046 (2)0.039 (2)0.0238 (19)0.0170 (18)0.0214 (18)
C110.056 (3)0.071 (3)0.034 (2)0.036 (2)0.0135 (19)0.019 (2)
C120.036 (2)0.057 (3)0.032 (2)0.019 (2)0.0042 (16)0.0011 (18)
C130.0286 (18)0.041 (2)0.0357 (19)0.0166 (16)0.0120 (15)0.0046 (16)
C140.031 (2)0.033 (2)0.051 (2)0.0029 (17)0.0125 (17)0.0060 (17)
C150.034 (2)0.028 (2)0.062 (3)0.0072 (16)0.0226 (18)0.0067 (18)
C160.0305 (18)0.0285 (18)0.052 (2)0.0161 (15)0.0241 (16)0.0120 (16)
C170.049 (2)0.0315 (19)0.070 (3)0.0250 (18)0.043 (2)0.0268 (19)
C180.056 (2)0.044 (2)0.043 (2)0.031 (2)0.0327 (19)0.0223 (18)
C190.050 (2)0.034 (2)0.0316 (19)0.0229 (18)0.0183 (17)0.0114 (15)
C200.0267 (17)0.0246 (17)0.0386 (19)0.0158 (14)0.0185 (15)0.0098 (14)
C210.0256 (17)0.0306 (18)0.0361 (18)0.0160 (15)0.0161 (14)0.0099 (15)
N10.0421 (17)0.0325 (16)0.0294 (15)0.0190 (14)0.0186 (13)0.0116 (13)
N20.057 (2)0.0333 (17)0.0352 (16)0.0241 (15)0.0195 (15)0.0104 (13)
N30.0386 (16)0.0305 (16)0.0365 (17)0.0182 (14)0.0144 (13)0.0100 (13)
N40.0360 (16)0.0339 (16)0.0315 (15)0.0178 (13)0.0142 (13)0.0127 (13)
N50.0327 (15)0.0268 (15)0.0326 (15)0.0152 (13)0.0150 (12)0.0085 (12)
O10.0432 (14)0.0350 (13)0.0465 (14)0.0261 (12)0.0274 (12)0.0215 (11)
O20.0495 (17)0.0328 (15)0.084 (2)0.0135 (13)0.0330 (15)0.0213 (14)
O30.0507 (17)0.0477 (16)0.0560 (17)0.0255 (14)0.0089 (14)0.0075 (13)
O40.0543 (16)0.0355 (14)0.0496 (16)0.0102 (13)0.0257 (13)0.0012 (12)
O50.0434 (15)0.0679 (18)0.0361 (14)0.0318 (14)0.0164 (12)0.0213 (13)
O60.078 (2)0.075 (2)0.0409 (16)0.0550 (18)0.0101 (14)0.0029 (15)
S10.0398 (5)0.0301 (5)0.0326 (5)0.0182 (4)0.0167 (4)0.0131 (4)
S20.0826 (8)0.0418 (5)0.0415 (5)0.0332 (5)0.0399 (5)0.0174 (4)
S30.0654 (7)0.0296 (5)0.0379 (5)0.0169 (5)0.0052 (5)0.0089 (4)
O70.076 (6)0.102 (8)0.076 (8)0.033 (5)0.014 (5)0.025 (6)
Geometric parameters (Å, º) top
Cd1—O12.447 (2)C9—O61.253 (4)
Cd1—O1i2.274 (2)C10—N41.316 (4)
Cd1—O4i2.490 (3)C10—C111.397 (5)
Cd1—O5ii2.295 (2)C10—H100.9300
Cd1—N42.331 (3)C11—C121.359 (5)
Cd1—N52.320 (3)C11—H110.9300
C1—N11.340 (4)C12—C131.405 (5)
C1—N31.341 (4)C12—H120.9300
C1—S11.742 (3)C13—C211.405 (4)
C2—N21.336 (4)C13—C141.422 (5)
C2—N11.341 (4)C14—C151.344 (5)
C2—S21.742 (3)C14—H140.9300
C3—N31.320 (4)C15—C161.433 (5)
C3—N21.348 (4)C15—H150.9300
C3—S31.761 (3)C16—C201.400 (4)
C4—C51.522 (4)C16—C171.410 (5)
C4—S11.800 (3)C17—C181.354 (5)
C4—H4A0.9700C17—H170.9300
C4—H4B0.9700C18—C191.393 (5)
C5—O21.228 (4)C18—H180.9300
C5—O11.265 (4)C19—N51.325 (4)
C6—C71.512 (5)C19—H190.9300
C6—S21.790 (4)C20—N51.349 (4)
C6—H6A0.9700C20—C211.443 (4)
C6—H6B0.9700C21—N41.365 (4)
C7—O41.220 (4)O1—Cd1i2.274 (2)
C7—O31.283 (4)O3—H30.8201
C8—C91.526 (5)O4—Cd1i2.490 (3)
C8—S31.793 (4)O5—Cd1ii2.295 (2)
C8—H8A0.9700O7—H710.75 (2)
C8—H8B0.9700O7—H720.75 (2)
C9—O51.237 (4)
O1i—Cd1—O5ii107.00 (9)C11—C10—H10118.9
O1i—Cd1—N5154.48 (9)C12—C11—C10120.0 (3)
O5ii—Cd1—N590.50 (9)C12—C11—H11120.0
O1i—Cd1—N4107.24 (9)C10—C11—H11120.0
O5ii—Cd1—N4131.23 (10)C11—C12—C13119.5 (3)
N5—Cd1—N471.86 (9)C11—C12—H12120.2
O1i—Cd1—O171.65 (9)C13—C12—H12120.2
O5ii—Cd1—O179.40 (8)C12—C13—C21117.2 (3)
N5—Cd1—O1131.20 (8)C12—C13—C14123.2 (3)
N4—Cd1—O179.61 (9)C21—C13—C14119.6 (3)
O1i—Cd1—O4i82.53 (8)C15—C14—C13121.1 (3)
O5ii—Cd1—O4i84.79 (9)C15—C14—H14119.5
N5—Cd1—O4i80.69 (9)C13—C14—H14119.5
N4—Cd1—O4i133.26 (9)C14—C15—C16120.8 (3)
O1—Cd1—O4i143.94 (8)C14—C15—H15119.6
N1—C1—N3126.4 (3)C16—C15—H15119.6
N1—C1—S1119.5 (2)C20—C16—C17117.5 (3)
N3—C1—S1114.1 (2)C20—C16—C15120.0 (3)
N2—C2—N1126.4 (3)C17—C16—C15122.5 (3)
N2—C2—S2114.1 (2)C18—C17—C16119.4 (3)
N1—C2—S2119.4 (2)C18—C17—H17120.3
N3—C3—N2127.3 (3)C16—C17—H17120.3
N3—C3—S3121.0 (3)C17—C18—C19119.3 (3)
N2—C3—S3111.6 (2)C17—C18—H18120.4
C5—C4—S1117.4 (2)C19—C18—H18120.4
C5—C4—H4A108.0N5—C19—C18123.1 (3)
S1—C4—H4A108.0N5—C19—H19118.4
C5—C4—H4B108.0C18—C19—H19118.4
S1—C4—H4B108.0N5—C20—C16122.6 (3)
H4A—C4—H4B107.2N5—C20—C21118.6 (3)
O2—C5—O1123.5 (3)C16—C20—C21118.8 (3)
O2—C5—C4116.3 (3)N4—C21—C13122.4 (3)
O1—C5—C4120.2 (3)N4—C21—C20117.9 (3)
C7—C6—S2116.0 (3)C13—C21—C20119.7 (3)
C7—C6—H6A108.3C1—N1—C2113.5 (3)
S2—C6—H6A108.3C2—N2—C3113.0 (3)
C7—C6—H6B108.3C3—N3—C1113.3 (3)
S2—C6—H6B108.3C10—N4—C21118.7 (3)
H6A—C6—H6B107.4C10—N4—Cd1125.7 (2)
O4—C7—O3124.8 (4)C21—N4—Cd1115.45 (19)
O4—C7—C6119.2 (3)C19—N5—C20118.0 (3)
O3—C7—C6116.0 (3)C19—N5—Cd1125.7 (2)
C9—C8—S3113.0 (3)C20—N5—Cd1116.0 (2)
C9—C8—H8A109.0C5—O1—Cd1i101.51 (19)
S3—C8—H8A109.0C5—O1—Cd1124.8 (2)
C9—C8—H8B109.0Cd1i—O1—Cd1108.35 (9)
S3—C8—H8B109.0C7—O3—H3109.3
H8A—C8—H8B107.8C7—O4—Cd1i136.9 (2)
O5—C9—O6126.1 (3)C9—O5—Cd1ii143.1 (2)
O5—C9—C8118.0 (3)C1—S1—C4101.33 (16)
O6—C9—C8115.9 (3)C2—S2—C6101.51 (17)
N4—C10—C11122.2 (3)C3—S3—C8103.00 (16)
N4—C10—H10118.9H71—O7—H72110 (6)
S1—C4—C5—O2179.5 (3)N5—Cd1—N4—C10178.2 (3)
S1—C4—C5—O10.1 (4)O1—Cd1—N4—C1041.9 (3)
S2—C6—C7—O4165.6 (3)O4i—Cd1—N4—C10121.1 (3)
S2—C6—C7—O315.3 (4)O1i—Cd1—N4—C21150.7 (2)
S3—C8—C9—O5139.6 (3)O5ii—Cd1—N4—C2176.5 (2)
S3—C8—C9—O642.5 (4)N5—Cd1—N4—C212.5 (2)
N4—C10—C11—C120.2 (6)O1—Cd1—N4—C21142.4 (2)
C10—C11—C12—C130.2 (6)O4i—Cd1—N4—C2154.7 (3)
C11—C12—C13—C210.7 (5)C18—C19—N5—C200.4 (5)
C11—C12—C13—C14178.1 (4)C18—C19—N5—Cd1174.1 (2)
C12—C13—C14—C15176.4 (4)C16—C20—N5—C190.2 (5)
C21—C13—C14—C150.9 (6)C21—C20—N5—C19178.8 (3)
C13—C14—C15—C160.5 (6)C16—C20—N5—Cd1175.2 (2)
C14—C15—C16—C200.4 (5)C21—C20—N5—Cd13.8 (4)
C14—C15—C16—C17178.4 (4)O1i—Cd1—N5—C1985.7 (3)
C20—C16—C17—C181.4 (5)O5ii—Cd1—N5—C1948.4 (3)
C15—C16—C17—C18179.7 (3)N4—Cd1—N5—C19177.9 (3)
C16—C17—C18—C190.9 (5)O1—Cd1—N5—C19124.7 (3)
C17—C18—C19—N50.0 (5)O4i—Cd1—N5—C1936.2 (3)
C17—C16—C20—N51.1 (5)O1i—Cd1—N5—C2088.9 (3)
C15—C16—C20—N5180.0 (3)O5ii—Cd1—N5—C20137.0 (2)
C17—C16—C20—C21177.9 (3)N4—Cd1—N5—C203.3 (2)
C15—C16—C20—C211.0 (5)O1—Cd1—N5—C2060.7 (2)
C12—C13—C21—N40.9 (5)O4i—Cd1—N5—C20138.4 (2)
C14—C13—C21—N4178.4 (3)O2—C5—O1—Cd1i4.0 (4)
C12—C13—C21—C20177.2 (3)C4—C5—O1—Cd1i175.6 (2)
C14—C13—C21—C200.3 (5)O2—C5—O1—Cd1118.2 (3)
N5—C20—C21—N41.5 (4)C4—C5—O1—Cd162.2 (4)
C16—C20—C21—N4177.5 (3)O1i—Cd1—O1—C5119.1 (3)
N5—C20—C21—C13179.7 (3)O5ii—Cd1—O1—C57.1 (2)
C16—C20—C21—C130.6 (5)N5—Cd1—O1—C574.2 (3)
N3—C1—N1—C22.2 (5)N4—Cd1—O1—C5128.6 (3)
S1—C1—N1—C2176.4 (2)O4i—Cd1—O1—C572.6 (3)
N2—C2—N1—C11.0 (5)O5ii—Cd1—O1—Cd1i112.05 (11)
S2—C2—N1—C1176.7 (2)N5—Cd1—O1—Cd1i166.69 (9)
N1—C2—N2—C30.3 (5)N4—Cd1—O1—Cd1i112.23 (11)
S2—C2—N2—C3178.2 (2)O4i—Cd1—O1—Cd1i46.50 (17)
N3—C3—N2—C20.8 (5)O3—C7—O4—Cd1i54.0 (5)
S3—C3—N2—C2177.1 (2)C6—C7—O4—Cd1i127.0 (3)
N2—C3—N3—C10.2 (5)O6—C9—O5—Cd1ii48.3 (6)
S3—C3—N3—C1177.8 (2)C8—C9—O5—Cd1ii134.1 (3)
N1—C1—N3—C31.8 (5)N1—C1—S1—C47.9 (3)
S1—C1—N3—C3176.8 (2)N3—C1—S1—C4170.9 (2)
C11—C10—N4—C210.0 (6)C5—C4—S1—C180.6 (3)
C11—C10—N4—Cd1175.6 (3)N2—C2—S2—C6167.5 (3)
C13—C21—N4—C100.5 (5)N1—C2—S2—C614.5 (3)
C20—C21—N4—C10177.6 (3)C7—C6—S2—C271.7 (3)
C13—C21—N4—Cd1176.6 (2)N3—C3—S3—C811.5 (3)
C20—C21—N4—Cd11.5 (4)N2—C3—S3—C8170.4 (3)
O1i—Cd1—N4—C1025.0 (3)C9—C8—S3—C395.0 (3)
O5ii—Cd1—N4—C10107.7 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6iii0.821.682.439 (4)154
O7—H71···O2iv0.75 (2)2.35 (12)2.984 (11)142 (18)
C15—H15···O2v0.932.503.294 (6)143
C17—H17···O2v0.932.573.353 (6)142
Symmetry codes: (iii) x, y+1, z; (iv) x+2, y+2, z+2; (v) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cd(C9H7N3O6S3)(C12H8N2)]·0.42H2O
Mr649.53
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.618 (2), 10.987 (2), 12.601 (2)
α, β, γ (°)95.815 (3), 114.197 (2), 113.909 (2)
V3)1161.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.691, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
6114, 4024, 3322
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.071, 1.07
No. of reflections4024
No. of parameters343
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.47

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.447 (2)Cd1—O5ii2.295 (2)
Cd1—O1i2.274 (2)Cd1—N42.331 (3)
Cd1—O4i2.490 (3)Cd1—N52.320 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6iii0.821.682.439 (4)154
O7—H71···O2iv0.75 (2)2.35 (12)2.984 (11)142 (18)
C15—H15···O2v0.932.503.294 (6)143
C17—H17···O2v0.932.573.353 (6)142
Symmetry codes: (iii) x, y+1, z; (iv) x+2, y+2, z+2; (v) x1, y1, z.
 

Acknowledgements

This project was supported by the Foundation of Shandong Natural Science (grant No. ZR2010BL020).

References

First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, Q., Wang, D. & Wang, S. (2010). Acta Cryst. C66, m351–m354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. N., Sun, R., Wang, X. S., Li, Y. Z., Pan, Y., Bai, J. F., Scheer, M. & You, X. Z. (2007). CrystEngComm, 9, 1051–1061.  Web of Science CSD CrossRef Google Scholar
First citationWu, S., Ma, L., Long, L., Zheng, L. & Lin, W. (2009). Inorg. Chem. 48, 2436–2442.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m826-m827
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds