organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Acetamido­benzene­sulfonamido)­benzoic acid

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, bGlaxo Smith Kline, 18 KM Feroze Pur Road, Lahore 54000, Pakistan, and cDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 19 May 2011; accepted 27 May 2011; online 4 June 2011)

In the title compound, C15H14N2O5S, two similar mol­ecules comprise the asymmetric unit, which are linked by strong inter­molecular C—H⋯π inter­actions. Both mol­ecules are bent, with dihedral angles of 71.94 (16) and 74.62 (15)° between the benzene rings. An intra­molecular N—H⋯O hydrogen bond occurs in each mol­ecule. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For our previous studies on sulfonamide derivatives, see: Khan et al. (2011[Khan, I. U., Bibi, S., Mariam, I., Sharif, S. & Kang, S. K. (2011). Acta Cryst. E67, o369.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]). For background to the pharmacological use of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed, pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O5S

  • Mr = 334.34

  • Monoclinic, P 21

  • a = 9.3721 (19) Å

  • b = 13.036 (3) Å

  • c = 13.132 (3) Å

  • β = 109.47 (3)°

  • V = 1512.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.25 × 0.12 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.92, Tmax = 0.931

  • 2926 measured reflections

  • 2926 independent reflections

  • 1470 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.092

  • S = 0.82

  • 2926 reflections

  • 415 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C37–C42 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O22i 0.82 1.84 2.649 (6) 168
N10—H10⋯O8 0.86 2.13 2.624 (7) 116
N20—H20⋯O13ii 0.86 2.24 3.073 (6) 164
O31—H31⋯O45iii 0.82 1.81 2.623 (6) 174
N33—H33⋯O32 0.86 2.17 2.641 (7) 114
N43—H43⋯O36i 0.86 2.11 2.958 (7) 168
C23—H23BCg1 0.96 2.74 3.6110 (15) 151
C46—H46CCg2 0.96 2.71 3.5821 (13) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation of our structural studies of sulfonamides (Khan et al., 2011; Sharif et al., 2010) of the interest owing to their potential as biologically active molecules (Korolkovas, 1988; Mandell & Sande, 1992), herein, we report the crystal structure of the title compound, (I).

Two independent but similar molecules comprise the asymmetric unit, Fig. 1. The phenyl carboxyl moieties are almost planar with r.m.s. deviations of 0.012 and 0.023 Å from the corresponding least-squares plane defined by the eight constituent atoms. The dihedral angles between the benzene rings are 71.94 (16) and 74.62 (15) °. The two independent molecules are linked by intermolecular C—H···π interactions (centroid—H distance = 2.711 (3) and 2.740 (3) Å) (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Table 1, Fig. 2).

Related literature top

For our previous studies on sulfonamide derivatives, see: Khan et al. (2011); Sharif et al. (2010). For background to the pharmacological use of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992).

Experimental top

To anthranilic acid (137 mg, 1 mmol) in distilled water (10 ml) was added 4-acetamidobenzenesulfonyl chloride (234 mg, 1 mmol). The pH = 8 was maintained by 3% Na2CO3 with stirring at room temperature. The reaction was monitored by TLC. After completion of reaction, the solution was adjusted to pH =3 with 3 N HCl solution. The white precipitate that formed was filtered and washed with water. Crystallization was from methanol.

Refinement top

All the H atoms were positioned in their idealized geometries with C—H = 0.93–0.96 Å, N—H = 0.86 Å and O—H = 0.82 Å, and were refined using a riding model with Uiso(H) = 1.2Ueq for aromatic C and N atoms and with Uiso(H) = 1.5Ueq for methyl C and O atoms. In the absence of significant anomalous scattering effects, 2267 Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules of (I) showing the atom-numbering scheme and 30% probability ellipsoids. The C—H···π interactions are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), viewed normal to (0 0 1), illustrating the 3-D network of molecules linked by intermolecular N—H···O and O—H···O hydrogen bonds (dashed lines).
2-(4-Acetamidobenzenesulfonamido)benzoic acid top
Crystal data top
C15H14N2O5SF(000) = 696
Mr = 334.34Dx = 1.468 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1295 reflections
a = 9.3721 (19) Åθ = 2.8–18.7°
b = 13.036 (3) ŵ = 0.24 mm1
c = 13.132 (3) ÅT = 296 K
β = 109.47 (3)°Block, violet
V = 1512.7 (5) Å30.25 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2926 independent reflections
Graphite monochromator1470 reflections with I > 2σ(I)
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1110
Tmin = 0.92, Tmax = 0.931k = 015
2926 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0338P)2]
where P = (Fo2 + 2Fc2)/3
2926 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C15H14N2O5SV = 1512.7 (5) Å3
Mr = 334.34Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.3721 (19) ŵ = 0.24 mm1
b = 13.036 (3) ÅT = 296 K
c = 13.132 (3) Å0.25 × 0.12 × 0.09 mm
β = 109.47 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2926 measured reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2926 independent reflections
Tmin = 0.92, Tmax = 0.9311470 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.092H-atom parameters constrained
S = 0.82Δρmax = 0.26 e Å3
2926 reflectionsΔρmin = 0.24 e Å3
415 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9116 (7)0.1951 (5)0.4462 (5)0.0489 (17)
C20.8856 (6)0.1876 (4)0.3361 (5)0.0378 (15)
C30.9664 (8)0.2491 (5)0.2895 (6)0.069 (2)
H30.94890.24330.21570.082*
C41.0705 (8)0.3179 (6)0.3474 (7)0.068 (2)
H41.1240.35850.31430.081*
C51.0948 (8)0.3260 (6)0.4565 (7)0.078 (2)
H51.16450.37360.49720.094*
C61.0181 (8)0.2652 (6)0.5064 (6)0.0547 (18)
H61.03740.2710.58040.066*
C70.8274 (7)0.1297 (5)0.4990 (5)0.0444 (16)
O80.7297 (6)0.0692 (4)0.4533 (4)0.0761 (16)
O90.8716 (5)0.1415 (4)0.6050 (4)0.0753 (14)
H90.82110.10430.630.113*
N100.7746 (6)0.1191 (4)0.2728 (4)0.0556 (15)
H100.76570.06130.30170.067*
S110.6629 (2)0.13965 (13)0.15141 (13)0.0496 (5)
O120.5537 (5)0.0600 (3)0.1345 (3)0.0650 (13)
O130.7415 (4)0.1479 (3)0.0766 (3)0.0601 (12)
C140.5771 (6)0.2586 (5)0.1545 (5)0.0409 (16)
C150.5660 (7)0.3302 (5)0.0747 (5)0.0505 (18)
H150.61110.31830.02250.061*
C160.4882 (7)0.4181 (5)0.0734 (5)0.0523 (19)
H160.480.46630.01960.063*
C170.4204 (6)0.4379 (5)0.1504 (5)0.0374 (15)
C180.4315 (7)0.3678 (5)0.2282 (5)0.0485 (18)
H180.38730.38090.28060.058*
C190.5082 (7)0.2768 (5)0.2307 (5)0.0479 (17)
H190.51340.2280.28340.057*
N200.3395 (5)0.5312 (4)0.1386 (4)0.0434 (13)
H200.33620.56680.08270.052*
C210.2673 (6)0.5729 (5)0.2010 (5)0.0411 (16)
O220.2672 (5)0.5316 (3)0.2864 (3)0.0580 (13)
C230.1884 (7)0.6728 (4)0.1635 (5)0.059 (2)
H23A0.20150.69250.09670.088*
H23B0.23070.72460.2170.088*
H23C0.08250.66530.15270.088*
C240.0124 (7)0.9059 (5)0.1004 (5)0.0449 (16)
C250.0910 (7)0.9800 (5)0.1592 (5)0.0437 (17)
C260.1722 (7)1.0380 (5)0.1075 (6)0.061 (2)
H260.23611.090.14490.074*
C270.1581 (7)1.0185 (6)0.0021 (6)0.064 (2)
H270.21371.05690.03120.077*
C280.0617 (8)0.9422 (6)0.0555 (6)0.071 (2)
H280.05530.92720.12610.085*
C290.0240 (7)0.8892 (5)0.0065 (6)0.0510 (18)
H290.09240.84050.04630.061*
C300.1013 (7)0.8458 (5)0.1504 (6)0.0479 (17)
O310.1843 (5)0.7725 (4)0.0872 (4)0.0677 (14)
H310.23130.74130.120.101*
O320.1066 (5)0.8583 (4)0.2407 (4)0.0691 (15)
N330.1094 (5)0.9963 (4)0.2685 (4)0.0555 (15)
H330.02950.99650.28690.067*
S340.2731 (2)1.01499 (13)0.36347 (14)0.0574 (5)
O350.3439 (5)1.1036 (3)0.3377 (4)0.0690 (14)
O360.2365 (5)1.0137 (4)0.4614 (3)0.0713 (13)
C370.3874 (7)0.9084 (5)0.3622 (5)0.0471 (17)
C380.4644 (7)0.9058 (5)0.2911 (6)0.059 (2)
H380.45760.96160.24570.07*
C390.5520 (7)0.8235 (6)0.2842 (6)0.0584 (19)
H390.60530.82340.23580.07*
C400.5584 (7)0.7408 (5)0.3516 (5)0.0498 (18)
C410.4833 (7)0.7435 (5)0.4263 (5)0.0540 (19)
H410.49120.68890.47330.065*
C420.3979 (7)0.8271 (5)0.4301 (5)0.0530 (18)
H420.34620.82890.47940.064*
N430.6463 (5)0.6529 (4)0.3513 (4)0.0563 (15)
H430.67010.61610.40890.068*
C440.6993 (7)0.6179 (6)0.2710 (6)0.0548 (19)
O450.6655 (5)0.6604 (4)0.1829 (4)0.0682 (14)
C460.7926 (7)0.5216 (6)0.2971 (5)0.071 (2)
H46A0.80450.50040.36950.106*
H46B0.89030.53450.2910.106*
H46C0.74260.46840.24750.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (4)0.049 (5)0.045 (4)0.016 (4)0.019 (4)0.011 (4)
C20.038 (4)0.027 (4)0.051 (4)0.014 (3)0.019 (4)0.012 (4)
C30.077 (6)0.060 (5)0.071 (6)0.005 (4)0.027 (5)0.003 (4)
C40.050 (5)0.063 (6)0.081 (6)0.001 (4)0.009 (5)0.017 (5)
C50.063 (6)0.059 (6)0.094 (7)0.003 (4)0.002 (5)0.006 (5)
C60.049 (4)0.051 (5)0.057 (5)0.004 (4)0.007 (4)0.004 (4)
C70.050 (4)0.048 (4)0.035 (4)0.010 (4)0.013 (3)0.004 (4)
O80.091 (4)0.081 (4)0.056 (3)0.030 (3)0.023 (3)0.005 (3)
O90.083 (4)0.088 (4)0.054 (3)0.007 (3)0.022 (3)0.003 (3)
N100.081 (4)0.034 (3)0.046 (3)0.006 (3)0.014 (3)0.008 (3)
S110.0681 (12)0.0425 (11)0.0387 (10)0.0015 (10)0.0186 (9)0.0069 (9)
O120.101 (4)0.038 (3)0.063 (3)0.023 (3)0.038 (3)0.013 (2)
O130.079 (3)0.056 (3)0.057 (3)0.001 (3)0.038 (3)0.010 (3)
C140.044 (4)0.036 (4)0.041 (4)0.002 (3)0.011 (3)0.001 (3)
C150.073 (5)0.053 (5)0.038 (4)0.003 (4)0.035 (4)0.007 (4)
C160.065 (5)0.054 (5)0.040 (4)0.011 (4)0.020 (4)0.015 (3)
C170.041 (4)0.033 (4)0.039 (4)0.001 (3)0.014 (3)0.002 (3)
C180.055 (4)0.052 (5)0.051 (4)0.010 (3)0.033 (4)0.018 (4)
C190.064 (4)0.052 (5)0.033 (4)0.004 (4)0.023 (4)0.013 (4)
N200.051 (3)0.048 (4)0.037 (3)0.004 (3)0.023 (3)0.012 (3)
C210.043 (4)0.042 (4)0.034 (4)0.011 (3)0.006 (3)0.005 (3)
O220.077 (3)0.058 (3)0.051 (3)0.004 (3)0.036 (3)0.001 (3)
C230.069 (5)0.052 (5)0.052 (4)0.014 (4)0.017 (4)0.008 (4)
C240.043 (4)0.048 (4)0.045 (4)0.004 (3)0.016 (3)0.011 (4)
C250.046 (4)0.048 (5)0.042 (4)0.013 (3)0.020 (4)0.009 (3)
C260.065 (5)0.061 (5)0.058 (5)0.001 (4)0.022 (4)0.004 (4)
C270.065 (5)0.064 (6)0.063 (5)0.008 (4)0.023 (4)0.026 (5)
C280.068 (5)0.089 (7)0.053 (5)0.002 (5)0.017 (4)0.008 (5)
C290.055 (5)0.056 (5)0.043 (4)0.007 (4)0.017 (4)0.004 (4)
C300.052 (5)0.046 (5)0.048 (5)0.013 (4)0.021 (4)0.010 (4)
O310.071 (3)0.070 (3)0.064 (3)0.015 (3)0.025 (3)0.010 (3)
O320.080 (4)0.076 (4)0.065 (3)0.010 (3)0.041 (3)0.000 (3)
N330.051 (3)0.070 (4)0.046 (3)0.009 (3)0.016 (3)0.011 (3)
S340.0712 (13)0.0507 (13)0.0499 (11)0.0118 (10)0.0194 (10)0.0137 (10)
O350.088 (4)0.042 (3)0.079 (3)0.022 (3)0.029 (3)0.008 (3)
O360.101 (4)0.064 (3)0.056 (3)0.014 (3)0.037 (3)0.017 (3)
C370.055 (5)0.047 (5)0.038 (4)0.011 (3)0.013 (4)0.002 (4)
C380.064 (5)0.052 (5)0.062 (5)0.010 (4)0.024 (4)0.024 (4)
C390.052 (5)0.067 (5)0.062 (5)0.007 (4)0.027 (4)0.026 (4)
C400.041 (4)0.065 (5)0.045 (4)0.001 (4)0.015 (4)0.008 (4)
C410.058 (5)0.065 (6)0.038 (4)0.002 (4)0.014 (4)0.010 (4)
C420.063 (5)0.059 (5)0.042 (4)0.004 (4)0.025 (4)0.012 (4)
N430.058 (4)0.062 (4)0.045 (3)0.003 (3)0.012 (3)0.019 (3)
C440.047 (4)0.066 (6)0.048 (5)0.021 (4)0.013 (4)0.005 (4)
O450.098 (4)0.065 (4)0.050 (3)0.020 (3)0.036 (3)0.006 (3)
C460.057 (5)0.084 (6)0.066 (5)0.004 (5)0.014 (4)0.015 (5)
Geometric parameters (Å, º) top
C1—C21.387 (8)C24—C291.389 (8)
C1—C61.389 (9)C24—C251.403 (8)
C1—C71.482 (8)C24—C301.450 (8)
C2—C31.379 (8)C25—C261.399 (8)
C2—N101.412 (7)C25—N331.402 (7)
C3—C41.356 (9)C26—C271.370 (8)
C3—H30.93C26—H260.93
C4—C51.378 (9)C27—C281.386 (9)
C4—H40.93C27—H270.93
C5—C61.374 (9)C28—C291.372 (9)
C5—H50.93C28—H280.93
C6—H60.93C29—H290.93
C7—O81.206 (7)C30—O321.215 (7)
C7—O91.322 (7)C30—O311.332 (8)
O9—H90.82O31—H310.82
N10—S111.611 (5)N33—S341.641 (5)
N10—H100.86N33—H330.86
S11—O131.415 (4)S34—O351.429 (4)
S11—O121.423 (4)S34—O361.438 (4)
S11—C141.754 (6)S34—C371.758 (7)
C14—C191.380 (7)C37—C381.358 (8)
C14—C151.382 (8)C37—C421.366 (8)
C15—C161.355 (8)C38—C391.371 (9)
C15—H150.93C38—H380.93
C16—C171.386 (7)C39—C401.383 (8)
C16—H160.93C39—H390.93
C17—C181.348 (8)C40—C411.385 (8)
C17—N201.414 (7)C40—N431.412 (7)
C18—C191.382 (8)C41—C421.363 (8)
C18—H180.93C41—H410.93
C19—H190.93C42—H420.93
N20—C211.340 (7)N43—C441.385 (8)
N20—H200.86N43—H430.86
C21—O221.244 (6)C44—O451.224 (7)
C21—C231.497 (8)C44—C461.503 (9)
C23—H23A0.96C46—H46A0.96
C23—H23B0.96C46—H46B0.96
C23—H23C0.96C46—H46C0.96
C2—C1—C6118.9 (7)C29—C24—C25118.1 (6)
C2—C1—C7120.8 (6)C29—C24—C30120.7 (7)
C6—C1—C7120.3 (7)C25—C24—C30121.2 (6)
C3—C2—C1119.3 (6)C26—C25—N33120.9 (6)
C3—C2—N10120.8 (6)C26—C25—C24119.5 (6)
C1—C2—N10119.8 (6)N33—C25—C24119.6 (6)
C4—C3—C2122.3 (7)C27—C26—C25120.4 (6)
C4—C3—H3118.9C27—C26—H26119.8
C2—C3—H3118.9C25—C26—H26119.8
C3—C4—C5118.2 (8)C26—C27—C28120.7 (7)
C3—C4—H4120.9C26—C27—H27119.7
C5—C4—H4120.9C28—C27—H27119.7
C6—C5—C4121.3 (7)C29—C28—C27118.8 (7)
C6—C5—H5119.3C29—C28—H28120.6
C4—C5—H5119.3C27—C28—H28120.6
C5—C6—C1119.9 (7)C28—C29—C24122.4 (7)
C5—C6—H6120.1C28—C29—H29118.8
C1—C6—H6120.1C24—C29—H29118.8
O8—C7—O9121.3 (6)O32—C30—O31120.0 (6)
O8—C7—C1125.3 (6)O32—C30—C24125.8 (7)
O9—C7—C1113.4 (6)O31—C30—C24114.2 (6)
C7—O9—H9109.5C30—O31—H31109.5
C2—N10—S11125.8 (4)C25—N33—S34124.4 (4)
C2—N10—H10117.1C25—N33—H33117.8
S11—N10—H10117.1S34—N33—H33117.8
O13—S11—O12117.5 (3)O35—S34—O36119.3 (3)
O13—S11—N10112.5 (3)O35—S34—N33109.3 (3)
O12—S11—N10103.2 (3)O36—S34—N33103.7 (3)
O13—S11—C14107.3 (3)O35—S34—C37107.7 (3)
O12—S11—C14109.7 (3)O36—S34—C37109.1 (3)
N10—S11—C14106.0 (3)N33—S34—C37107.1 (3)
C19—C14—C15119.9 (6)C38—C37—C42119.3 (6)
C19—C14—S11119.9 (5)C38—C37—S34119.4 (6)
C15—C14—S11119.9 (5)C42—C37—S34121.2 (5)
C16—C15—C14119.0 (6)C37—C38—C39122.1 (6)
C16—C15—H15120.5C37—C38—H38118.9
C14—C15—H15120.5C39—C38—H38118.9
C15—C16—C17121.7 (6)C38—C39—C40117.8 (6)
C15—C16—H16119.2C38—C39—H39121.1
C17—C16—H16119.2C40—C39—H39121.1
C18—C17—C16119.2 (6)C39—C40—C41120.6 (7)
C18—C17—N20124.7 (5)C39—C40—N43122.2 (6)
C16—C17—N20116.1 (5)C41—C40—N43117.2 (6)
C17—C18—C19120.5 (6)C42—C41—C40119.3 (6)
C17—C18—H18119.7C42—C41—H41120.3
C19—C18—H18119.7C40—C41—H41120.3
C14—C19—C18119.7 (6)C41—C42—C37120.8 (6)
C14—C19—H19120.1C41—C42—H42119.6
C18—C19—H19120.1C37—C42—H42119.6
C21—N20—C17130.0 (5)C44—N43—C40128.8 (6)
C21—N20—H20115C44—N43—H43115.6
C17—N20—H20115C40—N43—H43115.6
O22—C21—N20121.9 (6)O45—C44—N43121.7 (7)
O22—C21—C23121.6 (6)O45—C44—C46122.7 (7)
N20—C21—C23116.5 (6)N43—C44—C46115.5 (6)
C21—C23—H23A109.5C44—C46—H46A109.5
C21—C23—H23B109.5C44—C46—H46B109.5
H23A—C23—H23B109.5H46A—C46—H46B109.5
C21—C23—H23C109.5C44—C46—H46C109.5
H23A—C23—H23C109.5H46A—C46—H46C109.5
H23B—C23—H23C109.5H46B—C46—H46C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O22i0.821.842.649 (6)168
N10—H10···O80.862.132.624 (7)116
N20—H20···O13ii0.862.243.073 (6)164
O31—H31···O45iii0.821.812.623 (6)174
N33—H33···O320.862.172.641 (7)114
N43—H43···O36i0.862.112.958 (7)168
C23—H23B···Cg10.962.743.6110 (15)151
C46—H46C···Cg20.962.713.5821 (13)151
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O5S
Mr334.34
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.3721 (19), 13.036 (3), 13.132 (3)
β (°) 109.47 (3)
V3)1512.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.12 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.92, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
2926, 2926, 1470
Rint?
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.092, 0.82
No. of reflections2926
No. of parameters415
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O22i0.821.842.649 (6)168
N10—H10···O80.862.132.624 (7)116
N20—H20···O13ii0.862.243.073 (6)164
O31—H31···O45iii0.821.812.623 (6)174
N33—H33···O320.862.172.641 (7)114
N43—H43···O36i0.862.112.958 (7)168
C23—H23B···Cg10.962.743.6110 (15)151
C46—H46C···Cg20.962.713.5821 (13)151
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z; (iii) x1, y, z.
 

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Bibi, S., Mariam, I., Sharif, S. & Kang, S. K. (2011). Acta Cryst. E67, o369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed, pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.  Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds