organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-2,3,4,9-tetra­hydro-1H-carbazole-1-thione

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 17 May 2011; accepted 20 May 2011; online 11 June 2011)

In the title mol­ecule, C13H13NS, the dihedral angle between the benzene ring and the fused pyrrole ring is 0.71 (8)° and the cyclo­hexene ring is in an envelope form. The (CH2)3 atoms of the cyclo­hexene ring are disordered over two positions; the site-occupancy factor for the major component refined to 0.862 (4). In the crystal, inter­molecular N—H⋯S hydrogen bonds lead to the formation of centrosymmetric aggregates via an R22(10) ring.

Related literature

For the synthesis of fused carbazole nuclei, see: Pelly et al. (2005[Pelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474-10481.]). For heterocycle-annulated tetra-, penta- and hexa­cyclic carbazole derivatives, see: Chattopadhyay et al. (2006[Chattopadhyay, S. K., Roy, S. P., Ghosh, D. & Biswas, G. (2006). Tetrahedron Lett. 47, 6895-6898.]). For the preparation of 1-oxo compounds via their corresponding hydrazones, see: Rajendra Prasad & Vijayalakshmi (1994[Rajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. Sect. B, 33, 481-482.]). For related structures, see: Archana et al. (2010[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2299-o2300.]); Thomas Gunaseelan et al. (2009[Thomas Gunaseelan, A., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o1946-o1947.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NS

  • Mr = 215.31

  • Triclinic, [P \overline 1]

  • a = 7.0846 (4) Å

  • b = 9.5287 (7) Å

  • c = 9.6384 (6) Å

  • α = 115.009 (7)°

  • β = 104.901 (6)°

  • γ = 98.074 (6)°

  • V = 546.28 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.31 mm−1

  • T = 295 K

  • 0.46 × 0.28 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.609, Tmax = 1.000

  • 3471 measured reflections

  • 2102 independent reflections

  • 1924 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 1.06

  • 2102 reflections

  • 145 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯S1i 0.86 (2) 2.77 (3) 3.4955 (15) 143 (2)
Symmetry code: (i) -x+2, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The development of methods for the synthesis of fused carbazole nuclei is becoming increasingly important as a result of the number of natural and synthetic carbazoles that display biological activity (Pelly et al., 2005). Heterocycle-annulated tetra-, penta- and hexa-cyclic carbazole derivatives have been developed using successive applications of three atom economic processes, viz., Claisen rearrangement, olefin metathesis and Diels-Alder reactions (Chattopadhyay et al., 2006). The preparation of 1-oxo compounds via their corresponding hydrazones has been reported (Rajendra Prasad & Vijayalakshmi, 1994). Archana et al. (2010) and Thomas Gunaseelan et al. (2009) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar.

In the title molecule, Fig. 1, the dihedral angle between the benzene ring and the fused pyrrole ring is 0.71 (8) °. The cyclohexene ring is in envelope form. Three C atoms (C2A, C3A, C4A) of the cyclohexene ring, with their attached H atoms are disordered over two positions; the site-occupancy factors are ca 0.86 and 0.14. Intermolecular N—H···S hydrogen bonds form a R22(10) (Bernstein et al., 1995) ring in the crystal structure (Table 1 & Fig. 2).

Related literature top

For the synthesis of fused carbazole nuclei, see: Pelly et al. (2005). For heterocycle-annulated tetra-, penta- and hexacyclic carbazole derivatives, see: Chattopadhyay et al. (2006). For the preparation of 1-oxo compounds via their corresponding hydrazones, see: Rajendra Prasad & Vijayalakshmi (1994). For related structures, see: Archana et al. (2010); Thomas Gunaseelan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one (0.199 g, 0.001 mol) and Lawesson's reagent (0.404 g, 0.001 mol) was refluxed in pyridine on an oil bath pre-heated to 383 K for 6 h. The contents were poured onto cold water and neutralized using 1:1 HCl, filtered and dried. The product was recrystallized from ethanol. The yield was 0.154 g (72%).

Refinement top

Atoms C2A, C3A, C4A of the cyclohexene ring, with attached hydrogen atoms are disordered over two positions; the site occupancy factors refined to 0.862 (4) and 0.138 (4). The N9-H atom was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = xUeq(parent atom), where x = 1.5 for methyl and 1.2 for all other carbon-bound H atoms. A damping factor (damp 200 15 in the final refinement cycles) was applied to avoid large and erratic displacements of the hydrogen atoms of the less occupied C atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Unit cell contents for (I), viewed down the a axis, showing the formation of a R22(10) ring.
6-Methyl-2,3,4,9-tetrahydro-1H-carbazole-1-thione top
Crystal data top
C13H13NSZ = 2
Mr = 215.31F(000) = 228
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Melting point: 356 K
a = 7.0846 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.5287 (7) ÅCell parameters from 2595 reflections
c = 9.6384 (6) Åθ = 5.3–72.6°
α = 115.009 (7)°µ = 2.31 mm1
β = 104.901 (6)°T = 295 K
γ = 98.074 (6)°Chunk, orange
V = 546.28 (8) Å30.46 × 0.28 × 0.21 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2102 independent reflections
Radiation source: Enhance (Cu) X-ray Source1924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 72.8°, θmin = 5.3°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.609, Tmax = 1.000l = 911
3471 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.089P]
where P = (Fo2 + 2Fc2)/3
2102 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.33 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H13NSγ = 98.074 (6)°
Mr = 215.31V = 546.28 (8) Å3
Triclinic, P1Z = 2
a = 7.0846 (4) ÅCu Kα radiation
b = 9.5287 (7) ŵ = 2.31 mm1
c = 9.6384 (6) ÅT = 295 K
α = 115.009 (7)°0.46 × 0.28 × 0.21 mm
β = 104.901 (6)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2102 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1924 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 1.000Rint = 0.022
3471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
2102 reflectionsΔρmin = 0.22 e Å3
145 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.12016 (7)0.28362 (5)0.07548 (6)0.0567 (1)
N90.79545 (19)0.08614 (14)0.14611 (15)0.0412 (3)
C10.9615 (3)0.34787 (18)0.16910 (19)0.0438 (4)
C2A0.9571 (3)0.5227 (2)0.2371 (3)0.0611 (6)0.862 (4)
C3A0.7579 (4)0.5495 (2)0.2548 (3)0.0590 (7)0.862 (4)
C4A0.6807 (3)0.47256 (19)0.3468 (2)0.0531 (5)0.862 (4)
C4C0.6904 (3)0.30147 (17)0.27848 (18)0.0421 (4)
C4D0.5783 (2)0.16637 (17)0.27860 (17)0.0396 (4)
C50.4231 (3)0.14228 (19)0.33927 (19)0.0443 (4)
C60.3399 (2)0.00860 (19)0.31681 (18)0.0430 (4)
C70.4130 (2)0.13824 (18)0.23121 (19)0.0444 (4)
C80.5640 (2)0.12039 (18)0.16959 (19)0.0426 (4)
C8A0.6473 (2)0.03337 (17)0.19299 (17)0.0382 (4)
C9A0.8222 (2)0.24863 (17)0.19625 (18)0.0406 (4)
C160.1720 (3)0.0386 (2)0.3790 (2)0.0530 (5)
C4B0.6807 (3)0.47256 (19)0.3468 (2)0.0531 (5)0.138 (4)
C3B0.855 (2)0.5809 (14)0.3534 (18)0.0590 (7)0.138 (4)
C2B0.9571 (3)0.5227 (2)0.2371 (3)0.0611 (6)0.138 (4)
H3A0.656030.505560.146720.0708*0.862 (4)
H2B0.987370.562930.165790.0733*0.862 (4)
H4B0.541310.474840.335840.0637*0.862 (4)
H3B0.774910.664710.311930.0708*0.862 (4)
H4A0.763760.532810.462180.0637*0.862 (4)
H80.609310.207520.114260.0512*
H90.856 (3)0.029 (3)0.086 (2)0.050 (5)*
H16A0.141490.060910.435000.0795*
H16B0.215160.080100.453190.0795*
H16C0.052410.115680.288520.0795*
H50.376620.228520.394730.0531*
H70.356120.240010.216120.0532*
H2A1.064340.586010.343580.0733*0.862 (4)
H2C1.096970.590420.288880.0733*0.138 (4)
H2D0.893450.539060.145370.0733*0.138 (4)
H3C0.809700.669320.344630.0708*0.138 (4)
H3D0.956750.626730.461740.0708*0.138 (4)
H4C0.555970.476860.279540.0637*0.138 (4)
H4D0.676830.509370.456260.0637*0.138 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0577 (2)0.0544 (2)0.0691 (3)0.0166 (2)0.0349 (2)0.0319 (2)
N90.0486 (6)0.0350 (6)0.0475 (6)0.0156 (5)0.0246 (5)0.0209 (5)
C10.0476 (8)0.0392 (7)0.0458 (7)0.0084 (6)0.0155 (6)0.0232 (6)
C2A0.0759 (11)0.0386 (8)0.0776 (11)0.0143 (8)0.0367 (9)0.0307 (7)
C3A0.0760 (14)0.0372 (8)0.0728 (13)0.0214 (9)0.0301 (11)0.0304 (9)
C4A0.0659 (10)0.0342 (7)0.0616 (9)0.0190 (7)0.0300 (8)0.0194 (6)
C4C0.0506 (8)0.0340 (7)0.0432 (7)0.0125 (6)0.0184 (6)0.0187 (5)
C4D0.0474 (7)0.0338 (6)0.0402 (6)0.0132 (5)0.0179 (6)0.0180 (5)
C50.0517 (8)0.0407 (7)0.0453 (7)0.0181 (6)0.0239 (6)0.0194 (6)
C60.0440 (7)0.0451 (7)0.0416 (7)0.0113 (6)0.0178 (6)0.0211 (6)
C70.0493 (8)0.0363 (7)0.0497 (7)0.0093 (6)0.0188 (6)0.0226 (6)
C80.0504 (8)0.0342 (6)0.0468 (7)0.0147 (6)0.0206 (6)0.0197 (5)
C8A0.0439 (7)0.0347 (6)0.0389 (6)0.0132 (5)0.0167 (5)0.0183 (5)
C9A0.0481 (8)0.0339 (6)0.0426 (7)0.0119 (6)0.0174 (6)0.0200 (5)
C160.0521 (9)0.0552 (9)0.0545 (8)0.0109 (7)0.0256 (7)0.0262 (7)
C4B0.0659 (10)0.0342 (7)0.0616 (9)0.0190 (7)0.0300 (8)0.0194 (6)
C3B0.0760 (14)0.0372 (8)0.0728 (13)0.0214 (9)0.0301 (11)0.0304 (9)
C2B0.0759 (11)0.0386 (8)0.0776 (11)0.0143 (8)0.0367 (9)0.0307 (7)
Geometric parameters (Å, º) top
S1—C11.643 (2)C7—C81.374 (2)
N9—C8A1.359 (2)C8—C8A1.398 (3)
N9—C9A1.380 (2)C2A—H2A0.9700
N9—H90.86 (2)C2A—H2B0.9700
C1—C9A1.420 (3)C2B—H2C0.9700
C1—C2B1.519 (3)C2B—H2D0.9700
C1—C2A1.519 (3)C3A—H3A0.9700
C2A—C3A1.508 (4)C3A—H3B0.9700
C2B—C3B1.446 (15)C3B—H3C0.9700
C3A—C4A1.520 (3)C3B—H3D0.9700
C3B—C4B1.463 (15)C4A—H4A0.9700
C4A—C4C1.498 (3)C4A—H4B0.9700
C4B—C4C1.498 (3)C4B—H4D0.9700
C4C—C4D1.415 (3)C4B—H4C0.9700
C4C—C9A1.389 (3)C5—H50.9300
C4D—C51.406 (3)C7—H70.9300
C4D—C8A1.422 (2)C8—H80.9300
C5—C61.376 (3)C16—H16C0.9600
C6—C161.507 (3)C16—H16A0.9600
C6—C71.419 (2)C16—H16B0.9600
C8A—N9—C9A108.73 (13)H2A—C2A—H2B108.00
C8A—N9—H9127.5 (19)C1—C2B—H2C108.00
C9A—N9—H9123.4 (19)C1—C2B—H2D108.00
S1—C1—C2B121.48 (16)C3B—C2B—H2C108.00
C2A—C1—C9A114.66 (17)C3B—C2B—H2D108.00
C2B—C1—C9A114.66 (17)H2C—C2B—H2D107.00
S1—C1—C2A121.48 (16)C2A—C3A—H3B109.00
S1—C1—C9A123.85 (14)C4A—C3A—H3A109.00
C1—C2A—C3A114.80 (19)C2A—C3A—H3A109.00
C1—C2B—C3B118.3 (6)H3A—C3A—H3B108.00
C2A—C3A—C4A113.5 (2)C4A—C3A—H3B109.00
C2B—C3B—C4B121.0 (10)C2B—C3B—H3D107.00
C3A—C4A—C4C109.36 (17)C2B—C3B—H3C107.00
C3B—C4B—C4C112.2 (6)C4B—C3B—H3D107.00
C4B—C4C—C9A122.29 (17)H3C—C3B—H3D107.00
C4B—C4C—C4D130.69 (18)C4B—C3B—H3C107.00
C4A—C4C—C4D130.69 (18)C3A—C4A—H4A110.00
C4A—C4C—C9A122.29 (17)C3A—C4A—H4B110.00
C4D—C4C—C9A107.01 (15)H4A—C4A—H4B108.00
C4C—C4D—C5134.04 (17)C4C—C4A—H4A110.00
C4C—C4D—C8A106.52 (14)C4C—C4A—H4B110.00
C5—C4D—C8A119.43 (16)C4C—C4B—H4D109.00
C4D—C5—C6120.16 (17)H4C—C4B—H4D108.00
C7—C6—C16119.78 (17)C3B—C4B—H4C109.00
C5—C6—C16121.41 (16)C3B—C4B—H4D109.00
C5—C6—C7118.81 (16)C4C—C4B—H4C109.00
C6—C7—C8123.03 (17)C4D—C5—H5120.00
C7—C8—C8A117.67 (15)C6—C5—H5120.00
N9—C8A—C4D108.52 (15)C6—C7—H7119.00
N9—C8A—C8130.59 (15)C8—C7—H7118.00
C4D—C8A—C8120.89 (14)C7—C8—H8121.00
N9—C9A—C4C109.22 (15)C8A—C8—H8121.00
C1—C9A—C4C124.73 (17)C6—C16—H16A109.00
N9—C9A—C1126.04 (15)C6—C16—H16B109.00
C1—C2A—H2A109.00C6—C16—H16C109.00
C1—C2A—H2B109.00H16A—C16—H16B109.00
C3A—C2A—H2A109.00H16A—C16—H16C109.00
C3A—C2A—H2B109.00H16B—C16—H16C109.00
C9A—N9—C8A—C4D1.01 (16)C4A—C4C—C9A—N9179.30 (14)
C9A—N9—C8A—C8179.17 (15)C4A—C4C—C9A—C10.7 (3)
C8A—N9—C9A—C1179.28 (15)C4D—C4C—C9A—N90.11 (17)
C8A—N9—C9A—C4C0.70 (17)C4D—C4C—C9A—C1179.87 (15)
S1—C1—C2A—C3A155.86 (17)C4C—C4D—C5—C6178.74 (17)
C9A—C1—C2A—C3A25.3 (3)C8A—C4D—C5—C60.4 (2)
S1—C1—C9A—N91.7 (2)C4C—C4D—C8A—N90.93 (17)
S1—C1—C9A—C4C178.38 (13)C4C—C4D—C8A—C8179.22 (14)
C2A—C1—C9A—N9179.56 (16)C5—C4D—C8A—N9179.65 (14)
C2A—C1—C9A—C4C0.4 (2)C5—C4D—C8A—C80.5 (2)
C1—C2A—C3A—C4A51.1 (3)C4D—C5—C6—C70.3 (2)
C2A—C3A—C4A—C4C48.2 (2)C4D—C5—C6—C16179.42 (15)
C3A—C4A—C4C—C4D155.34 (19)C5—C6—C7—C80.2 (2)
C3A—C4A—C4C—C9A23.7 (2)C16—C6—C7—C8179.32 (15)
C4A—C4C—C4D—C50.2 (3)C6—C7—C8—C8A0.2 (2)
C4A—C4C—C4D—C8A178.61 (16)C7—C8—C8A—N9179.81 (15)
C9A—C4C—C4D—C5178.95 (17)C7—C8—C8A—C4D0.4 (2)
C9A—C4C—C4D—C8A0.50 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···S1i0.86 (2)2.77 (3)3.4955 (15)143 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC13H13NS
Mr215.31
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.0846 (4), 9.5287 (7), 9.6384 (6)
α, β, γ (°)115.009 (7), 104.901 (6), 98.074 (6)
V3)546.28 (8)
Z2
Radiation typeCu Kα
µ (mm1)2.31
Crystal size (mm)0.46 × 0.28 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.609, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3471, 2102, 1924
Rint0.022
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.06
No. of reflections2102
No. of parameters145
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···S1i0.86 (2)2.77 (3)3.4955 (15)143 (2)
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2299–o2300.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChattopadhyay, S. K., Roy, S. P., Ghosh, D. & Biswas, G. (2006). Tetrahedron Lett. 47, 6895–6898.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474–10481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. Sect. B, 33, 481–482.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas Gunaseelan, A., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o1946–o1947.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds