organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Meth­­oxy-3,4-di­hydro­naphthalen-1(2H)-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 25 May 2011; accepted 26 May 2011; online 11 June 2011)

In the title compound, C11H12O2, the six-membered ketone ring fused to the 7-meth­oxy benzene ring adopts a slightly distorted envelope configuration with the central methyl­ene C atom being the flap. The crystal packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯π inter­actions, which lead to supra­molecular layers in the bc plane.

Related literature

For the synthesis of steroid estrogens, see: Belov et al. (2007[Belov, V. N., Dudkin, V. Yu., Urusova, E. A., Starova, G. L., Selivanov, S. L., Nikolaev, S. V., Eshchenko, N. D., Morozkina, S. N. & Shavva, A. G. (2007). Russ. J. Bioorg. Chem. 33, 293-303.]). For the manufacture of important anti­depressant drugs, see: Shum et al. (2000[Shum, S. P., Odorsio, P. A. & Pastor, S. D. (2000). US Patent 6 054 614.]). For multi-functional scaffolds of tetra­lone, see: Mahapatra et al. (2008[Mahapatra, T., Das, T. & Nanda, S. (2008). Tetrahedron Asymmetry, 19, 2497-2507.]). For related structures, see: Barcon et al. (2001[Barcon, A., Brunskill, A. P. J., Lalancette, R. A., Thompson, H. W. & Miller, A. J. (2001). Acta Cryst. C57, 325-328.]); Haddad (1986[Haddad, S. F. (1986). Acta Cryst. C42, 581-584.]); Orlov et al. (1996[Orlov, V. D., Kaluski, Z., Figas, E., Potekhin, K. A. & Shishkin, O. V. (1996). J. Struct. Chem. 37, 517-519.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12O2

  • Mr = 176.21

  • Monoclinic, P 21 /c

  • a = 7.4303 (4) Å

  • b = 7.4614 (4) Å

  • c = 16.4393 (8) Å

  • β = 90.976 (4)°

  • V = 911.27 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.35 × 0.25 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.970, Tmax = 0.991

  • 8750 measured reflections

  • 2345 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.04

  • 2345 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C3,C8–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯O1i 0.98 2.38 3.3095 (18) 157
C5—H5ACg1ii 0.99 2.77 3.6730 (14) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structural and therapeutic diversity of small heterocyclic molecules continue to attract the attention of organic and medicinal chemists. Tetralones are emerging prominently as pharmacologically important bioactive molecules. Tetralone is an important and common intermediate in organic synthesis and is a ketone derivative of tetralin. The title compound (Systematic name: 3 ,4-Dihydro-7-methoxy-2(1H)-naphthalenone), (I), C11H12O2, is used in the preparation of agomelatine, which is an antidepressant. The importance of tetralone and its substituted derivatives as building blocks in the synthesis of steroid estrogens via isothiuronium salts is reported (Belov et al., 2007). Tetralones are also important intermediates for the manufacturing of various serotonin inhibitor compounds having antidepressant activity, particularly sertraline, an important antidepressant drug (Shum et al., 2000). Multi functional scaffolds of tetralone to generate further diversity with different functionalities is reported (Mahapatra et al., 2008). The crystal structures of some related compounds, viz., 2,2-dibromo-3,4-dihydro-1(2H)-naphthalenone (Haddad et al., 1986), 2-(4-nitrobenzylidene)-1-tetralone (Orlov et al., 1996), (±)-1-tetralone-3-carboxylic acid and (±)-1-tetralone-2-acetic acid (Barcon et al., 2001),have been reported. In view of the importance of tetralones, this paper reports the crystal structure of the title compound, (I).

In the title compound, C11H12O2, the six-membered ketone ring fused to the benzene ring adopts a slightly distorted envelope configuration (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.4869 (14) Å, 56.33 (15) ° and 185.10 (18) °, respectively (Fig. 1). For an ideal envelope θ and ϕ have values of 54.7° and 180°. Crystal packing is stabilized by weak C—H···O and C—H···π (Table 1) intermolecular interactions.

Related literature top

For the synthesis of steroid estrogens, see: Belov et al. (2007). For the manufacture of important antidepressant drugs, see: Shum et al. (2000). For multi-functional scaffolds of tetralone, see: Mahapatra et al. (2008). For related structures, see: Barcon et al. (2001); Haddad (1986); Orlov et al. (1996). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Anisole (4.3 ml, 0.040 mol) is acylated with succinic anhydride (4.2 g, 0.042 mol) in the presence of anhydrous aluminium chloride and nitrobenzene as solvent to give the intermediate keto acid. The keto group is reduced by hydrogenation with Pd/C as catalyst at 2-3 kgs pressure and 343-348 K for 2 -3 hours. Further work up, isolation and cyclization with poly phosphoric acid (PPA) gives 7-methoxy-1-tetralone (Fig. 1). X-ray quality crystals of (I) were obtained by slow evaporation from isopropyl alcohol (M.pt.: 333-336 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19-1.20 (CH, CH2) or 1.49 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme for the title compound.
[Figure 2] Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
7-Methoxy-3,4-dihydronaphthalen-1(2H)-one top
Crystal data top
C11H12O2F(000) = 376
Mr = 176.21Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4312 reflections
a = 7.4303 (4) Åθ = 3.7–32.3°
b = 7.4614 (4) ŵ = 0.09 mm1
c = 16.4393 (8) ÅT = 170 K
β = 90.976 (4)°Block, colorless
V = 911.27 (8) Å30.35 × 0.25 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2345 independent reflections
Radiation source: Enhance (Mo) X-ray Source1959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.7°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 910
Tmin = 0.970, Tmax = 0.991l = 2122
8750 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.1602P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2345 reflectionsΔρmax = 0.26 e Å3
120 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (7)
Crystal data top
C11H12O2V = 911.27 (8) Å3
Mr = 176.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4303 (4) ŵ = 0.09 mm1
b = 7.4614 (4) ÅT = 170 K
c = 16.4393 (8) Å0.35 × 0.25 × 0.10 mm
β = 90.976 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2345 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1959 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.991Rint = 0.023
8750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2345 reflectionsΔρmin = 0.17 e Å3
120 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62487 (12)0.84217 (13)0.45326 (5)0.0466 (3)
O20.87018 (12)0.68273 (16)0.72482 (6)0.0553 (3)
C10.70272 (16)0.66013 (17)0.69096 (7)0.0380 (3)
C20.67929 (14)0.72639 (15)0.61301 (6)0.0335 (3)
H2A0.77690.78290.58670.040*
C30.51381 (14)0.71094 (14)0.57282 (6)0.0307 (2)
C40.49582 (15)0.78093 (15)0.48827 (7)0.0336 (3)
C50.31401 (17)0.77041 (18)0.44739 (7)0.0418 (3)
H5A0.30940.66230.41250.050*
H5B0.29770.87630.41170.050*
C60.15984 (16)0.76306 (18)0.50688 (8)0.0447 (3)
H6A0.15230.87810.53660.054*
H6B0.04490.74470.47670.054*
C70.18949 (16)0.61092 (18)0.56688 (8)0.0440 (3)
H7A0.09170.61120.60700.053*
H7B0.18500.49520.53750.053*
C80.36834 (15)0.62853 (15)0.61076 (7)0.0355 (3)
C90.39581 (17)0.56299 (18)0.68908 (8)0.0449 (3)
H9A0.29860.50630.71570.054*
C100.55946 (18)0.57744 (19)0.72955 (7)0.0457 (3)
H10A0.57420.53150.78310.055*
C110.9071 (2)0.6037 (3)0.80161 (9)0.0775 (6)
H11A1.03260.62700.81760.116*
H11B0.88710.47410.79820.116*
H11C0.82710.65530.84220.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (5)0.0552 (6)0.0401 (5)0.0057 (4)0.0086 (4)0.0067 (4)
O20.0402 (5)0.0863 (8)0.0392 (5)0.0017 (5)0.0064 (4)0.0004 (5)
C10.0357 (6)0.0438 (6)0.0344 (6)0.0044 (5)0.0005 (4)0.0048 (4)
C20.0312 (5)0.0358 (6)0.0338 (5)0.0018 (4)0.0044 (4)0.0026 (4)
C30.0312 (5)0.0288 (5)0.0322 (5)0.0006 (4)0.0033 (4)0.0018 (4)
C40.0368 (5)0.0300 (5)0.0341 (5)0.0001 (4)0.0032 (4)0.0031 (4)
C50.0452 (7)0.0409 (6)0.0390 (6)0.0030 (5)0.0065 (5)0.0005 (5)
C60.0332 (6)0.0463 (7)0.0542 (7)0.0003 (5)0.0063 (5)0.0041 (5)
C70.0320 (6)0.0476 (7)0.0524 (7)0.0083 (5)0.0029 (5)0.0002 (5)
C80.0326 (6)0.0342 (6)0.0399 (6)0.0025 (4)0.0052 (4)0.0010 (4)
C90.0423 (7)0.0485 (7)0.0442 (6)0.0052 (5)0.0116 (5)0.0080 (5)
C100.0506 (7)0.0534 (8)0.0332 (6)0.0034 (6)0.0060 (5)0.0074 (5)
C110.0548 (9)0.1375 (18)0.0399 (7)0.0233 (10)0.0073 (6)0.0056 (9)
Geometric parameters (Å, º) top
O1—C41.2159 (14)C6—C71.5175 (19)
O2—C11.3649 (14)C6—H6A0.9900
O2—C111.4159 (19)C6—H6B0.9900
C1—C21.3818 (16)C7—C81.5070 (16)
C1—C101.3925 (18)C7—H7A0.9900
C2—C31.3907 (15)C7—H7B0.9900
C2—H2A0.9500C8—C91.3891 (17)
C3—C81.3994 (15)C9—C101.3804 (19)
C3—C41.4887 (15)C9—H9A0.9500
C4—C51.5006 (16)C10—H10A0.9500
C5—C61.5198 (18)C11—H11A0.9800
C5—H5A0.9900C11—H11B0.9800
C5—H5B0.9900C11—H11C0.9800
C1—O2—C11118.26 (12)C5—C6—H6B109.7
O2—C1—C2115.69 (10)H6A—C6—H6B108.2
O2—C1—C10124.58 (11)C8—C7—C6111.28 (10)
C2—C1—C10119.73 (11)C8—C7—H7A109.4
C1—C2—C3120.49 (10)C6—C7—H7A109.4
C1—C2—H2A119.8C8—C7—H7B109.4
C3—C2—H2A119.8C6—C7—H7B109.4
C2—C3—C8120.53 (10)H7A—C7—H7B108.0
C2—C3—C4118.63 (9)C9—C8—C3117.73 (11)
C8—C3—C4120.83 (10)C9—C8—C7121.83 (10)
O1—C4—C3120.99 (10)C3—C8—C7120.43 (10)
O1—C4—C5121.25 (10)C10—C9—C8122.25 (11)
C3—C4—C5117.75 (10)C10—C9—H9A118.9
C4—C5—C6113.35 (10)C8—C9—H9A118.9
C4—C5—H5A108.9C9—C10—C1119.27 (11)
C6—C5—H5A108.9C9—C10—H10A120.4
C4—C5—H5B108.9C1—C10—H10A120.4
C6—C5—H5B108.9O2—C11—H11A109.5
H5A—C5—H5B107.7O2—C11—H11B109.5
C7—C6—C5110.04 (10)H11A—C11—H11B109.5
C7—C6—H6A109.7O2—C11—H11C109.5
C5—C6—H6A109.7H11A—C11—H11C109.5
C7—C6—H6B109.7H11B—C11—H11C109.5
C11—O2—C1—C2174.47 (13)C5—C6—C7—C856.14 (14)
C11—O2—C1—C105.8 (2)C2—C3—C8—C90.25 (17)
O2—C1—C2—C3179.84 (10)C4—C3—C8—C9178.68 (10)
C10—C1—C2—C30.07 (18)C2—C3—C8—C7179.62 (10)
C1—C2—C3—C80.18 (17)C4—C3—C8—C70.69 (16)
C1—C2—C3—C4178.76 (10)C6—C7—C8—C9150.91 (12)
C2—C3—C4—O13.71 (16)C6—C7—C8—C329.74 (16)
C8—C3—C4—O1175.24 (11)C3—C8—C9—C100.20 (19)
C2—C3—C4—C5177.30 (10)C7—C8—C9—C10179.56 (12)
C8—C3—C4—C53.75 (15)C8—C9—C10—C10.1 (2)
O1—C4—C5—C6156.85 (12)O2—C1—C10—C9179.77 (12)
C3—C4—C5—C624.16 (15)C2—C1—C10—C90.02 (19)
C4—C5—C6—C753.97 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C3,C8–C10 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11C···O1i0.982.383.3095 (18)157
C5—H5A···Cg1ii0.992.773.6730 (14)152
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H12O2
Mr176.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)7.4303 (4), 7.4614 (4), 16.4393 (8)
β (°) 90.976 (4)
V3)911.27 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.970, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8750, 2345, 1959
Rint0.023
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.04
No. of reflections2345
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C3,C8–C10 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11C···O1i0.982.383.3095 (18)157
C5—H5A···Cg1ii0.992.773.6730 (14)152
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

SS thanks the UOM for the research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationBarcon, A., Brunskill, A. P. J., Lalancette, R. A., Thompson, H. W. & Miller, A. J. (2001). Acta Cryst. C57, 325–328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBelov, V. N., Dudkin, V. Yu., Urusova, E. A., Starova, G. L., Selivanov, S. L., Nikolaev, S. V., Eshchenko, N. D., Morozkina, S. N. & Shavva, A. G. (2007). Russ. J. Bioorg. Chem. 33, 293–303.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHaddad, S. F. (1986). Acta Cryst. C42, 581–584.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMahapatra, T., Das, T. & Nanda, S. (2008). Tetrahedron Asymmetry, 19, 2497–2507.  CrossRef CAS Google Scholar
First citationOrlov, V. D., Kaluski, Z., Figas, E., Potekhin, K. A. & Shishkin, O. V. (1996). J. Struct. Chem. 37, 517–519.  CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShum, S. P., Odorsio, P. A. & Pastor, S. D. (2000). US Patent 6 054 614.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds