organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-4-(4-methyl­phen­­oxy­meth­yl)-2H-chromen-2-one

aDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, bDepartment of Physics, Govt. College for Women, Mandya 571 401, Karnataka, India, and cDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
*Correspondence e-mail: kvarjunagowda@gmail.com

(Received 25 April 2011; accepted 20 May 2011; online 18 June 2011)

In the title compound, C17H13ClO3, the coumarin and phen­oxy moieties are essentially co-planar, making a dihedral angle of 1.99 (7)°. The phen­oxy moiety is oriented anti­periplanar with respect to the coumarin ring as indicated by the C—C—O—C angle of −179.97 (16)°. In the crystal, the sheet-like packing is stabilized by inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds.

Related literature

For the structure of 7-methyl-4-tolyl­oxymethyl­coumarin, see: Vasudevan et al. (1990[Vasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1990). Acta Cryst. C46, 2129-2131.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13ClO3

  • Mr = 300.72

  • Monoclinic, P 21 /c

  • a = 15.3068 (5) Å

  • b = 6.9353 (2) Å

  • c = 14.9566 (5) Å

  • β = 116.923 (2)°

  • V = 1415.66 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.967

  • 16899 measured reflections

  • 3818 independent reflections

  • 2448 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.170

  • S = 1.08

  • 3818 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.97 2.47 3.303 (5) 143
C4—H4⋯O2i 0.93 2.69 3.553 (4) 154
C1—H1⋯Cl1ii 0.93 2.88 3.693 (4) 146
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The first report on X-ray diffraction studies on 4-aryloxymethylcoumarins has revealed that in solid state the molecules exist as head-tail dimers as observed in the case of 7-methyl-4-tolyloxymethylcoumarin (Vasudevan et al., 1990). In the light of these observations a chloro substituted 4-aryloxymethylcoumarin has been subjected to X-ray diffraction studies. A significant bond deviation is observed at C5—C7 (1.449 (2) Å) due to the bridging of α-pyrone and benzene ring at C5 and the substituent present at C7. This is also reflected at C8—C9 and C7—C10 due to the presence of O2 at C9 and a phenoxy group at C10, respectively. Significant bond angle deviations are observed at C6—C5—C4 (117.91 (17)°) and C6—C5—C7 (117.61 (18)°). Another significant bond angle deviation is observed at C15—C14—C13 (117.46 (18)°) due to presence of the electron donating methyl group on C14. The molecules are oriented as parallel layers along the c axis as shown in Fig 2. The sheet-like packing is stabilized by intermolecular C—H···O and C—H···Cl hydrogen bonds (Table 1, Fig. 3).

Related literature top

For the structure of 7-methyl-4-tolyloxymethylcoumarin, see: Vasudevan et al. (1990).

Experimental top

A mixture of 4-methyl-phenol (10 mmol) and anhydrous potassium carbonate (10 mmol) was stirred for 30 minutes in dry acetone (30 ml). To this, 6-chloro-4-bromomethylcoumarin (10 mmol) was added and the stirring was continued for 24 h. Then, the resulting reaction mixture was poured to crushed ice. The separated solid was filtered and washed with 1:1 HCl (30 ml) and with water. Then product 6-chloro-4-[(4-methyl)phenoxymethyl]coumarin was recrystallized from ethyl acetate.

Refinement top

Hydrogen atoms were positioned geometrically with C—H = 0.93–0.97 A° and included in the refinment in a riding-model approximation with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl C atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Packing diagram viewed down a axis and molecules oriented as parallel layers along c axis.
[Figure 3] Fig. 3. Packing diagram showing C—H···O and C—H···Cl hydrogen bonding.
6-Chloro-4-(4-methylphenoxymethyl)-2H-chromen-2-one top
Crystal data top
C17H13ClO3F(000) = 624
Mr = 300.72Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4071 reflections
a = 15.3068 (5) Åθ = 2.7–28.3°
b = 6.9353 (2) ŵ = 0.28 mm1
c = 14.9566 (5) ÅT = 293 K
β = 116.923 (2)°Block, colourless
V = 1415.66 (8) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3818 independent reflections
Radiation source: fine-focus sealed tube2448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scansθmax = 29.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2020
Tmin = 0.932, Tmax = 0.967k = 96
16899 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.2177P]
where P = (Fo2 + 2Fc2)/3
3818 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H13ClO3V = 1415.66 (8) Å3
Mr = 300.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3068 (5) ŵ = 0.28 mm1
b = 6.9353 (2) ÅT = 293 K
c = 14.9566 (5) Å0.30 × 0.20 × 0.20 mm
β = 116.923 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3818 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2448 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.967Rint = 0.038
16899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
3818 reflectionsΔρmin = 0.22 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09025 (16)0.1827 (4)0.68708 (19)0.0627 (7)
H10.05280.17180.72150.075*
C20.04581 (17)0.2170 (4)0.5863 (2)0.0652 (7)
H20.02190.22990.55140.078*
C30.10297 (15)0.2323 (4)0.53657 (16)0.0509 (5)
C40.20280 (14)0.2106 (3)0.58555 (15)0.0430 (5)
H40.23950.21910.55030.052*
C50.24892 (13)0.1756 (3)0.68853 (14)0.0371 (4)
C60.19059 (15)0.1644 (3)0.73768 (16)0.0448 (5)
C70.35374 (13)0.1530 (3)0.74835 (14)0.0359 (4)
C80.39041 (14)0.1275 (3)0.84735 (15)0.0428 (5)
H80.45780.11390.88530.051*
C90.32906 (15)0.1204 (3)0.89761 (16)0.0482 (5)
C100.41673 (12)0.1566 (3)0.69576 (14)0.0384 (4)
H10A0.40100.04770.65030.046*
H10B0.40490.27410.65680.046*
C110.58438 (13)0.1494 (3)0.73188 (15)0.0380 (4)
C120.56245 (14)0.1461 (3)0.63200 (15)0.0437 (5)
H120.49760.14270.58290.052*
C130.63822 (15)0.1481 (3)0.60532 (17)0.0488 (5)
H130.62330.14480.53770.059*
C140.73516 (15)0.1549 (3)0.67619 (18)0.0505 (5)
C150.75450 (15)0.1587 (3)0.77520 (19)0.0525 (6)
H150.81930.16370.82430.063*
C160.68085 (14)0.1553 (3)0.80433 (16)0.0458 (5)
H160.69600.15710.87200.055*
C170.81634 (18)0.1592 (4)0.6449 (2)0.0747 (8)
H17A0.82950.29040.63440.112*
H17B0.79650.08760.58390.112*
H17C0.87450.10260.69670.112*
O10.23009 (10)0.1370 (2)0.83898 (11)0.0524 (4)
O20.35626 (12)0.1007 (3)0.98589 (11)0.0684 (5)
O30.51603 (9)0.1474 (2)0.76774 (10)0.0459 (4)
Cl10.04586 (4)0.28400 (13)0.40961 (5)0.0790 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0443 (12)0.093 (2)0.0644 (14)0.0023 (12)0.0368 (11)0.0043 (13)
C20.0363 (10)0.099 (2)0.0655 (15)0.0039 (12)0.0278 (10)0.0017 (14)
C30.0389 (10)0.0683 (15)0.0476 (11)0.0036 (10)0.0213 (9)0.0021 (10)
C40.0393 (10)0.0470 (12)0.0499 (11)0.0003 (9)0.0266 (9)0.0001 (9)
C50.0359 (9)0.0345 (10)0.0472 (10)0.0020 (7)0.0243 (8)0.0036 (8)
C60.0444 (10)0.0494 (13)0.0495 (11)0.0037 (9)0.0291 (9)0.0048 (9)
C70.0382 (9)0.0289 (9)0.0473 (10)0.0025 (7)0.0252 (8)0.0040 (8)
C80.0407 (10)0.0450 (12)0.0470 (11)0.0061 (8)0.0236 (8)0.0072 (9)
C90.0512 (11)0.0538 (14)0.0463 (11)0.0096 (10)0.0278 (9)0.0128 (10)
C100.0314 (8)0.0445 (11)0.0413 (9)0.0016 (8)0.0183 (7)0.0024 (8)
C110.0337 (9)0.0344 (10)0.0497 (10)0.0020 (7)0.0223 (8)0.0023 (8)
C120.0342 (9)0.0480 (12)0.0501 (11)0.0015 (8)0.0201 (8)0.0021 (9)
C130.0473 (11)0.0518 (13)0.0556 (12)0.0010 (10)0.0308 (10)0.0020 (10)
C140.0416 (11)0.0450 (12)0.0747 (15)0.0031 (9)0.0351 (11)0.0021 (11)
C150.0299 (9)0.0511 (13)0.0724 (15)0.0033 (9)0.0195 (9)0.0012 (11)
C160.0387 (10)0.0475 (12)0.0492 (11)0.0051 (9)0.0181 (8)0.0031 (9)
C170.0522 (14)0.084 (2)0.108 (2)0.0047 (13)0.0538 (15)0.0040 (16)
O10.0474 (8)0.0715 (11)0.0489 (8)0.0054 (7)0.0310 (7)0.0060 (7)
O20.0664 (10)0.1026 (15)0.0437 (9)0.0135 (10)0.0315 (8)0.0150 (9)
O30.0328 (7)0.0636 (10)0.0443 (8)0.0027 (6)0.0201 (6)0.0057 (6)
Cl10.0481 (3)0.1308 (7)0.0550 (4)0.0162 (3)0.0206 (3)0.0183 (4)
Geometric parameters (Å, º) top
C1—C21.365 (3)C10—O31.411 (2)
C1—C61.377 (3)C10—H10A0.9700
C1—H10.9300C10—H10B0.9700
C2—C31.385 (3)C11—O31.375 (2)
C2—H20.9300C11—C121.375 (3)
C3—C41.371 (3)C11—C161.381 (3)
C3—Cl11.731 (2)C12—C131.387 (3)
C4—C51.394 (3)C12—H120.9300
C4—H40.9300C13—C141.380 (3)
C5—C61.392 (2)C13—H130.9300
C5—C71.449 (2)C14—C151.373 (3)
C6—O11.367 (2)C14—C171.513 (3)
C7—C81.336 (3)C15—C161.381 (3)
C7—C101.495 (2)C15—H150.9300
C8—C91.445 (3)C16—H160.9300
C8—H80.9300C17—H17A0.9600
C9—O21.199 (2)C17—H17B0.9600
C9—O11.369 (3)C17—H17C0.9600
C2—C1—C6119.81 (19)O3—C10—H10B109.9
C2—C1—H1120.1C7—C10—H10B109.9
C6—C1—H1120.1H10A—C10—H10B108.3
C1—C2—C3119.1 (2)O3—C11—C12124.69 (16)
C1—C2—H2120.5O3—C11—C16115.23 (17)
C3—C2—H2120.5C12—C11—C16120.08 (17)
C4—C3—C2121.8 (2)C11—C12—C13119.20 (18)
C4—C3—Cl1119.73 (16)C11—C12—H12120.4
C2—C3—Cl1118.47 (17)C13—C12—H12120.4
C3—C4—C5119.56 (18)C14—C13—C12121.9 (2)
C3—C4—H4120.2C14—C13—H13119.1
C5—C4—H4120.2C12—C13—H13119.1
C6—C5—C4117.91 (17)C15—C14—C13117.46 (18)
C6—C5—C7117.61 (18)C15—C14—C17121.8 (2)
C4—C5—C7124.48 (16)C13—C14—C17120.7 (2)
O1—C6—C1116.47 (17)C14—C15—C16122.1 (2)
O1—C6—C5121.71 (18)C14—C15—H15118.9
C1—C6—C5121.8 (2)C16—C15—H15118.9
C8—C7—C5119.38 (16)C15—C16—C11119.2 (2)
C8—C7—C10122.52 (17)C15—C16—H16120.4
C5—C7—C10118.09 (16)C11—C16—H16120.4
C7—C8—C9122.34 (18)C14—C17—H17A109.5
C7—C8—H8118.8C14—C17—H17B109.5
C9—C8—H8118.8H17A—C17—H17B109.5
O2—C9—O1116.54 (18)C14—C17—H17C109.5
O2—C9—C8126.4 (2)H17A—C17—H17C109.5
O1—C9—C8117.07 (17)H17B—C17—H17C109.5
O3—C10—C7109.05 (15)C6—O1—C9121.85 (15)
O3—C10—H10A109.9C11—O3—C10116.67 (14)
C7—C10—H10A109.9
C6—C1—C2—C30.1 (4)C7—C8—C9—O11.3 (3)
C1—C2—C3—C41.2 (4)C8—C7—C10—O35.3 (3)
C1—C2—C3—Cl1177.8 (2)C5—C7—C10—O3175.47 (16)
C2—C3—C4—C51.2 (4)O3—C11—C12—C13179.84 (19)
Cl1—C3—C4—C5177.74 (16)C16—C11—C12—C130.3 (3)
C3—C4—C5—C60.0 (3)C11—C12—C13—C140.5 (3)
C3—C4—C5—C7179.1 (2)C12—C13—C14—C150.3 (3)
C2—C1—C6—O1177.8 (2)C12—C13—C14—C17179.3 (2)
C2—C1—C6—C51.4 (4)C13—C14—C15—C160.2 (3)
C4—C5—C6—O1177.77 (18)C17—C14—C15—C16179.8 (2)
C7—C5—C6—O11.4 (3)C14—C15—C16—C110.5 (3)
C4—C5—C6—C11.3 (3)O3—C11—C16—C15179.67 (19)
C7—C5—C6—C1179.5 (2)C12—C11—C16—C150.2 (3)
C6—C5—C7—C81.7 (3)C1—C6—O1—C9178.8 (2)
C4—C5—C7—C8177.35 (19)C5—C6—O1—C90.4 (3)
C6—C5—C7—C10177.49 (17)O2—C9—O1—C6178.5 (2)
C4—C5—C7—C103.4 (3)C8—C9—O1—C61.7 (3)
C5—C7—C8—C90.4 (3)C12—C11—O3—C104.7 (3)
C10—C7—C8—C9178.76 (19)C16—C11—O3—C10175.20 (17)
C7—C8—C9—O2178.9 (2)C7—C10—O3—C11179.97 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.473.303 (5)143
C4—H4···O2i0.932.693.553 (4)154
C1—H1···Cl1ii0.932.883.693 (4)146
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H13ClO3
Mr300.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.3068 (5), 6.9353 (2), 14.9566 (5)
β (°) 116.923 (2)
V3)1415.66 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.932, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
16899, 3818, 2448
Rint0.038
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.170, 1.08
No. of reflections3818
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.473.303 (5)143
C4—H4···O2i0.932.693.553 (4)154
C1—H1···Cl1ii0.932.883.693 (4)146
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

RG thanks the MVJ College of Engineering, Bangalore-67 (VTU Research Center), for providing research facilities. The authors also thank the SAIF, IIT-Madras, Chennai, for the data collection

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1990). Acta Cryst. C46, 2129–2131.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds