metal-organic compounds
Potassium N,4-dichlorobenzenesulfonamidate monohydrate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The structure of the title salt hydrate, K+·C6H4Cl2NO2S−·H2O, shows each of the sulfonyl O and water O atoms to be bidentate bridging. The heptacoordinated K+ cation is connected to two water O atoms, four sulfonyl O atoms and one Cl atom. The comprises sheets in the bc plane which are further stabilized by O—H⋯N hydrogen bonds.
Related literature
For our studies into the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda et al. (2007a,b) and on the oxidative strengths of N-halolarylsulfonamides, see: Gowda & Shetty (2004); Usha & Gowda (2006). For similar structures, see: George et al. (2000); Olmstead & Power (1986). For the preparation of the title compound, see: Jyothi & Gowda (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811020319/tk2749sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020319/tk2749Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811020319/tk2749Isup3.cml
The title compound was prepared according to the literature method (Jyothi & Gowda, 2004). The purity of the compound was checked by determining its melting point. Yellow prisms of (I) were obtained from its aqueous solution at room temperature.
The O bound H atoms were located in difference map and later restrained to O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2Ueq of the parent atom.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title salt hydrate, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K+ cation. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii. See Table 1 for symmetry operations. | |
Fig. 2. Molecular packing of the title salt hydrate with hydrogen bonding shown as dashed lines. |
K+·C6H4Cl2NO2S·H2O | F(000) = 568 |
Mr = 282.18 | Dx = 1.794 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2944 reflections |
a = 15.487 (1) Å | θ = 3.0–27.7° |
b = 10.0620 (8) Å | µ = 1.20 mm−1 |
c = 6.8061 (5) Å | T = 293 K |
β = 99.888 (7)° | Prism, yellow |
V = 1044.84 (13) Å3 | 0.42 × 0.42 × 0.30 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 2139 independent reflections |
Radiation source: fine-focus sealed tube | 1962 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.009 |
Rotation method data acquisition using ω scans | θmax = 26.4°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −18→19 |
Tmin = 0.633, Tmax = 0.715 | k = −8→12 |
3796 measured reflections | l = −6→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0355P)2 + 0.5896P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.046 |
2139 reflections | Δρmax = 0.39 e Å−3 |
134 parameters | Δρmin = −0.28 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0241 (14) |
K+·C6H4Cl2NO2S·H2O | V = 1044.84 (13) Å3 |
Mr = 282.18 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.487 (1) Å | µ = 1.20 mm−1 |
b = 10.0620 (8) Å | T = 293 K |
c = 6.8061 (5) Å | 0.42 × 0.42 × 0.30 mm |
β = 99.888 (7)° |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 2139 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1962 reflections with I > 2σ(I) |
Tmin = 0.633, Tmax = 0.715 | Rint = 0.009 |
3796 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 2 restraints |
wR(F2) = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.39 e Å−3 |
2139 reflections | Δρmin = −0.28 e Å−3 |
134 parameters |
Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.23433 (10) | 0.44537 (16) | 0.6229 (2) | 0.0260 (3) | |
C2 | 0.18971 (12) | 0.32599 (18) | 0.5954 (3) | 0.0342 (4) | |
H2 | 0.2152 | 0.2528 | 0.5447 | 0.041* | |
C3 | 0.10664 (13) | 0.3162 (2) | 0.6440 (3) | 0.0394 (4) | |
H3 | 0.0760 | 0.2364 | 0.6266 | 0.047* | |
C4 | 0.07005 (11) | 0.4256 (2) | 0.7181 (3) | 0.0346 (4) | |
C5 | 0.11456 (13) | 0.5446 (2) | 0.7494 (3) | 0.0383 (4) | |
H5 | 0.0892 | 0.6170 | 0.8028 | 0.046* | |
C6 | 0.19736 (12) | 0.55468 (18) | 0.7003 (3) | 0.0348 (4) | |
H6 | 0.2280 | 0.6344 | 0.7193 | 0.042* | |
N1 | 0.33843 (10) | 0.58782 (15) | 0.4143 (2) | 0.0325 (3) | |
O1 | 0.40091 (8) | 0.49624 (15) | 0.73235 (19) | 0.0411 (3) | |
O2 | 0.35592 (8) | 0.33682 (13) | 0.4620 (2) | 0.0375 (3) | |
O3 | 0.55174 (9) | 0.29958 (15) | −0.1344 (2) | 0.0401 (3) | |
H31 | 0.5708 (15) | 0.324 (2) | −0.231 (3) | 0.048* | |
H32 | 0.5890 (13) | 0.251 (2) | −0.076 (3) | 0.048* | |
K1 | 0.43783 (2) | 0.38377 (4) | 0.12285 (5) | 0.03214 (12) | |
Cl1 | −0.03614 (3) | 0.41509 (7) | 0.76911 (8) | 0.05237 (17) | |
Cl2 | 0.26012 (3) | 0.56182 (5) | 0.19737 (7) | 0.04134 (14) | |
S1 | 0.33942 (3) | 0.46167 (4) | 0.55495 (6) | 0.02637 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0254 (8) | 0.0310 (8) | 0.0227 (7) | −0.0002 (6) | 0.0072 (6) | 0.0017 (6) |
C2 | 0.0348 (9) | 0.0327 (9) | 0.0374 (9) | −0.0024 (7) | 0.0129 (7) | −0.0040 (7) |
C3 | 0.0363 (10) | 0.0435 (10) | 0.0399 (10) | −0.0129 (8) | 0.0110 (8) | −0.0030 (8) |
C4 | 0.0251 (8) | 0.0527 (11) | 0.0274 (8) | −0.0012 (8) | 0.0084 (6) | 0.0046 (8) |
C5 | 0.0378 (10) | 0.0415 (10) | 0.0390 (10) | 0.0068 (8) | 0.0161 (8) | −0.0020 (8) |
C6 | 0.0359 (10) | 0.0314 (9) | 0.0393 (9) | −0.0032 (7) | 0.0131 (8) | −0.0025 (7) |
N1 | 0.0300 (7) | 0.0362 (8) | 0.0309 (7) | −0.0066 (6) | 0.0045 (6) | 0.0050 (6) |
O1 | 0.0301 (6) | 0.0599 (8) | 0.0312 (7) | −0.0064 (6) | −0.0004 (5) | 0.0055 (6) |
O2 | 0.0377 (7) | 0.0361 (7) | 0.0424 (7) | 0.0091 (5) | 0.0172 (6) | 0.0027 (5) |
O3 | 0.0370 (7) | 0.0464 (8) | 0.0401 (7) | 0.0061 (6) | 0.0154 (6) | 0.0044 (6) |
K1 | 0.0309 (2) | 0.0366 (2) | 0.0309 (2) | −0.00472 (15) | 0.01105 (14) | −0.00100 (15) |
Cl1 | 0.0282 (2) | 0.0845 (4) | 0.0475 (3) | −0.0038 (2) | 0.0153 (2) | 0.0031 (3) |
Cl2 | 0.0344 (2) | 0.0542 (3) | 0.0339 (2) | 0.00022 (19) | 0.00135 (17) | 0.0115 (2) |
S1 | 0.0224 (2) | 0.0318 (2) | 0.0258 (2) | 0.00090 (15) | 0.00658 (15) | 0.00292 (15) |
C1—C6 | 1.385 (2) | O1—K1i | 2.7965 (13) |
C1—C2 | 1.382 (2) | O1—K1ii | 2.8547 (13) |
C1—S1 | 1.7742 (16) | O2—S1 | 1.4489 (13) |
C2—C3 | 1.386 (3) | O2—K1iii | 2.6940 (13) |
C2—H2 | 0.9300 | O2—K1 | 2.8576 (13) |
C3—C4 | 1.373 (3) | O3—K1 | 2.8204 (14) |
C3—H3 | 0.9300 | O3—K1iv | 2.8714 (15) |
C4—C5 | 1.380 (3) | O3—K1v | 3.1905 (16) |
C4—Cl1 | 1.7414 (18) | O3—H31 | 0.808 (16) |
C5—C6 | 1.383 (3) | O3—H32 | 0.808 (16) |
C5—H5 | 0.9300 | K1—O2iv | 2.6940 (13) |
C6—H6 | 0.9300 | K1—O1i | 2.7965 (13) |
N1—S1 | 1.5883 (15) | K1—O1vi | 2.8547 (13) |
N1—Cl2 | 1.7620 (15) | K1—O3iii | 2.8714 (15) |
N1—K1 | 3.4014 (16) | K1—O3v | 3.1905 (16) |
O1—S1 | 1.4460 (13) | K1—Cl2 | 3.3944 (6) |
C6—C1—C2 | 120.77 (15) | O2iv—K1—O1vi | 86.74 (4) |
C6—C1—S1 | 118.90 (13) | O1i—K1—O1vi | 100.42 (3) |
C2—C1—S1 | 120.32 (13) | O3—K1—O1vi | 65.66 (4) |
C3—C2—C1 | 119.51 (17) | O2iv—K1—O2 | 87.06 (3) |
C3—C2—H2 | 120.2 | O1i—K1—O2 | 106.27 (4) |
C1—C2—H2 | 120.2 | O3—K1—O2 | 149.71 (4) |
C4—C3—C2 | 119.30 (17) | O1vi—K1—O2 | 140.52 (4) |
C4—C3—H3 | 120.4 | O2iv—K1—O3iii | 84.52 (4) |
C2—C3—H3 | 120.4 | O1i—K1—O3iii | 69.60 (4) |
C3—C4—C5 | 121.72 (16) | O3—K1—O3iii | 77.07 (3) |
C3—C4—Cl1 | 119.22 (15) | O1vi—K1—O3iii | 142.71 (4) |
C5—C4—Cl1 | 119.05 (15) | O2—K1—O3iii | 75.11 (4) |
C4—C5—C6 | 119.05 (17) | O2iv—K1—O3v | 148.33 (4) |
C4—C5—H5 | 120.5 | O1i—K1—O3v | 61.43 (4) |
C6—C5—H5 | 120.5 | O3—K1—O3v | 106.31 (3) |
C1—C6—C5 | 119.64 (17) | O1vi—K1—O3v | 68.17 (4) |
C1—C6—H6 | 120.2 | O2—K1—O3v | 99.95 (4) |
C5—C6—H6 | 120.2 | O3iii—K1—O3v | 127.16 (3) |
S1—N1—Cl2 | 108.69 (8) | O2iv—K1—Cl2 | 99.11 (3) |
S1—N1—K1 | 84.87 (6) | O1i—K1—Cl2 | 114.67 (3) |
Cl2—N1—K1 | 74.75 (5) | O3—K1—Cl2 | 149.42 (3) |
S1—O1—K1i | 144.92 (8) | O1vi—K1—Cl2 | 83.80 (3) |
S1—O1—K1ii | 132.84 (8) | O2—K1—Cl2 | 58.85 (3) |
K1i—O1—K1ii | 79.58 (3) | O3iii—K1—Cl2 | 133.39 (3) |
S1—O2—K1iii | 130.01 (8) | O3v—K1—Cl2 | 60.54 (3) |
S1—O2—K1 | 110.21 (7) | O2iv—K1—N1 | 120.37 (4) |
K1iii—O2—K1 | 102.77 (4) | O1i—K1—N1 | 90.00 (4) |
K1—O3—K1iv | 99.34 (4) | O3—K1—N1 | 159.60 (4) |
K1—O3—K1v | 73.69 (3) | O1vi—K1—N1 | 105.39 (4) |
K1iv—O3—K1v | 132.78 (5) | O2—K1—N1 | 47.20 (4) |
K1—O3—H31 | 140.3 (17) | O3iii—K1—N1 | 110.31 (4) |
K1iv—O3—H31 | 90.1 (17) | O3v—K1—N1 | 53.77 (3) |
K1v—O3—H31 | 71.8 (17) | Cl2—K1—N1 | 30.05 (3) |
K1—O3—H32 | 110.2 (17) | N1—Cl2—K1 | 75.20 (5) |
K1iv—O3—H32 | 102.1 (17) | O1—S1—O2 | 115.65 (8) |
K1v—O3—H32 | 124.4 (17) | O1—S1—N1 | 104.35 (8) |
H31—O3—H32 | 105 (2) | O2—S1—N1 | 114.45 (8) |
O2iv—K1—O1i | 145.96 (4) | O1—S1—C1 | 107.86 (8) |
O2iv—K1—O3 | 78.54 (4) | O2—S1—C1 | 105.79 (8) |
O1i—K1—O3 | 74.49 (4) | N1—S1—C1 | 108.45 (8) |
C6—C1—C2—C3 | 0.7 (3) | Cl2—N1—K1—O1i | 146.44 (5) |
S1—C1—C2—C3 | −178.16 (14) | S1—N1—K1—O3 | −142.50 (10) |
C1—C2—C3—C4 | 0.2 (3) | Cl2—N1—K1—O3 | 106.52 (12) |
C2—C3—C4—C5 | −1.4 (3) | S1—N1—K1—O1vi | 156.60 (5) |
C2—C3—C4—Cl1 | 177.31 (14) | Cl2—N1—K1—O1vi | 45.63 (6) |
C3—C4—C5—C6 | 1.6 (3) | S1—N1—K1—O2 | 9.86 (5) |
Cl1—C4—C5—C6 | −177.09 (14) | Cl2—N1—K1—O2 | −101.12 (6) |
C2—C1—C6—C5 | −0.5 (3) | S1—N1—K1—O3iii | −34.41 (7) |
S1—C1—C6—C5 | 178.40 (14) | Cl2—N1—K1—O3iii | −145.38 (5) |
C4—C5—C6—C1 | −0.6 (3) | S1—N1—K1—O3v | −156.23 (8) |
K1iv—O3—K1—O2iv | 15.72 (4) | Cl2—N1—K1—O3v | 92.80 (6) |
K1v—O3—K1—O2iv | 147.72 (4) | S1—N1—K1—Cl2 | 110.97 (8) |
K1iv—O3—K1—O1i | 174.75 (5) | S1—N1—Cl2—K1 | −79.04 (8) |
K1v—O3—K1—O1i | −53.25 (3) | O2iv—K1—Cl2—N1 | 138.20 (6) |
K1iv—O3—K1—O1vi | −75.88 (5) | O1i—K1—Cl2—N1 | −37.47 (6) |
K1v—O3—K1—O1vi | 56.11 (4) | O3—K1—Cl2—N1 | −138.93 (8) |
K1iv—O3—K1—O2 | 78.94 (9) | O1vi—K1—Cl2—N1 | −136.11 (6) |
K1v—O3—K1—O2 | −149.06 (7) | O2—K1—Cl2—N1 | 57.27 (6) |
K1iv—O3—K1—O3iii | 102.66 (7) | O3iii—K1—Cl2—N1 | 47.15 (7) |
K1v—O3—K1—O3iii | −125.35 (3) | O3v—K1—Cl2—N1 | −67.72 (6) |
K1iv—O3—K1—O3v | −132.00 (5) | K1i—O1—S1—O2 | 85.59 (16) |
K1v—O3—K1—O3v | 0.0 | K1ii—O1—S1—O2 | −67.43 (12) |
K1iv—O3—K1—Cl2 | −72.81 (7) | K1i—O1—S1—N1 | −41.06 (17) |
K1v—O3—K1—Cl2 | 59.19 (7) | K1ii—O1—S1—N1 | 165.92 (10) |
K1iv—O3—K1—N1 | −143.50 (10) | K1i—O1—S1—C1 | −156.25 (14) |
K1v—O3—K1—N1 | −11.50 (12) | K1ii—O1—S1—C1 | 50.73 (13) |
S1—O2—K1—O2iv | −149.02 (5) | K1iii—O2—S1—O1 | 26.81 (12) |
K1iii—O2—K1—O2iv | 69.17 (7) | K1—O2—S1—O1 | −101.25 (8) |
S1—O2—K1—O1i | 62.84 (8) | K1iii—O2—S1—N1 | 148.17 (8) |
K1iii—O2—K1—O1i | −78.97 (5) | K1—O2—S1—N1 | 20.11 (10) |
S1—O2—K1—O3 | 149.81 (7) | K1iii—O2—S1—C1 | −92.49 (10) |
K1iii—O2—K1—O3 | 8.00 (11) | K1—O2—S1—C1 | 139.44 (7) |
S1—O2—K1—O1vi | −67.75 (10) | Cl2—N1—S1—O1 | −176.41 (8) |
K1iii—O2—K1—O1vi | 150.44 (5) | K1—N1—S1—O1 | 111.60 (6) |
S1—O2—K1—O3iii | 125.88 (8) | Cl2—N1—S1—O2 | 56.20 (11) |
K1iii—O2—K1—O3iii | −15.93 (4) | K1—N1—S1—O2 | −15.79 (8) |
S1—O2—K1—O3v | −0.13 (8) | Cl2—N1—S1—C1 | −61.63 (10) |
K1iii—O2—K1—O3v | −141.94 (4) | K1—N1—S1—C1 | −133.62 (6) |
S1—O2—K1—Cl2 | −46.53 (6) | C6—C1—S1—O1 | 61.22 (16) |
K1iii—O2—K1—Cl2 | 171.66 (5) | C2—C1—S1—O1 | −119.88 (15) |
S1—O2—K1—N1 | −11.49 (6) | C6—C1—S1—O2 | −174.45 (14) |
K1iii—O2—K1—N1 | −153.30 (7) | C2—C1—S1—O2 | 4.44 (16) |
S1—N1—K1—O2iv | 61.26 (7) | C6—C1—S1—N1 | −51.24 (16) |
Cl2—N1—K1—O2iv | −49.71 (6) | C2—C1—S1—N1 | 127.66 (14) |
S1—N1—K1—O1i | −102.59 (6) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) x, −y+1/2, z+1/2; (iv) x, −y+1/2, z−1/2; (v) −x+1, −y+1, −z; (vi) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···N1v | 0.81 (2) | 2.22 (2) | 2.987 (2) | 160 (2) |
O3—H32···N1vii | 0.81 (2) | 2.18 (2) | 2.967 (2) | 166 (2) |
Symmetry codes: (v) −x+1, −y+1, −z; (vii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | K+·C6H4Cl2NO2S·H2O |
Mr | 282.18 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.487 (1), 10.0620 (8), 6.8061 (5) |
β (°) | 99.888 (7) |
V (Å3) | 1044.84 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.20 |
Crystal size (mm) | 0.42 × 0.42 × 0.30 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.633, 0.715 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3796, 2139, 1962 |
Rint | 0.009 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.067, 1.04 |
No. of reflections | 2139 |
No. of parameters | 134 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.28 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
K1—O2i | 2.6940 (13) | K1—O3iv | 2.8714 (15) |
K1—O1ii | 2.7965 (13) | K1—O3v | 3.1905 (16) |
K1—O1iii | 2.8547 (13) | K1—Cl2 | 3.3944 (6) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, y, z−1; (iv) x, −y+1/2, z+1/2; (v) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···N1v | 0.808 (16) | 2.215 (17) | 2.987 (2) | 160 (2) |
O3—H32···N1vi | 0.808 (16) | 2.177 (17) | 2.967 (2) | 166 (2) |
Symmetry codes: (v) −x+1, −y+1, −z; (vi) −x+1, y−1/2, −z+1/2. |
Acknowledgements
BTG thanks the University Grants Commission, Government of India, New Delhi for the grant under UGC–BSR one time grant to Faculty/Professors.
References
George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Kožíšek, J. & Fuess, H. (2007a). Acta Cryst. E63, m1688. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, m1644–m1645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864. Web of Science CrossRef CAS Google Scholar
Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68. CAS Google Scholar
Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of arylsulfonamides and their N-halo compounds is of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda & Shetty, 2004; Usha & Gowda, 2006). To explore the effect of replacing the sodium ion by potassium ion on the solid state structures of N-chloroarylsulfonamides (Gowda et al., 2007a,b), in the present work, the structure of potassium N-chloro-4-chloro- benzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of sodium N-chloro-benzenesulfonamide (George et al., 2000) and other sodium N-chloro-arylsulfonamides (Olmstead & Power, 1986; Gowda et al., 2007a,b). In particular, there is no interaction between the nitrogen and potassium atom in the molecule.
K+ hepta coordination involves two O atoms from bridging water molecules, four sulfonyl O1 atoms from bridging N-chloro-4-chlorobenzenesulfonamide anions, and one Cl atom (Table 1). This is in contrast to octahedral coordination of K+ in potassium N-chloro-benzenesulfonamidate monohydrate by two O atoms from water molecules and four sulfonyl O atoms of four different N-chlorobenzenesulfonamide anions (Gowda et al., 2007a), and octahedral coordination of Na+ in sodium N-chloro-4-chlorobenzenesulfonamidate sesquihydrate by three O atoms of water molecules and three sulfonyl O atoms of three different N-chloro- 4-chlorobenzenesulfonamide anions (Gowda et al., 2007b). The S—N distance of N1—S1, 1.588 (2) Å is consistent with a S—N double bond.
The crystal structure comprises sheets in the bc plane which are further stabilized by O—H···N hydrogen bonds (Table 2 and Fig. 2).