organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3,5-tricarb­­oxy­lic acid–5-(pyridin-1-ium-3-yl)-5H-1,2,3,4-tetra­zol-5-ide (1/1)

aDepartment of Physics, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: helin_yang@126.com

(Received 2 June 2011; accepted 3 June 2011; online 11 June 2011)

The asymmetric unit of the title compound, C6H5N5·C9H6O6, comprises a full mol­ecule each of neutral trimesic acid (tma) and zwitterionic 5-(pyridin-1-ium-3-yl)-5H-1,2,3,4-tetra­zol-5-ide (ptz). The components are linked into a two-dimensional layer by a combination of O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds parallel to the (10[\overline{1}]) plane. Layers comprising alternating rows of tma and ptz are linked into a three-dimensional network by C—H⋯O and ππ inter­actions between tma and tetra­zolate rings [centroid–centroid distance = 3.763 (2) Å], and between pyridinium and tetra­zolate rings [centroid–centroid distance = 3.745 (2) Å].

Related literature

For crystal engineering studies involving the components of the title compound, see: Lin et al. (2005[Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388-2394.]); Luo et al. (2005[Luo, T.-T., Tsai, H.-L., Yang, S.-L., Liu, Y.-H., Yadav, R.-D., Su, C.-C., Ueng, C.-H., Lin, L.-G. & Lu, K.-L. (2005). Angew. Chem. Int. Ed. 44, 6063-6067.]); Yang et al. (2011[Yang, E.-C., Feng, Y., Liu, Z.-Y., Liu, T.-Y. & Zhao, X.-J. (2011). CrystEngComm, 13, 230-242.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5N5·C9H6O6

  • Mr = 357.29

  • Triclinic, [P \overline 1]

  • a = 7.6596 (8) Å

  • b = 8.7374 (9) Å

  • c = 11.3931 (11) Å

  • α = 94.336 (2)°

  • β = 95.584 (1)°

  • γ = 98.465 (2)°

  • V = 747.46 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.988

  • 7554 measured reflections

  • 2770 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.139

  • S = 1.24

  • 2770 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.88 (4) 2.25 (4) 2.981 (3) 141 (3)
N1—H1⋯O3 0.88 (4) 2.49 (3) 2.958 (3) 114 (3)
O1—H1A⋯O5ii 0.83 (5) 1.88 (5) 2.694 (3) 165 (5)
O4—H4A⋯N3i 0.92 (4) 1.73 (4) 2.635 (3) 168 (4)
O6—H6A⋯N4iii 0.98 (4) 2.57 (4) 3.325 (3) 134 (3)
O6—H6A⋯N5iii 0.98 (4) 1.70 (4) 2.647 (3) 163 (3)
C3—H3⋯O6iv 0.93 2.41 3.230 (3) 147
C4—H4⋯O2v 0.93 2.54 3.418 (4) 157
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) x+1, y+1, z+1; (iv) x-1, y, z-1; (v) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Recently, pyridyl-tetrazole ligands have been used in the construction of metal-organic complexes (Yang, et al., 2011; Lin et al., 2005; Luo, et al., 2005). In the reaction of trimesic acid (tma), 5-(3-pyridyl)tetrazolate (ptz) and CdSO4 under hydrothermal conditions, we have unexpectedly obtained the title compound, (I), and determined its crystal structure.

In (I), the asymmetric unit comprises a neutral trimesic acid (tma) molecule and a 5-(3-pyridinium)tetrazolate (ptz) zwitterion (Fig. 1). In tma, the three carboxyl hydrogen atoms were readily found from the difference maps. This, coupled with the disparity in the C—O bond distances, confirms its neutral composition. The three carboxyl groups are twisted away from the central benzene plane forming dihedral angles of 6.59 (17) °, 16.12 (16) ° and 7.10 (16) ° between the groups containing the O1, O3 and O5 atoms, respectively. In the ptz zwitterion, the tetrazole ring is twisted away from the adjacent benzene ring with the dihedral angle between them being 16.38 (16) °.

In the crystal packing of (I), the component species are linked into a two-dimensional array running parallel to the (101) plane by a combination of O—H···O, O—H···N, N—H···O and N—H···N hydrogen bonds (Fig. 2 and Table 2). The layer can be analysed in terms of two sub-structures. Firstly, by the O1—H1A···O5 (x, y - 1, z) and N—H1···N4 (x, 1 + y, z) hydrogen bonds which link tma and 3-ptz ions into one-dimensional chains along the c axis (Fig. 2). Secondly, adjacent chains are joined together by the N1—H1···O3, O4—H4A···N3 (x, 1 + y, z) and O6—H6A···N5 (1 + x, 1 + y, 1 + z) hydrogen bonds, resulting in the formation of a two-dimensional layer parallel to the (101) plane (Fig. 2). Further analysis indicates that these adjacent layers are linked into the three-dimensional network by a combination of a C4—H4···O2 (-x,1 - y,1 - z) contacts and two ππ interactions (Fig. 3), one occurs between symmetry-related tma and tetrazolate rings [centroid distance: 3.763 (2) Å, dihedral angle: 11.10 (15) °, symmetry code: 1 - x, 1 - y, 1 - z], and the other occurs between symmetry-related pyridinium and tetrazolate rings [centroid distance: 3.745 (2) Å, dihedral angle: 16.38 (16)°, symmetry code: -x, 1 - y, 1 - z].

Related literature top

For crystal engineering studies involving the components of the title compound, see: Lin et al. (2005); Luo et al. (2005); Yang et al. (2011).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equivalent molar amounts of trimesic acid, 5-(3-pyridyl)tetrazole and CdSO4 were reacted under hydrothermal conditions. The mixture was sealed in a 23 cm3 Teflon-lined stainless steel container. The temperature was kept at 433 K for 4 days and cooled to room temperature at the rate of 5 K /h. Colourless crystals of (I) were obtained and separated manually.

Refinement top

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93 Å and refined in a riding mode with Uiso(H) = 1.2Ueq(C). H atoms bonded to O and N were found in difference maps. Their positions were refined freely (see Table 1) with Uiso(H) = 1.2 (N) or 1.5 (O) times Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of the constituents of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional layer parallel to the (101) plane stabilised by a combination of O—H···O, O—H···N, N—H···O and N—H···N hydrogen bonds. Symmetry codes: i) x, 1 + y, z; ii) x, y - 1, z; iii) 1 + x, 1 + y, 1 + z.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of the three-dimensional network by a combination of hydrogen bonds (see Fig. 2), C—H···O and ππ interactions (dashed lines). Hydrogen atoms not involved in significant intermolecular contacts have been omitted for clarity.
Benzene-1,3,5-tricarboxylic acid–5-(pyridin-1-ium-3-yl)-5H-1,2,3,4-tetrazol-5-ide (1/1) top
Crystal data top
C6H5N5·C9H6O6Z = 2
Mr = 357.29F(000) = 368
Triclinic, P1Dx = 1.587 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6596 (8) ÅCell parameters from 2432 reflections
b = 8.7374 (9) Åθ = 2.4–28.3°
c = 11.3931 (11) ŵ = 0.13 mm1
α = 94.336 (2)°T = 298 K
β = 95.584 (1)°Block, colourless
γ = 98.465 (2)°0.16 × 0.12 × 0.10 mm
V = 747.46 (13) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2770 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
0.3° wide ω exposures scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 99
Tmin = 0.970, Tmax = 0.988k = 1010
7554 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.041P)2 + 0.5688P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max = 0.005
2770 reflectionsΔρmax = 0.24 e Å3
248 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Crystal data top
C6H5N5·C9H6O6γ = 98.465 (2)°
Mr = 357.29V = 747.46 (13) Å3
Triclinic, P1Z = 2
a = 7.6596 (8) ÅMo Kα radiation
b = 8.7374 (9) ŵ = 0.13 mm1
c = 11.3931 (11) ÅT = 298 K
α = 94.336 (2)°0.16 × 0.12 × 0.10 mm
β = 95.584 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2770 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2438 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.988Rint = 0.028
7554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.24Δρmax = 0.24 e Å3
2770 reflectionsΔρmin = 0.29 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0853 (4)0.4773 (3)0.3543 (2)0.0287 (6)
C20.1850 (4)0.6185 (3)0.3963 (3)0.0380 (7)
H20.29410.62260.44100.046*
C30.0294 (5)0.7514 (3)0.3090 (3)0.0442 (8)
H30.06630.84580.29510.053*
C40.1328 (4)0.6155 (4)0.2643 (3)0.0438 (8)
H40.24060.61580.21900.053*
C50.0751 (4)0.4771 (3)0.2873 (3)0.0378 (7)
H50.14450.38330.25750.045*
C60.1461 (4)0.3330 (3)0.3868 (2)0.0271 (6)
C70.6435 (4)0.6942 (3)0.8877 (2)0.0287 (6)
C80.5465 (4)0.7376 (3)0.7906 (3)0.0306 (6)
H80.48580.66220.73310.037*
C90.5391 (4)0.8940 (3)0.7785 (2)0.0283 (6)
C100.6274 (4)1.0065 (3)0.8654 (2)0.0287 (6)
H100.62341.11110.85710.034*
C110.7210 (4)0.9634 (3)0.9639 (2)0.0277 (6)
C120.7303 (4)0.8069 (3)0.9750 (2)0.0301 (6)
H120.79470.77791.04090.036*
C130.6573 (4)0.5263 (3)0.8965 (2)0.0324 (7)
C140.4369 (4)0.9377 (3)0.6711 (2)0.0313 (7)
C150.8122 (4)1.0852 (3)1.0584 (2)0.0295 (6)
N10.1243 (4)0.7486 (3)0.3726 (3)0.0456 (7)
H10.183 (5)0.841 (4)0.401 (3)0.055*
N20.2717 (3)0.3285 (3)0.4749 (2)0.0366 (6)
N30.2783 (3)0.1772 (3)0.4792 (2)0.0364 (6)
N40.1635 (3)0.0944 (3)0.3974 (2)0.0342 (6)
N50.0770 (3)0.1911 (2)0.3364 (2)0.0316 (6)
O10.7675 (4)0.5045 (3)0.9864 (2)0.0643 (8)
H1A0.779 (6)0.412 (5)0.993 (4)0.096*
O20.5762 (4)0.4234 (3)0.8289 (2)0.0646 (8)
O30.3320 (3)0.8463 (2)0.60580 (18)0.0423 (6)
O40.4766 (3)1.0861 (2)0.6547 (2)0.0474 (6)
H4A0.406 (5)1.104 (4)0.589 (4)0.071*
O50.8228 (3)1.2228 (2)1.04881 (19)0.0470 (6)
O60.8802 (3)1.0282 (2)1.15213 (18)0.0409 (6)
H6A0.944 (5)1.106 (4)1.214 (3)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (16)0.0218 (14)0.0248 (14)0.0026 (12)0.0011 (12)0.0003 (11)
C20.0460 (19)0.0257 (15)0.0389 (17)0.0041 (13)0.0080 (14)0.0004 (13)
C30.064 (2)0.0238 (16)0.0460 (19)0.0112 (15)0.0001 (17)0.0118 (14)
C40.051 (2)0.0391 (18)0.0425 (19)0.0149 (15)0.0078 (15)0.0090 (14)
C50.0473 (18)0.0262 (15)0.0363 (17)0.0028 (13)0.0066 (14)0.0003 (12)
C60.0311 (15)0.0237 (14)0.0254 (14)0.0029 (11)0.0004 (12)0.0026 (11)
C70.0331 (15)0.0231 (14)0.0302 (15)0.0049 (11)0.0026 (12)0.0055 (11)
C80.0295 (15)0.0293 (15)0.0315 (15)0.0017 (12)0.0008 (12)0.0047 (12)
C90.0288 (15)0.0288 (14)0.0285 (15)0.0074 (12)0.0039 (12)0.0033 (12)
C100.0353 (16)0.0227 (14)0.0284 (15)0.0068 (11)0.0000 (12)0.0056 (11)
C110.0301 (15)0.0266 (14)0.0267 (15)0.0071 (11)0.0005 (12)0.0035 (11)
C120.0362 (16)0.0271 (14)0.0277 (15)0.0085 (12)0.0034 (12)0.0086 (11)
C130.0412 (17)0.0260 (15)0.0293 (16)0.0048 (13)0.0011 (13)0.0047 (12)
C140.0341 (16)0.0288 (15)0.0305 (16)0.0064 (12)0.0008 (13)0.0038 (12)
C150.0353 (16)0.0260 (15)0.0268 (15)0.0077 (12)0.0034 (12)0.0026 (11)
N10.0549 (18)0.0200 (13)0.0564 (18)0.0011 (12)0.0101 (14)0.0019 (12)
N20.0457 (15)0.0275 (13)0.0339 (14)0.0054 (11)0.0084 (12)0.0032 (10)
N30.0462 (15)0.0286 (13)0.0332 (14)0.0087 (11)0.0061 (12)0.0039 (11)
N40.0411 (14)0.0240 (12)0.0374 (14)0.0079 (11)0.0017 (11)0.0039 (10)
N50.0410 (14)0.0228 (12)0.0294 (13)0.0063 (10)0.0063 (11)0.0030 (10)
O10.105 (2)0.0261 (12)0.0554 (16)0.0204 (13)0.0349 (15)0.0024 (11)
O20.0873 (19)0.0271 (12)0.0693 (17)0.0070 (12)0.0330 (15)0.0036 (11)
O30.0476 (13)0.0375 (12)0.0355 (12)0.0017 (10)0.0160 (10)0.0008 (9)
O40.0598 (15)0.0344 (12)0.0418 (13)0.0045 (10)0.0263 (11)0.0105 (10)
O50.0709 (16)0.0194 (11)0.0467 (14)0.0101 (10)0.0186 (11)0.0025 (9)
O60.0589 (14)0.0245 (11)0.0344 (12)0.0056 (10)0.0194 (10)0.0040 (9)
Geometric parameters (Å, º) top
C1—C21.377 (4)C9—C141.493 (4)
C1—C51.382 (4)C10—C111.379 (4)
C1—C61.468 (4)C10—H100.9300
C2—N11.326 (4)C11—C121.394 (4)
C2—H20.9300C11—C151.497 (4)
C3—N11.325 (4)C12—H120.9300
C3—C41.360 (4)C13—O21.193 (3)
C3—H30.9300C13—O11.307 (4)
C4—C51.382 (4)C14—O31.201 (3)
C4—H40.9300C14—O41.319 (3)
C5—H50.9300C15—O51.207 (3)
C6—N21.328 (3)C15—O61.307 (3)
C6—N51.337 (3)N1—H10.88 (4)
C7—C81.381 (4)N2—N31.335 (3)
C7—C121.390 (4)N3—N41.310 (3)
C7—C131.496 (4)N4—N51.341 (3)
C8—C91.392 (4)O1—H1A0.83 (5)
C8—H80.9300O4—H4A0.92 (4)
C9—C101.390 (4)O6—H6A0.98 (4)
C2—C1—C5118.1 (3)C11—C10—H10120.0
C2—C1—C6119.8 (3)C9—C10—H10120.0
C5—C1—C6122.0 (2)C10—C11—C12119.9 (2)
N1—C2—C1119.6 (3)C10—C11—C15119.7 (2)
N1—C2—H2120.2C12—C11—C15120.3 (2)
C1—C2—H2120.2C7—C12—C11120.1 (2)
N1—C3—C4119.7 (3)C7—C12—H12120.0
N1—C3—H3120.2C11—C12—H12120.0
C4—C3—H3120.2O2—C13—O1123.6 (3)
C3—C4—C5118.8 (3)O2—C13—C7123.7 (3)
C3—C4—H4120.6O1—C13—C7112.6 (2)
C5—C4—H4120.6O3—C14—O4123.9 (3)
C1—C5—C4120.4 (3)O3—C14—C9123.2 (3)
C1—C5—H5119.8O4—C14—C9112.9 (2)
C4—C5—H5119.8O5—C15—O6123.2 (3)
N2—C6—N5112.1 (2)O5—C15—C11123.3 (2)
N2—C6—C1123.2 (2)O6—C15—C11113.5 (2)
N5—C6—C1124.6 (2)C3—N1—C2123.4 (3)
C8—C7—C12119.8 (2)C3—N1—H1115 (2)
C8—C7—C13119.6 (2)C2—N1—H1122 (2)
C12—C7—C13120.7 (2)C6—N2—N3104.0 (2)
C7—C8—C9120.2 (3)N4—N3—N2110.7 (2)
C7—C8—H8119.9N3—N4—N5108.6 (2)
C9—C8—H8119.9C6—N5—N4104.6 (2)
C10—C9—C8119.9 (3)C13—O1—H1A115 (3)
C10—C9—C14121.1 (2)C14—O4—H4A107 (2)
C8—C9—C14119.0 (2)C15—O6—H6A115 (2)
C11—C10—C9120.1 (2)
C5—C1—C2—N10.7 (4)C8—C7—C13—O26.8 (5)
C6—C1—C2—N1176.0 (3)C12—C7—C13—O2174.6 (3)
N1—C3—C4—C50.5 (5)C8—C7—C13—O1173.4 (3)
C2—C1—C5—C40.4 (5)C12—C7—C13—O15.2 (4)
C6—C1—C5—C4176.2 (3)C10—C9—C14—O3165.2 (3)
C3—C4—C5—C10.2 (5)C8—C9—C14—O315.3 (4)
C2—C1—C6—N215.2 (4)C10—C9—C14—O416.0 (4)
C5—C1—C6—N2161.3 (3)C8—C9—C14—O4163.6 (3)
C2—C1—C6—N5168.4 (3)C10—C11—C15—O57.1 (4)
C5—C1—C6—N515.1 (4)C12—C11—C15—O5172.9 (3)
C12—C7—C8—C91.6 (4)C10—C11—C15—O6173.3 (3)
C13—C7—C8—C9177.0 (3)C12—C11—C15—O66.7 (4)
C7—C8—C9—C101.0 (4)C4—C3—N1—C20.3 (5)
C7—C8—C9—C14178.5 (3)C1—C2—N1—C30.4 (5)
C8—C9—C10—C110.5 (4)N5—C6—N2—N30.6 (3)
C14—C9—C10—C11180.0 (3)C1—C6—N2—N3176.2 (3)
C9—C10—C11—C121.4 (4)C6—N2—N3—N40.4 (3)
C9—C10—C11—C15178.6 (3)N2—N3—N4—N50.1 (3)
C8—C7—C12—C110.7 (4)N2—C6—N5—N40.6 (3)
C13—C7—C12—C11178.0 (3)C1—C6—N5—N4176.2 (3)
C10—C11—C12—C70.8 (4)N3—N4—N5—C60.3 (3)
C15—C11—C12—C7179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.88 (4)2.25 (4)2.981 (3)141 (3)
N1—H1···O30.88 (4)2.49 (3)2.958 (3)114 (3)
O1—H1A···O5ii0.83 (5)1.88 (5)2.694 (3)165 (5)
O4—H4A···N3i0.92 (4)1.73 (4)2.635 (3)168 (4)
O6—H6A···N4iii0.98 (4)2.57 (4)3.325 (3)134 (3)
O6—H6A···N5iii0.98 (4)1.70 (4)2.647 (3)163 (3)
C3—H3···O6iv0.932.413.230 (3)147
C4—H4···O2v0.932.543.418 (4)157
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H5N5·C9H6O6
Mr357.29
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.6596 (8), 8.7374 (9), 11.3931 (11)
α, β, γ (°)94.336 (2), 95.584 (1), 98.465 (2)
V3)747.46 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.970, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7554, 2770, 2438
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.139, 1.24
No. of reflections2770
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.88 (4)2.25 (4)2.981 (3)141 (3)
N1—H1···O30.88 (4)2.49 (3)2.958 (3)114 (3)
O1—H1A···O5ii0.83 (5)1.88 (5)2.694 (3)165 (5)
O4—H4A···N3i0.92 (4)1.73 (4)2.635 (3)168 (4)
O6—H6A···N4iii0.98 (4)2.57 (4)3.325 (3)134 (3)
O6—H6A···N5iii0.98 (4)1.70 (4)2.647 (3)163 (3)
C3—H3···O6iv0.932.413.230 (3)146.7
C4—H4···O2v0.932.543.418 (4)156.9
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z1; (v) x, y+1, z+1.
 

Acknowledgements

We thank Central Chinal Normal University for supporting this study.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388–2394.  Web of Science CSD CrossRef Google Scholar
First citationLuo, T.-T., Tsai, H.-L., Yang, S.-L., Liu, Y.-H., Yadav, R.-D., Su, C.-C., Ueng, C.-H., Lin, L.-G. & Lu, K.-L. (2005). Angew. Chem. Int. Ed. 44, 6063–6067.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, E.-C., Feng, Y., Liu, Z.-Y., Liu, T.-Y. & Zhao, X.-J. (2011). CrystEngComm, 13, 230–242.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds