metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium N,4-di­chloro­benzene­sulfonamidate monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 24 May 2011; accepted 27 May 2011; online 4 June 2011)

The structure of the title salt hydrate, K+·C6H4Cl2NO2S·H2O, shows each of the sulfonyl O and water O atoms to be bidentate bridging. The hepta­coordinated K+ cation is connected to two water O atoms, four sulfonyl O atoms and one Cl atom. The crystal structure comprises sheets in the bc plane which are further stabilized by O—H⋯N hydrogen bonds.

Related literature

For our studies into the effect of substituents on the structures of N-haloaryl­sulfonamides, see: Gowda et al. (2007a[Gowda, B. T., Foro, S., Kožíšek, J. & Fuess, H. (2007a). Acta Cryst. E63, m1688.],b[Gowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, m1644-m1645.]) and on the oxidative strengths of N-halolaryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]); Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For similar structures, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]). For the preparation of the title compound, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H4Cl2NO2S·H2O

  • Mr = 282.18

  • Monoclinic, P 21 /c

  • a = 15.487 (1) Å

  • b = 10.0620 (8) Å

  • c = 6.8061 (5) Å

  • β = 99.888 (7)°

  • V = 1044.84 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 293 K

  • 0.42 × 0.42 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.633, Tmax = 0.715

  • 3796 measured reflections

  • 2139 independent reflections

  • 1962 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.067

  • S = 1.04

  • 2139 reflections

  • 134 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

K1—O2 2.8576 (13)
K1—O2i 2.6940 (13)
K1—O1ii 2.7965 (13)
K1—O1iii 2.8547 (13)
K1—O3iv 2.8714 (15)
K1—O3v 3.1905 (16)
K1—Cl2 3.3944 (6)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N1v 0.81 (2) 2.22 (2) 2.987 (2) 160 (2)
O3—H32⋯N1vi 0.81 (2) 2.18 (2) 2.967 (2) 166 (2)
Symmetry codes: (v) -x+1, -y+1, -z; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of arylsulfonamides and their N-halo compounds is of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda & Shetty, 2004; Usha & Gowda, 2006). To explore the effect of replacing the sodium ion by potassium ion on the solid state structures of N-chloroarylsulfonamides (Gowda et al., 2007a,b), in the present work, the structure of potassium N-chloro-4-chloro- benzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of sodium N-chloro-benzenesulfonamide (George et al., 2000) and other sodium N-chloro-arylsulfonamides (Olmstead & Power, 1986; Gowda et al., 2007a,b). In particular, there is no interaction between the nitrogen and potassium atom in the molecule.

K+ hepta coordination involves two O atoms from bridging water molecules, four sulfonyl O1 atoms from bridging N-chloro-4-chlorobenzenesulfonamide anions, and one Cl atom (Table 1). This is in contrast to octahedral coordination of K+ in potassium N-chloro-benzenesulfonamidate monohydrate by two O atoms from water molecules and four sulfonyl O atoms of four different N-chlorobenzenesulfonamide anions (Gowda et al., 2007a), and octahedral coordination of Na+ in sodium N-chloro-4-chlorobenzenesulfonamidate sesquihydrate by three O atoms of water molecules and three sulfonyl O atoms of three different N-chloro- 4-chlorobenzenesulfonamide anions (Gowda et al., 2007b). The S—N distance of N1—S1, 1.588 (2) Å is consistent with a S—N double bond.

The crystal structure comprises sheets in the bc plane which are further stabilized by O—H···N hydrogen bonds (Table 2 and Fig. 2).

Related literature top

For our studies into the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda et al. (2007a,b) and on the oxidative strengths of N-halolarylsulfonamides, see: Gowda & Shetty (2004); Usha & Gowda (2006). For similar structures, see: George et al. (2000); Olmstead & Power (1986). For the preparation of the title compound, see: Jyothi & Gowda (2004).

Experimental top

The title compound was prepared according to the literature method (Jyothi & Gowda, 2004). The purity of the compound was checked by determining its melting point. Yellow prisms of (I) were obtained from its aqueous solution at room temperature.

Refinement top

The O bound H atoms were located in difference map and later restrained to O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title salt hydrate, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K+ cation. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii. See Table 1 for symmetry operations.
[Figure 2] Fig. 2. Molecular packing of the title salt hydrate with hydrogen bonding shown as dashed lines.
Potassium N,4-dichlorobenzenesulfonamidate monohydrate top
Crystal data top
K+·C6H4Cl2NO2S·H2OF(000) = 568
Mr = 282.18Dx = 1.794 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2944 reflections
a = 15.487 (1) Åθ = 3.0–27.7°
b = 10.0620 (8) ŵ = 1.20 mm1
c = 6.8061 (5) ÅT = 293 K
β = 99.888 (7)°Prism, yellow
V = 1044.84 (13) Å30.42 × 0.42 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2139 independent reflections
Radiation source: fine-focus sealed tube1962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1819
Tmin = 0.633, Tmax = 0.715k = 812
3796 measured reflectionsl = 68
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.5896P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.046
2139 reflectionsΔρmax = 0.39 e Å3
134 parametersΔρmin = 0.28 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0241 (14)
Crystal data top
K+·C6H4Cl2NO2S·H2OV = 1044.84 (13) Å3
Mr = 282.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.487 (1) ŵ = 1.20 mm1
b = 10.0620 (8) ÅT = 293 K
c = 6.8061 (5) Å0.42 × 0.42 × 0.30 mm
β = 99.888 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2139 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1962 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.715Rint = 0.009
3796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
2139 reflectionsΔρmin = 0.28 e Å3
134 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23433 (10)0.44537 (16)0.6229 (2)0.0260 (3)
C20.18971 (12)0.32599 (18)0.5954 (3)0.0342 (4)
H20.21520.25280.54470.041*
C30.10664 (13)0.3162 (2)0.6440 (3)0.0394 (4)
H30.07600.23640.62660.047*
C40.07005 (11)0.4256 (2)0.7181 (3)0.0346 (4)
C50.11456 (13)0.5446 (2)0.7494 (3)0.0383 (4)
H50.08920.61700.80280.046*
C60.19736 (12)0.55468 (18)0.7003 (3)0.0348 (4)
H60.22800.63440.71930.042*
N10.33843 (10)0.58782 (15)0.4143 (2)0.0325 (3)
O10.40091 (8)0.49624 (15)0.73235 (19)0.0411 (3)
O20.35592 (8)0.33682 (13)0.4620 (2)0.0375 (3)
O30.55174 (9)0.29958 (15)0.1344 (2)0.0401 (3)
H310.5708 (15)0.324 (2)0.231 (3)0.048*
H320.5890 (13)0.251 (2)0.076 (3)0.048*
K10.43783 (2)0.38377 (4)0.12285 (5)0.03214 (12)
Cl10.03614 (3)0.41509 (7)0.76911 (8)0.05237 (17)
Cl20.26012 (3)0.56182 (5)0.19737 (7)0.04134 (14)
S10.33942 (3)0.46167 (4)0.55495 (6)0.02637 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0254 (8)0.0310 (8)0.0227 (7)0.0002 (6)0.0072 (6)0.0017 (6)
C20.0348 (9)0.0327 (9)0.0374 (9)0.0024 (7)0.0129 (7)0.0040 (7)
C30.0363 (10)0.0435 (10)0.0399 (10)0.0129 (8)0.0110 (8)0.0030 (8)
C40.0251 (8)0.0527 (11)0.0274 (8)0.0012 (8)0.0084 (6)0.0046 (8)
C50.0378 (10)0.0415 (10)0.0390 (10)0.0068 (8)0.0161 (8)0.0020 (8)
C60.0359 (10)0.0314 (9)0.0393 (9)0.0032 (7)0.0131 (8)0.0025 (7)
N10.0300 (7)0.0362 (8)0.0309 (7)0.0066 (6)0.0045 (6)0.0050 (6)
O10.0301 (6)0.0599 (8)0.0312 (7)0.0064 (6)0.0004 (5)0.0055 (6)
O20.0377 (7)0.0361 (7)0.0424 (7)0.0091 (5)0.0172 (6)0.0027 (5)
O30.0370 (7)0.0464 (8)0.0401 (7)0.0061 (6)0.0154 (6)0.0044 (6)
K10.0309 (2)0.0366 (2)0.0309 (2)0.00472 (15)0.01105 (14)0.00100 (15)
Cl10.0282 (2)0.0845 (4)0.0475 (3)0.0038 (2)0.0153 (2)0.0031 (3)
Cl20.0344 (2)0.0542 (3)0.0339 (2)0.00022 (19)0.00135 (17)0.0115 (2)
S10.0224 (2)0.0318 (2)0.0258 (2)0.00090 (15)0.00658 (15)0.00292 (15)
Geometric parameters (Å, º) top
C1—C61.385 (2)O1—K1i2.7965 (13)
C1—C21.382 (2)O1—K1ii2.8547 (13)
C1—S11.7742 (16)O2—S11.4489 (13)
C2—C31.386 (3)O2—K1iii2.6940 (13)
C2—H20.9300O2—K12.8576 (13)
C3—C41.373 (3)O3—K12.8204 (14)
C3—H30.9300O3—K1iv2.8714 (15)
C4—C51.380 (3)O3—K1v3.1905 (16)
C4—Cl11.7414 (18)O3—H310.808 (16)
C5—C61.383 (3)O3—H320.808 (16)
C5—H50.9300K1—O2iv2.6940 (13)
C6—H60.9300K1—O1i2.7965 (13)
N1—S11.5883 (15)K1—O1vi2.8547 (13)
N1—Cl21.7620 (15)K1—O3iii2.8714 (15)
N1—K13.4014 (16)K1—O3v3.1905 (16)
O1—S11.4460 (13)K1—Cl23.3944 (6)
C6—C1—C2120.77 (15)O2iv—K1—O1vi86.74 (4)
C6—C1—S1118.90 (13)O1i—K1—O1vi100.42 (3)
C2—C1—S1120.32 (13)O3—K1—O1vi65.66 (4)
C3—C2—C1119.51 (17)O2iv—K1—O287.06 (3)
C3—C2—H2120.2O1i—K1—O2106.27 (4)
C1—C2—H2120.2O3—K1—O2149.71 (4)
C4—C3—C2119.30 (17)O1vi—K1—O2140.52 (4)
C4—C3—H3120.4O2iv—K1—O3iii84.52 (4)
C2—C3—H3120.4O1i—K1—O3iii69.60 (4)
C3—C4—C5121.72 (16)O3—K1—O3iii77.07 (3)
C3—C4—Cl1119.22 (15)O1vi—K1—O3iii142.71 (4)
C5—C4—Cl1119.05 (15)O2—K1—O3iii75.11 (4)
C4—C5—C6119.05 (17)O2iv—K1—O3v148.33 (4)
C4—C5—H5120.5O1i—K1—O3v61.43 (4)
C6—C5—H5120.5O3—K1—O3v106.31 (3)
C1—C6—C5119.64 (17)O1vi—K1—O3v68.17 (4)
C1—C6—H6120.2O2—K1—O3v99.95 (4)
C5—C6—H6120.2O3iii—K1—O3v127.16 (3)
S1—N1—Cl2108.69 (8)O2iv—K1—Cl299.11 (3)
S1—N1—K184.87 (6)O1i—K1—Cl2114.67 (3)
Cl2—N1—K174.75 (5)O3—K1—Cl2149.42 (3)
S1—O1—K1i144.92 (8)O1vi—K1—Cl283.80 (3)
S1—O1—K1ii132.84 (8)O2—K1—Cl258.85 (3)
K1i—O1—K1ii79.58 (3)O3iii—K1—Cl2133.39 (3)
S1—O2—K1iii130.01 (8)O3v—K1—Cl260.54 (3)
S1—O2—K1110.21 (7)O2iv—K1—N1120.37 (4)
K1iii—O2—K1102.77 (4)O1i—K1—N190.00 (4)
K1—O3—K1iv99.34 (4)O3—K1—N1159.60 (4)
K1—O3—K1v73.69 (3)O1vi—K1—N1105.39 (4)
K1iv—O3—K1v132.78 (5)O2—K1—N147.20 (4)
K1—O3—H31140.3 (17)O3iii—K1—N1110.31 (4)
K1iv—O3—H3190.1 (17)O3v—K1—N153.77 (3)
K1v—O3—H3171.8 (17)Cl2—K1—N130.05 (3)
K1—O3—H32110.2 (17)N1—Cl2—K175.20 (5)
K1iv—O3—H32102.1 (17)O1—S1—O2115.65 (8)
K1v—O3—H32124.4 (17)O1—S1—N1104.35 (8)
H31—O3—H32105 (2)O2—S1—N1114.45 (8)
O2iv—K1—O1i145.96 (4)O1—S1—C1107.86 (8)
O2iv—K1—O378.54 (4)O2—S1—C1105.79 (8)
O1i—K1—O374.49 (4)N1—S1—C1108.45 (8)
C6—C1—C2—C30.7 (3)Cl2—N1—K1—O1i146.44 (5)
S1—C1—C2—C3178.16 (14)S1—N1—K1—O3142.50 (10)
C1—C2—C3—C40.2 (3)Cl2—N1—K1—O3106.52 (12)
C2—C3—C4—C51.4 (3)S1—N1—K1—O1vi156.60 (5)
C2—C3—C4—Cl1177.31 (14)Cl2—N1—K1—O1vi45.63 (6)
C3—C4—C5—C61.6 (3)S1—N1—K1—O29.86 (5)
Cl1—C4—C5—C6177.09 (14)Cl2—N1—K1—O2101.12 (6)
C2—C1—C6—C50.5 (3)S1—N1—K1—O3iii34.41 (7)
S1—C1—C6—C5178.40 (14)Cl2—N1—K1—O3iii145.38 (5)
C4—C5—C6—C10.6 (3)S1—N1—K1—O3v156.23 (8)
K1iv—O3—K1—O2iv15.72 (4)Cl2—N1—K1—O3v92.80 (6)
K1v—O3—K1—O2iv147.72 (4)S1—N1—K1—Cl2110.97 (8)
K1iv—O3—K1—O1i174.75 (5)S1—N1—Cl2—K179.04 (8)
K1v—O3—K1—O1i53.25 (3)O2iv—K1—Cl2—N1138.20 (6)
K1iv—O3—K1—O1vi75.88 (5)O1i—K1—Cl2—N137.47 (6)
K1v—O3—K1—O1vi56.11 (4)O3—K1—Cl2—N1138.93 (8)
K1iv—O3—K1—O278.94 (9)O1vi—K1—Cl2—N1136.11 (6)
K1v—O3—K1—O2149.06 (7)O2—K1—Cl2—N157.27 (6)
K1iv—O3—K1—O3iii102.66 (7)O3iii—K1—Cl2—N147.15 (7)
K1v—O3—K1—O3iii125.35 (3)O3v—K1—Cl2—N167.72 (6)
K1iv—O3—K1—O3v132.00 (5)K1i—O1—S1—O285.59 (16)
K1v—O3—K1—O3v0.0K1ii—O1—S1—O267.43 (12)
K1iv—O3—K1—Cl272.81 (7)K1i—O1—S1—N141.06 (17)
K1v—O3—K1—Cl259.19 (7)K1ii—O1—S1—N1165.92 (10)
K1iv—O3—K1—N1143.50 (10)K1i—O1—S1—C1156.25 (14)
K1v—O3—K1—N111.50 (12)K1ii—O1—S1—C150.73 (13)
S1—O2—K1—O2iv149.02 (5)K1iii—O2—S1—O126.81 (12)
K1iii—O2—K1—O2iv69.17 (7)K1—O2—S1—O1101.25 (8)
S1—O2—K1—O1i62.84 (8)K1iii—O2—S1—N1148.17 (8)
K1iii—O2—K1—O1i78.97 (5)K1—O2—S1—N120.11 (10)
S1—O2—K1—O3149.81 (7)K1iii—O2—S1—C192.49 (10)
K1iii—O2—K1—O38.00 (11)K1—O2—S1—C1139.44 (7)
S1—O2—K1—O1vi67.75 (10)Cl2—N1—S1—O1176.41 (8)
K1iii—O2—K1—O1vi150.44 (5)K1—N1—S1—O1111.60 (6)
S1—O2—K1—O3iii125.88 (8)Cl2—N1—S1—O256.20 (11)
K1iii—O2—K1—O3iii15.93 (4)K1—N1—S1—O215.79 (8)
S1—O2—K1—O3v0.13 (8)Cl2—N1—S1—C161.63 (10)
K1iii—O2—K1—O3v141.94 (4)K1—N1—S1—C1133.62 (6)
S1—O2—K1—Cl246.53 (6)C6—C1—S1—O161.22 (16)
K1iii—O2—K1—Cl2171.66 (5)C2—C1—S1—O1119.88 (15)
S1—O2—K1—N111.49 (6)C6—C1—S1—O2174.45 (14)
K1iii—O2—K1—N1153.30 (7)C2—C1—S1—O24.44 (16)
S1—N1—K1—O2iv61.26 (7)C6—C1—S1—N151.24 (16)
Cl2—N1—K1—O2iv49.71 (6)C2—C1—S1—N1127.66 (14)
S1—N1—K1—O1i102.59 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z; (vi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1v0.81 (2)2.22 (2)2.987 (2)160 (2)
O3—H32···N1vii0.81 (2)2.18 (2)2.967 (2)166 (2)
Symmetry codes: (v) x+1, y+1, z; (vii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK+·C6H4Cl2NO2S·H2O
Mr282.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.487 (1), 10.0620 (8), 6.8061 (5)
β (°) 99.888 (7)
V3)1044.84 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.42 × 0.42 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.633, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
3796, 2139, 1962
Rint0.009
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.04
No. of reflections2139
No. of parameters134
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
K1—O2i2.6940 (13)K1—O3iv2.8714 (15)
K1—O1ii2.7965 (13)K1—O3v3.1905 (16)
K1—O1iii2.8547 (13)K1—Cl23.3944 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y, z1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1v0.808 (16)2.215 (17)2.987 (2)160 (2)
O3—H32···N1vi0.808 (16)2.177 (17)2.967 (2)166 (2)
Symmetry codes: (v) x+1, y+1, z; (vi) x+1, y1/2, z+1/2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi for the grant under UGC–BSR one time grant to Faculty/Professors.

References

First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Kožíšek, J. & Fuess, H. (2007a). Acta Cryst. E63, m1688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, m1644–m1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds