organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1859-o1860

1,1′-[(5-Hy­dr­oxy­methyl-1,3-phenyl­ene)bis­­(methyl­ene)]dipyridin-4(1H)-one monohydrate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Aveiro, QOPNA, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 22 June 2011; accepted 23 June 2011; online 30 June 2011)

The asymmetric unit of the title compound, C19H18N2O3, comprises a whole organic dipyridinone mol­ecule plus a water mol­ecule of crystallization. The planes of the pyridinone rings are approximately perpendicular with the plane of the central aromatic ring [dihedral angles = 80.68 (8) and 83.65 (8)°]. The C—O bond of the hy­droxy group subtends an angle of 31.71 (10)° with the plane through the central aromatic ring. The crystal packing is mediated by the presence of several O—H⋯O hydrogen-bonding inter­actions and while the water mol­ecules form a C21(4) chain parallel to the c axis of the unit cell, the pendant hy­droxy groups are engaged in O—H⋯O=C hydrogen bonds described by a C11(12) graph-set motif which runs parallel to the a axis.

Related literature

For previous reports on the design and synthesis of mol­ecules based on a mesitylene core, see: Reger et al. (2010[Reger, D. L., Foley, E. A. & Smith, M. D. (2010). Inorg. Chem. Commun. 13, 568-572.]); Podyachev et al. (2006[Podyachev, S. N., Sudakova, S. N., Galiev, A. K., Mustafina, A. R., Syakaev, V. V., Shagidullin, R. R., Bauer, I. & Konovalov, A. I. (2006). Russ. Chem. Bull. 55, 2000-2007.]); Spiccia et al.(1997[Spiccia, L., Graham, B., Hearn, M. T. W., Lazarev, G., Moubaraki, B., Murray, K. S. & Tiekink, E. R. T. (1997). J. Chem. Soc. Dalton Trans. pp. 4089-4097.]); Newkome et al. (1986[Newkome, G. R., Yao, Z.-Q., Baker, G. R., Gupta, V. K., Russo, P. S. & Saunders, M. J. (1986). J. Am. Chem. Soc. 108, 849-850.]); Berl et al., (2002[Berl, V., Schmutz, M., Krische, M. J., Khoury, R. G. & Lehn, J.-M. (2002). Chem. Eur. J. 8, 1227-1244.]). For the crystal structure and vibrational features of the precursor, 1,3,5-tris­(bromo­meth­yl)benzene, see: Fernandes et al. (2011[Fernandes, J. A., Vilela, S. M. F., Ribeiro-Claro, P. J. A. & Almeida Paz, F. A. (2011). Acta Cryst. C67, o198-o200.]). For a systematization of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N2O3·H2O

  • Mr = 340.37

  • Monoclinic, C c

  • a = 12.2215 (8) Å

  • b = 14.1521 (10) Å

  • c = 10.3326 (7) Å

  • β = 114.720 (3)°

  • V = 1623.36 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.16 × 0.10 × 0.10 mm

Data collection
  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.990

  • 79090 measured reflections

  • 2188 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.07

  • 2188 reflections

  • 233 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1X⋯O3i 0.94 (1) 1.93 (1) 2.842 (2) 164 (2)
O1W—H1Y⋯O3ii 0.94 (1) 2.03 (1) 2.973 (2) 174 (2)
O1—H1⋯O2iii 0.84 1.87 2.6814 (19) 162
Symmetry codes: (i) x-1, y+1, z; (ii) [x-1, -y+1, z-{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,5-Tris(bromomethyl)benzene has been systematically employed in the preparation of many branched (Reger et al., 2010; Podyachev et al., 2006; Spiccia et al., 1997) or dendritic molecules (Newkome et al., 1986; Berl et al., 2002) with a mesitylene unit comprising the core. Our research groups have also been using this molecule as a versatile template and recently we reported its crystal structure and detailed vibrational features (Fernandes et al., 2011). During our research efforts with this molecule we have isolated the title compound, C19H18N2O3.H2O, as a secondary product. The title compound was obtained by the nucleophilic substitution of two bromo atoms of 1,3,5-tris(bromomethyl)benzene by 4-hydroxypyridine. Due to tautomeric equilibrium of this latter reagent, the nucleophilic attack occurred via the nitrogen atom and not via the oxygen. Spontaneous oxidation gave rise to the title compound whose crystal structure we wish to report here.

The asymmetric unit of the title compound (I) comprises a whole molecular unit, C19H18N2O3, and a water molecule of crystallization as depicted in Figure 1. The pyridone rings are almost planar (largest observed deviations of about 0.013 and 0.009 Å), and are approximately perpendicular to the plane of the central aromatic ring (dihedral angles of 80.68 (8) and 83.65 (8) °). The C—O bond belonging to the terminal hydroxy group subtends an angle of 31.71 (10)° with the plane of the central aromatic ring.

The presence of polar O—H bonds and the CO moieties located in opposite positions of the organic moiety permits the existence of several hydrogen bonding interactions whose geometric details are tabulated in Table 1. On the one hand, the two hydrogen atoms of the water molecule of crystallization interact with neighbouring O3 atoms from adjacent organic molecules, leading to the formation of a supramolecular polymeric chain parallel to the c-axis of the unit cell, describing a C12(4) graph set motif (Grell et al., 1999), Figs 2 and 3. On the other hand, the pendant hydroxy groups are engaged in O—H···OC hydrogen bonds, Figs 2 and 3, which permits a direct connection between adjacent molecular units. In addition, this connection leads to the formation of a C11(12) graph set motif parallel to the a-axis.

Related literature top

For previous reports on the design and synthesis of molecules based on a mesitylene core, see: Reger et al. (2010); Podyachev et al. (2006); Spiccia et al.(1997); Newkome et al. (1986); Berl et al., (2002). For the crystal structure and vibrational features of the precursor, 1,3,5-tris(bromomethyl)benzene, see: Fernandes et al. (2011). For a systematization of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999).

Experimental top

All chemicals were purchased from commercial sources and were used without further purification: 4-hydroxypyridine (Fluka, 95%); potassium carbonate (Vaz Pereira); 1,3,5-tris(bromomethyl)benzene (Sigma-Aldrich, 97%).

An excess of potassium carbonate (200 mg, 1.45 mmol) was added to a solution of 4-hydroxypyridine (52.8 mg, 0.56 mmol) in dry dimethylformamide (DMF, 2.5 mL). The resulting mixture was stirred under N2 for 30 minutes at ambient temperature. This mixture was then added drop wise to a DMF (2.5 mL) solution of 1,3,5-tris(bromomethyl)benzene (100 mg, 0.28 mmol). The new reaction mixture was maintained under constant magnetic stirring for 3 h under N2. The resulting products were precipitated by the addition of diethyl ether, filtered and purified by column chromatography (silica gel) using a mixture of THF/MeOH (1:2) as eluent. The title compound was crystallized from a mixture of CHCl3/MeOH (95:5). Yield: 25%.

1H NMR (300 MHz, CDCl3/MeOD): δ 4.51 (s, 2H, CH2OH), 4.93 (s, 4H, CH2N), 6.31 (d, Jo-m= 7.6 Hz, 4H, m-H), 6.89 (s, 1H, ArH-2), 7.10 (s, 2H, ArH-4, 6), 7.44 (d, Jo-m= 7.6 Hz, 4H, o-H).

13C NMR (75 MHz, CDCl3/MeOD): δ 63.2 (CH2N), 67.9 (CH2OH), 118.2 (NCH2CH2CO), 125.3 (ArC-2), 126.2 (ArC-4, 6), 136.2 (ArC-1, 3), 141.0 (NCH2CH2CO), 144.6 (ArC-5), 179.4 (CO).

Refinement top

Hydrogen atoms bound to carbon and the hydroxy group were placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic C—H), C—H = 0.99 Å (—CH2—) and O—H = 0.84 Å (—OH). The isotropic thermal displacement parameters associated with these atoms were fixed at 1.2 (for those bound to carbon) or 1.5 (for that associated with the hydroxy group) ×Ueq of the parent atom. Hydrogen atoms associated with the water molecule of crystallization were directly located from difference Fourier maps and were included in the structure with the O—H and H···H distances restrained to 0.95 (1) and 1.55 (1) Å, respectively, and Uiso(H)=1.5×Ueq(O). In the absence of significant anomalous scattering effects, 2147 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing the labeling scheme for all non-hydrogen atoms which are represented as thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented as small spheres with arbitrary radii.
[Figure 2] Fig. 2. Detailed view of the hydrogen bonding interactions present in the crystal structure of the title compound. For clarity, hydrogen atoms which are not involved in hydrogen bonding interactions have been omitted, the six organic molecules of the title compound have been represented in different color and symmetry codes associated with symmetry-generated atoms have also been omitted. See Table 1 for details on the geometry of the hydrogen bonding interactions. O—H···O hydrogen bonding interactions involving the water molecules of crystallization are represented as dashed green lines while those connecting adjacent molecular units are drawn as pink dashed lines.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed in perspective along the [001] direction of the unit cell. O—H···O hydrogen bonding interactions involving the water molecules of crystallization are represented as dashed green lines while those connecting adjacent molecular units are drawn as pink dashed lines.
1,1'-[(5-Hydroxymethyl-1,3-phenylene)bis(methylene)]dipyridin-4(1H)-one monohydrate top
Crystal data top
C19H18N2O3·H2OF(000) = 720
Mr = 340.37Dx = 1.393 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9702 reflections
a = 12.2215 (8) Åθ = 2.6–29.1°
b = 14.1521 (10) ŵ = 0.10 mm1
c = 10.3326 (7) ÅT = 180 K
β = 114.720 (3)°Block, colourless
V = 1623.36 (19) Å30.16 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
2188 independent reflections
Radiation source: fine-focus sealed tube2103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 29.1°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1616
Tmin = 0.984, Tmax = 0.990k = 1919
79090 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.5107P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2188 reflectionsΔρmax = 0.26 e Å3
233 parametersΔρmin = 0.20 e Å3
5 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H18N2O3·H2OV = 1623.36 (19) Å3
Mr = 340.37Z = 4
Monoclinic, CcMo Kα radiation
a = 12.2215 (8) ŵ = 0.10 mm1
b = 14.1521 (10) ÅT = 180 K
c = 10.3326 (7) Å0.16 × 0.10 × 0.10 mm
β = 114.720 (3)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
2188 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2103 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.990Rint = 0.044
79090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0305 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
2188 reflectionsΔρmin = 0.20 e Å3
233 parametersAbsolute structure: nd
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.92401 (12)0.28077 (10)0.65493 (14)0.0187 (3)
N20.79193 (12)0.00864 (10)0.34079 (15)0.0196 (3)
O10.38592 (12)0.23425 (10)0.59461 (18)0.0387 (4)
H10.31090.24180.56010.058*
O21.15708 (12)0.29372 (10)0.46529 (15)0.0317 (3)
O31.14843 (12)0.01091 (12)0.42158 (16)0.0384 (4)
C10.41238 (14)0.14197 (11)0.56300 (19)0.0216 (3)
H1A0.34670.11950.47350.026*
H1B0.41840.09820.64050.026*
C20.53025 (14)0.14250 (10)0.54728 (17)0.0175 (3)
C30.62390 (14)0.20213 (11)0.63200 (17)0.0181 (3)
H30.61320.24320.69850.022*
C40.73306 (14)0.20150 (11)0.61923 (16)0.0174 (3)
C50.74897 (14)0.14000 (11)0.52290 (17)0.0182 (3)
H50.82410.13820.51600.022*
C60.65561 (14)0.08125 (11)0.43687 (17)0.0179 (3)
C70.54605 (14)0.08265 (11)0.44961 (17)0.0185 (3)
H70.48210.04250.39130.022*
C80.83252 (14)0.26795 (12)0.71127 (18)0.0210 (3)
H8A0.79720.33010.71610.025*
H8B0.87140.24230.80920.025*
C90.89558 (15)0.33240 (12)0.53364 (18)0.0217 (3)
H90.82190.36650.49530.026*
C100.97013 (15)0.33616 (12)0.46626 (19)0.0231 (3)
H100.94690.37170.38090.028*
C111.08376 (14)0.28714 (12)0.52208 (18)0.0222 (3)
C121.10808 (15)0.23253 (12)0.64795 (19)0.0247 (4)
H121.18060.19710.68920.030*
C131.02879 (15)0.23077 (12)0.70921 (17)0.0221 (3)
H131.04710.19360.79220.027*
C140.66668 (14)0.01871 (12)0.32359 (19)0.0229 (3)
H14A0.63390.04460.32780.027*
H14B0.61750.04580.22850.027*
C150.84155 (16)0.07180 (13)0.28150 (19)0.0245 (3)
H150.79220.11990.22090.029*
C160.96049 (16)0.06788 (13)0.30689 (19)0.0265 (4)
H160.99220.11320.26390.032*
C171.03820 (16)0.00342 (13)0.39709 (19)0.0253 (4)
C180.98150 (16)0.06684 (13)0.45843 (19)0.0265 (4)
H181.02800.11530.52080.032*
C190.86260 (16)0.05917 (11)0.42929 (18)0.0229 (3)
H190.82810.10240.47200.027*
O1W0.26763 (13)0.99519 (12)0.23725 (16)0.0365 (3)
H1X0.216 (2)0.998 (2)0.283 (2)0.055*
H1Y0.224 (2)0.999 (2)0.1375 (11)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0158 (6)0.0206 (6)0.0200 (6)0.0034 (5)0.0077 (5)0.0024 (5)
N20.0178 (6)0.0221 (6)0.0206 (6)0.0011 (5)0.0096 (5)0.0030 (5)
O10.0209 (6)0.0327 (7)0.0641 (10)0.0020 (5)0.0195 (7)0.0139 (7)
O20.0235 (6)0.0414 (7)0.0351 (7)0.0019 (6)0.0172 (6)0.0058 (6)
O30.0206 (6)0.0613 (10)0.0345 (8)0.0042 (6)0.0126 (6)0.0033 (7)
C10.0175 (7)0.0236 (7)0.0267 (8)0.0006 (6)0.0121 (6)0.0023 (6)
C20.0153 (6)0.0193 (7)0.0188 (7)0.0018 (6)0.0080 (6)0.0048 (6)
C30.0183 (7)0.0190 (7)0.0190 (7)0.0012 (6)0.0099 (6)0.0004 (6)
C40.0159 (7)0.0187 (7)0.0173 (7)0.0005 (5)0.0064 (6)0.0004 (5)
C50.0142 (6)0.0215 (7)0.0202 (7)0.0005 (6)0.0085 (6)0.0028 (6)
C60.0184 (7)0.0180 (6)0.0180 (7)0.0012 (5)0.0081 (6)0.0003 (5)
C70.0157 (7)0.0182 (7)0.0206 (7)0.0012 (5)0.0067 (6)0.0008 (6)
C80.0178 (7)0.0248 (8)0.0227 (7)0.0043 (6)0.0107 (6)0.0064 (6)
C90.0178 (7)0.0206 (7)0.0241 (8)0.0000 (6)0.0063 (6)0.0008 (6)
C100.0203 (7)0.0246 (8)0.0233 (7)0.0006 (6)0.0081 (6)0.0045 (6)
C110.0196 (8)0.0227 (8)0.0250 (8)0.0034 (6)0.0099 (7)0.0025 (6)
C120.0192 (8)0.0242 (8)0.0294 (9)0.0021 (6)0.0090 (7)0.0041 (7)
C130.0193 (7)0.0214 (7)0.0231 (8)0.0008 (6)0.0063 (6)0.0024 (6)
C140.0159 (7)0.0287 (8)0.0248 (8)0.0021 (6)0.0092 (6)0.0092 (7)
C150.0263 (8)0.0250 (8)0.0237 (8)0.0035 (6)0.0120 (7)0.0032 (6)
C160.0258 (8)0.0313 (9)0.0260 (9)0.0011 (7)0.0144 (7)0.0028 (7)
C170.0224 (8)0.0328 (9)0.0217 (8)0.0012 (7)0.0103 (7)0.0026 (7)
C180.0261 (9)0.0273 (8)0.0269 (8)0.0071 (7)0.0118 (7)0.0055 (7)
C190.0271 (8)0.0200 (7)0.0246 (8)0.0001 (6)0.0139 (7)0.0004 (6)
O1W0.0245 (6)0.0518 (9)0.0308 (7)0.0028 (6)0.0091 (6)0.0021 (6)
Geometric parameters (Å, º) top
N1—C131.362 (2)C7—H70.9500
N1—C91.364 (2)C8—H8A0.9900
N1—C81.472 (2)C8—H8B0.9900
N2—C191.357 (2)C9—C101.359 (2)
N2—C151.361 (2)C9—H90.9500
N2—C141.472 (2)C10—C111.440 (2)
O1—C11.416 (2)C10—H100.9500
O1—H10.8400C11—C121.433 (2)
O2—C111.263 (2)C12—C131.361 (2)
O3—C171.267 (2)C12—H120.9500
C1—C21.516 (2)C13—H130.9500
C1—H1A0.9900C14—H14A0.9900
C1—H1B0.9900C14—H14B0.9900
C2—C71.391 (2)C15—C161.366 (2)
C2—C31.397 (2)C15—H150.9500
C3—C41.394 (2)C16—C171.431 (3)
C3—H30.9500C16—H160.9500
C4—C51.396 (2)C17—C181.433 (3)
C4—C81.516 (2)C18—C191.360 (2)
C5—C61.391 (2)C18—H180.9500
C5—H50.9500C19—H190.9500
C6—C71.399 (2)O1W—H1X0.936 (10)
C6—C141.518 (2)O1W—H1Y0.943 (10)
C13—N1—C9119.41 (14)C10—C9—N1121.57 (15)
C13—N1—C8120.81 (14)C10—C9—H9119.2
C9—N1—C8119.05 (14)N1—C9—H9119.2
C19—N2—C15119.32 (14)C9—C10—C11121.12 (15)
C19—N2—C14119.10 (14)C9—C10—H10119.4
C15—N2—C14121.23 (15)C11—C10—H10119.4
C1—O1—H1109.5O2—C11—C12122.89 (16)
O1—C1—C2109.83 (13)O2—C11—C10122.09 (15)
O1—C1—H1A109.7C12—C11—C10115.00 (14)
C2—C1—H1A109.7C13—C12—C11120.93 (15)
O1—C1—H1B109.7C13—C12—H12119.5
C2—C1—H1B109.7C11—C12—H12119.5
H1A—C1—H1B108.2C12—C13—N1121.92 (15)
C7—C2—C3119.77 (14)C12—C13—H13119.0
C7—C2—C1120.07 (14)N1—C13—H13119.0
C3—C2—C1120.15 (14)N2—C14—C6112.76 (13)
C4—C3—C2120.17 (14)N2—C14—H14A109.0
C4—C3—H3119.9C6—C14—H14A109.0
C2—C3—H3119.9N2—C14—H14B109.0
C3—C4—C5119.71 (14)C6—C14—H14B109.0
C3—C4—C8118.98 (13)H14A—C14—H14B107.8
C5—C4—C8121.31 (13)N2—C15—C16121.70 (16)
C6—C5—C4120.45 (14)N2—C15—H15119.1
C6—C5—H5119.8C16—C15—H15119.1
C4—C5—H5119.8C15—C16—C17121.11 (16)
C5—C6—C7119.53 (14)C15—C16—H16119.4
C5—C6—C14121.83 (14)C17—C16—H16119.4
C7—C6—C14118.56 (14)O3—C17—C16123.34 (17)
C2—C7—C6120.35 (14)O3—C17—C18121.98 (17)
C2—C7—H7119.8C16—C17—C18114.68 (15)
C6—C7—H7119.8C19—C18—C17121.44 (16)
N1—C8—C4111.76 (13)C19—C18—H18119.3
N1—C8—H8A109.3C17—C18—H18119.3
C4—C8—H8A109.3N2—C19—C18121.72 (15)
N1—C8—H8B109.3N2—C19—H19119.1
C4—C8—H8B109.3C18—C19—H19119.1
H8A—C8—H8B107.9H1X—O1W—H1Y111.4 (15)
O1—C1—C2—C7145.77 (15)C9—C10—C11—O2176.23 (17)
O1—C1—C2—C335.1 (2)C9—C10—C11—C122.4 (2)
C7—C2—C3—C40.2 (2)O2—C11—C12—C13177.05 (17)
C1—C2—C3—C4178.93 (14)C10—C11—C12—C131.6 (2)
C2—C3—C4—C50.9 (2)C11—C12—C13—N10.4 (3)
C2—C3—C4—C8179.21 (14)C9—N1—C13—C121.7 (2)
C3—C4—C5—C61.8 (2)C8—N1—C13—C12171.78 (15)
C8—C4—C5—C6178.39 (15)C19—N2—C14—C685.84 (19)
C4—C5—C6—C71.4 (2)C15—N2—C14—C687.4 (2)
C4—C5—C6—C14175.51 (15)C5—C6—C14—N215.0 (2)
C3—C2—C7—C60.6 (2)C7—C6—C14—N2168.12 (14)
C1—C2—C7—C6178.55 (15)C19—N2—C15—C161.1 (2)
C5—C6—C7—C20.2 (2)C14—N2—C15—C16174.26 (16)
C14—C6—C7—C2176.82 (15)N2—C15—C16—C170.2 (3)
C13—N1—C8—C498.31 (17)C15—C16—C17—O3178.65 (18)
C9—N1—C8—C471.82 (18)C15—C16—C17—C181.2 (3)
C3—C4—C8—N1161.86 (14)O3—C17—C18—C19178.78 (17)
C5—C4—C8—N118.3 (2)C16—C17—C18—C191.1 (3)
C13—N1—C9—C100.8 (2)C15—N2—C19—C181.2 (2)
C8—N1—C9—C10171.09 (15)C14—N2—C19—C18174.54 (16)
N1—C9—C10—C111.3 (3)C17—C18—C19—N20.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···O3i0.94 (1)1.93 (1)2.842 (2)164 (2)
O1W—H1Y···O3ii0.94 (1)2.03 (1)2.973 (2)174 (2)
O1—H1···O2iii0.841.872.6814 (19)162
Symmetry codes: (i) x1, y+1, z; (ii) x1, y+1, z1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H18N2O3·H2O
Mr340.37
Crystal system, space groupMonoclinic, Cc
Temperature (K)180
a, b, c (Å)12.2215 (8), 14.1521 (10), 10.3326 (7)
β (°) 114.720 (3)
V3)1623.36 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.16 × 0.10 × 0.10
Data collection
DiffractometerBruker X8 KappaCCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.984, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
79090, 2188, 2103
Rint0.044
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.07
No. of reflections2188
No. of parameters233
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.20
Absolute structureNd

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···O3i0.936 (10)1.932 (11)2.842 (2)164 (2)
O1W—H1Y···O3ii0.943 (10)2.034 (10)2.973 (2)174 (2)
O1—H1···O2iii0.841.872.6814 (19)162
Symmetry codes: (i) x1, y+1, z; (ii) x1, y+1, z1/2; (iii) x1, y, z.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grants Nos. SFRH/BPD/63736/2009 (to JAF) and SFRH/BPD/64812/2009 to (SS), and for funding toward the purchase of the single-crystal diffractometer.

References

First citationBerl, V., Schmutz, M., Krische, M. J., Khoury, R. G. & Lehn, J.-M. (2002). Chem. Eur. J. 8, 1227–1244.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFernandes, J. A., Vilela, S. M. F., Ribeiro-Claro, P. J. A. & Almeida Paz, F. A. (2011). Acta Cryst. C67, o198–o200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNewkome, G. R., Yao, Z.-Q., Baker, G. R., Gupta, V. K., Russo, P. S. & Saunders, M. J. (1986). J. Am. Chem. Soc. 108, 849–850.  CrossRef CAS Google Scholar
First citationPodyachev, S. N., Sudakova, S. N., Galiev, A. K., Mustafina, A. R., Syakaev, V. V., Shagidullin, R. R., Bauer, I. & Konovalov, A. I. (2006). Russ. Chem. Bull. 55, 2000–2007.  CrossRef CAS Google Scholar
First citationReger, D. L., Foley, E. A. & Smith, M. D. (2010). Inorg. Chem. Commun. 13, 568–572.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpiccia, L., Graham, B., Hearn, M. T. W., Lazarev, G., Moubaraki, B., Murray, K. S. & Tiekink, E. R. T. (1997). J. Chem. Soc. Dalton Trans. pp. 4089–4097.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1859-o1860
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds