metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

12-Chloro-6-cyclo­hexyl-5,6,7,12-tetra­hydro­dibenzo[c,f][1,5]aza­stibocine

aHunan Chemical Vocational Technology College, Zhuzhou 421000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China
*Correspondence e-mail: ywg6279@126.com, nytan@sina.com

(Received 25 May 2011; accepted 3 June 2011; online 11 June 2011)

In the title organometallic complex, [Sb(C20H23N)Cl], the central anti­mony-containing part of the complex exhibits a pseudo-trigonal-bipyramidal geometry, where two C atoms and a lone electron pair of the Sb atom exist at the equatorial positions, while the N and Cl atoms are located at the apical positions, and a transannular inter­action exists between the Sb and N atoms on 1,5-aza­stibocine. Inter­molecular C—H⋯Cl hydrogen bonds are also observed.

Related literature

For general background, see: Yin et al. (2008[Yin, S., Maruyama, J., Yamashita, T. & Shimada, S. (2008). Angew. Chem. Int. Ed. 47, 6590-6593.]); Chovancová et al. (2009[Chovancová, M., Jambor, R., Růžička, A., Jirásko, R., Císařová, I. & Dostál, L. (2009). Organometallics, 28, 1934-1941.]); Opris et al. (2009[Opris, L. M., Preda, A. M., Varga, R. A., Breunig, H. J. & Silvestru, C. (2009). Eur. J. Inorg. Chem. pp. 1187-1193.]); Svoboda et al. (2010[Svoboda, T., Jambor, R., Růžička, A., Padělková, Z., Erben, M. & Dostál, L. (2010). Eur. J. Inorg. Chem. pp. 5222-5230.]); Tan & Zhang (2011[Tan, N. & Zhang, X. (2011). Acta Cryst. E67, m252.]). For related structures, see: Kakusawa et al. (2006[Kakusawa, N., Tobiyasu, Y., Yasuike, S., Yamaguchi, K., Seki, H. & Jyoji, K. (2006). J. Organomet. Chem. 691, 2953-2968.]); Xia et al. (2010[Xia, J., Qiu, R.-H., Yin, S.-F., Zhang, X.-W., Luo, S.-L., Au, C.-T. & Wong, W.-Y. (2010). J. Organomet. Chem. 695, 1487-1492.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb(C20H23N)Cl]

  • Mr = 434.59

  • Monoclinic, P 21 /c

  • a = 10.0771 (7) Å

  • b = 16.2881 (12) Å

  • c = 12.2040 (9) Å

  • β = 111.812 (1)°

  • V = 1859.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 293 K

  • 0.37 × 0.35 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.653, Tmax = 1.000

  • 10058 measured reflections

  • 3644 independent reflections

  • 3107 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.05

  • 3644 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Cl1i 0.97 2.80 3.695 (4) 154
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of hypervalent compounds bearing heavier pnictogens (in particular Sb, Bi) has been studied intensively in recent years (Yin et al., 2008; Chovancová et al., 2009; Svoboda et al., 2010; Tan & Zhang, 2011). Intramolecular interactions between antimony and sp3-nitrogen atoms have been widely reported (Kakusawa et al., 2006; Opris et al., 2009; Xia et al., 2010). Here, we reported the crystal structure of the title organometallic complex (Fig. 1). The central antimony-containing part of the complex shows a distorted pseudo trigonal-bipyramidal structure. The C1, C8 atoms along with a lone electron pair of the Sb atom exist at the equatorial positions while the N1 and Cl1 atoms are located at the apical positions. The Sb–C1 and Sb–C8 distance is 2.144 (4) Å and 2.134 (3) Å, respectively. The C1–Sb–C8 angle is 98.17 (12)°, while the N1–Sb–Cl1 angle is 162.92 (7)° (rather than 180°). The Sb–N1 distance (2.397 (3) Å) is shorter than the sum of the van der Waals radii of nitrogen and antimony atoms (3.74 Å) (Kakusawa et al., 2006), indicating that coordination exists between the two atoms. The complex also displays intermolecular hydrogen-bonding interaction between the CH2 groups and chlorine atom Cl1 (Table 1).

Related literature top

For general background, see: Yin et al. (2008); Chovancová et al. (2009); Opris et al. (2009); Svoboda et al. (2010); Tan & Zhang (2011). For related structures, see: Kakusawa et al. (2006); Xia et al. (2010).

Experimental top

N,N-bis(2-bromobenzyl)cyclohexanamine (2.186 g, 5.0 mmol) was allowed to react with n-BuLi (2.5 M, 4.0 ml, 10 mmol) at -50 oC, and the resulting solution was added to a mixture of SbCl3 (1.141 g, 5.0 mmol) in Et2O (80 ml) at -78 oC. The obtained mixture was gradually warmed to room temperature and stirred for 12 h. Then the solvent was removed under vacuum and the residue was extracted with toluene, and the insoluble material was removed by filtration. The organic layer was washed with de-ionized H2O and dried over anhydrous Na2SO4. After the solvent was removed under reduced pressure, the residue was recrystallized from CH2Cl2/hexane to obtain the title compound in the form of colorless crystals.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.98 Å for methine and 0.97 Å for methylene H atoms, respectively. Uiso(H)= 1.2Ueq(C) for all H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a axis.
12-Chloro-6-cyclohexyl-5,6,7,12- tetrahydrodibenzo[c,f][1,5]azastibocine top
Crystal data top
[Sb(C20H23N)Cl]F(000) = 872
Mr = 434.59Dx = 1.552 Mg m3
Monoclinic, P21/cMelting point: 527.15 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.0771 (7) ÅCell parameters from 5285 reflections
b = 16.2881 (12) Åθ = 4.4–55.7°
c = 12.2040 (9) ŵ = 1.63 mm1
β = 111.812 (1)°T = 293 K
V = 1859.7 (2) Å3Prismatic, colorless
Z = 40.37 × 0.35 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3644 independent reflections
Radiation source: fine-focus sealed tube3107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.00 pixels mm-1θmax = 26.0°, θmin = 2.2°
ϕ and ω scansh = 127
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 2019
Tmin = 0.653, Tmax = 1.000l = 1514
10058 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1065P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.020
3644 reflectionsΔρmax = 0.78 e Å3
209 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (4)
Crystal data top
[Sb(C20H23N)Cl]V = 1859.7 (2) Å3
Mr = 434.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0771 (7) ŵ = 1.63 mm1
b = 16.2881 (12) ÅT = 293 K
c = 12.2040 (9) Å0.37 × 0.35 × 0.21 mm
β = 111.812 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3644 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3107 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 1.000Rint = 0.047
10058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.05Δρmax = 0.78 e Å3
3644 reflectionsΔρmin = 0.55 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb0.38578 (2)1.037779 (13)0.117005 (18)0.04278 (12)
Cl10.43763 (12)1.19188 (5)0.12783 (8)0.0597 (3)
N10.3869 (3)0.89526 (15)0.1662 (2)0.0400 (6)
C10.6082 (4)1.0063 (2)0.1912 (3)0.0459 (8)
C20.7215 (5)1.0616 (3)0.2281 (4)0.0615 (10)
H20.70331.11770.22460.074*
C30.8613 (5)1.0335 (3)0.2700 (5)0.0772 (14)
H30.93671.07070.29470.093*
C40.8882 (5)0.9511 (3)0.2750 (5)0.0734 (13)
H40.98220.93240.30340.088*
C50.7772 (4)0.8953 (3)0.2383 (4)0.0647 (11)
H50.79680.83930.24240.078*
C60.6365 (4)0.9224 (2)0.1953 (3)0.0475 (8)
C70.5159 (4)0.8623 (2)0.1497 (3)0.0505 (9)
H7A0.49430.85210.06660.061*
H7B0.54360.81070.19170.061*
C80.3459 (3)1.04120 (18)0.2769 (3)0.0405 (7)
C90.3038 (4)1.1103 (2)0.3214 (3)0.0544 (9)
H90.29801.16050.28360.065*
C100.2703 (4)1.1057 (3)0.4213 (4)0.0662 (11)
H100.24491.15300.45150.079*
C110.2746 (4)1.0317 (3)0.4757 (4)0.0641 (11)
H110.24841.02860.54100.077*
C120.3175 (4)0.9621 (2)0.4344 (3)0.0530 (10)
H120.32330.91240.47330.064*
C130.3522 (3)0.96613 (19)0.3339 (3)0.0413 (7)
C140.4045 (4)0.89040 (19)0.2921 (3)0.0445 (7)
H14A0.50480.88230.33980.053*
H14B0.35230.84310.30330.053*
C150.2520 (4)0.8556 (2)0.0804 (3)0.0546 (9)
H150.24510.87130.00090.066*
C160.2535 (5)0.7640 (2)0.0841 (5)0.0772 (13)
H16A0.25980.74550.16150.093*
H16B0.33620.74350.07020.093*
C170.1141 (5)0.7300 (3)0.0122 (5)0.1008 (18)
H17A0.11290.74410.08980.121*
H17B0.11270.67060.00650.121*
C180.0157 (5)0.7648 (3)0.0023 (5)0.0968 (17)
H18A0.10060.74480.06070.116*
H18B0.01930.74610.07670.116*
C190.0150 (5)0.8545 (3)0.0004 (5)0.0885 (15)
H19A0.09890.87490.01250.106*
H19B0.01970.87310.07650.106*
C200.1202 (4)0.8898 (2)0.0964 (4)0.0636 (10)
H20A0.11970.94920.09070.076*
H20B0.12170.87510.17390.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb0.05674 (19)0.03541 (16)0.03702 (16)0.00115 (9)0.01840 (11)0.00007 (8)
Cl10.0872 (7)0.0321 (4)0.0647 (6)0.0061 (4)0.0338 (5)0.0033 (4)
N10.0432 (15)0.0373 (14)0.0405 (14)0.0032 (11)0.0168 (11)0.0007 (11)
C10.051 (2)0.0490 (19)0.0467 (19)0.0022 (16)0.0285 (16)0.0007 (15)
C20.067 (3)0.059 (2)0.067 (3)0.007 (2)0.035 (2)0.007 (2)
C30.057 (3)0.096 (4)0.084 (3)0.022 (2)0.032 (2)0.017 (3)
C40.051 (2)0.095 (4)0.081 (3)0.005 (2)0.034 (2)0.002 (3)
C50.058 (2)0.075 (3)0.069 (3)0.009 (2)0.033 (2)0.001 (2)
C60.053 (2)0.050 (2)0.048 (2)0.0037 (16)0.0287 (16)0.0017 (15)
C70.061 (2)0.0412 (18)0.059 (2)0.0029 (16)0.0332 (18)0.0030 (16)
C80.0390 (17)0.0445 (18)0.0372 (17)0.0020 (13)0.0134 (13)0.0059 (13)
C90.053 (2)0.058 (2)0.050 (2)0.0065 (17)0.0155 (16)0.0105 (16)
C100.056 (2)0.084 (3)0.061 (3)0.010 (2)0.0237 (19)0.026 (2)
C110.056 (2)0.094 (3)0.049 (2)0.003 (2)0.0279 (19)0.015 (2)
C120.044 (2)0.076 (3)0.040 (2)0.0035 (16)0.0162 (16)0.0037 (16)
C130.0347 (17)0.052 (2)0.0355 (17)0.0007 (13)0.0118 (13)0.0021 (13)
C140.0472 (18)0.0436 (18)0.0433 (18)0.0026 (14)0.0177 (14)0.0068 (14)
C150.057 (2)0.0428 (19)0.059 (2)0.0008 (16)0.0163 (18)0.0080 (16)
C160.069 (3)0.048 (2)0.105 (4)0.0050 (19)0.020 (2)0.012 (2)
C170.085 (4)0.065 (3)0.131 (5)0.017 (3)0.016 (3)0.041 (3)
C180.066 (3)0.080 (3)0.128 (5)0.020 (3)0.018 (3)0.021 (3)
C190.062 (3)0.076 (3)0.106 (4)0.004 (2)0.007 (3)0.016 (3)
C200.051 (2)0.057 (2)0.075 (3)0.0014 (18)0.0144 (19)0.0096 (19)
Geometric parameters (Å, º) top
Sb—C82.134 (3)C10—H100.9300
Sb—C12.144 (4)C11—C121.374 (5)
Sb—N12.397 (3)C11—H110.9300
Sb—Cl12.5573 (9)C12—C131.396 (5)
N1—C141.481 (4)C12—H120.9300
N1—C71.487 (4)C13—C141.503 (4)
N1—C151.518 (4)C14—H14A0.9700
C1—C21.391 (5)C14—H14B0.9700
C1—C61.393 (5)C15—C161.493 (5)
C2—C31.385 (6)C15—C201.518 (5)
C2—H20.9300C15—H150.9800
C3—C41.367 (6)C16—C171.560 (6)
C3—H30.9300C16—H16A0.9700
C4—C51.381 (6)C16—H16B0.9700
C4—H40.9300C17—C181.495 (7)
C5—C61.389 (5)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C6—C71.497 (5)C18—C191.462 (6)
C7—H7A0.9700C18—H18A0.9700
C7—H7B0.9700C18—H18B0.9700
C8—C91.383 (4)C19—C201.541 (6)
C8—C131.397 (4)C19—H19A0.9700
C9—C101.382 (6)C19—H19B0.9700
C9—H90.9300C20—H20A0.9700
C10—C111.369 (6)C20—H20B0.9700
C8—Sb—C198.17 (12)C11—C12—C13119.9 (4)
C8—Sb—N177.37 (10)C11—C12—H12120.0
C1—Sb—N175.86 (11)C13—C12—H12120.0
C8—Sb—Cl191.80 (8)C8—C13—C12119.9 (3)
C1—Sb—Cl192.95 (10)C8—C13—C14120.4 (3)
N1—Sb—Cl1162.92 (7)C12—C13—C14119.6 (3)
C14—N1—C7110.3 (3)N1—C14—C13112.7 (3)
C14—N1—C15115.1 (3)N1—C14—H14A109.0
C7—N1—C15110.9 (3)C13—C14—H14A109.0
C14—N1—Sb107.40 (18)N1—C14—H14B109.0
C7—N1—Sb103.79 (19)C13—C14—H14B109.0
C15—N1—Sb108.64 (19)H14A—C14—H14B107.8
C2—C1—C6119.4 (4)C16—C15—C20111.2 (3)
C2—C1—Sb125.8 (3)C16—C15—N1114.1 (3)
C6—C1—Sb114.7 (2)C20—C15—N1110.9 (3)
C3—C2—C1120.4 (4)C16—C15—H15106.7
C3—C2—H2119.8C20—C15—H15106.7
C1—C2—H2119.8N1—C15—H15106.7
C4—C3—C2119.9 (4)C15—C16—C17109.6 (4)
C4—C3—H3120.0C15—C16—H16A109.7
C2—C3—H3120.0C17—C16—H16A109.7
C3—C4—C5120.6 (4)C15—C16—H16B109.7
C3—C4—H4119.7C17—C16—H16B109.7
C5—C4—H4119.7H16A—C16—H16B108.2
C4—C5—C6120.2 (4)C18—C17—C16111.0 (4)
C4—C5—H5119.9C18—C17—H17A109.4
C6—C5—H5119.9C16—C17—H17A109.4
C5—C6—C1119.5 (3)C18—C17—H17B109.4
C5—C6—C7120.4 (3)C16—C17—H17B109.4
C1—C6—C7120.0 (3)H17A—C17—H17B108.0
N1—C7—C6110.1 (3)C19—C18—C17111.5 (4)
N1—C7—H7A109.6C19—C18—H18A109.3
C6—C7—H7A109.6C17—C18—H18A109.3
N1—C7—H7B109.6C19—C18—H18B109.3
C6—C7—H7B109.6C17—C18—H18B109.3
H7A—C7—H7B108.2H18A—C18—H18B108.0
C9—C8—C13118.7 (3)C18—C19—C20111.6 (4)
C9—C8—Sb124.7 (3)C18—C19—H19A109.3
C13—C8—Sb116.3 (2)C20—C19—H19A109.3
C10—C9—C8120.9 (4)C18—C19—H19B109.3
C10—C9—H9119.5C20—C19—H19B109.3
C8—C9—H9119.5H19A—C19—H19B108.0
C11—C10—C9120.0 (4)C15—C20—C19109.5 (4)
C11—C10—H10120.0C15—C20—H20A109.8
C9—C10—H10120.0C19—C20—H20A109.8
C10—C11—C12120.4 (4)C15—C20—H20B109.8
C10—C11—H11119.8C19—C20—H20B109.8
C12—C11—H11119.8H20A—C20—H20B108.2
C8—Sb—N1—C1417.0 (2)C1—Sb—C8—C1368.2 (3)
C1—Sb—N1—C1484.9 (2)N1—Sb—C8—C135.3 (2)
Cl1—Sb—N1—C1434.7 (4)Cl1—Sb—C8—C13161.4 (2)
C8—Sb—N1—C7133.8 (2)C13—C8—C9—C100.8 (5)
C1—Sb—N1—C731.9 (2)Sb—C8—C9—C10175.3 (3)
Cl1—Sb—N1—C782.1 (3)C8—C9—C10—C111.9 (6)
C8—Sb—N1—C15108.1 (2)C9—C10—C11—C122.6 (6)
C1—Sb—N1—C15150.0 (2)C10—C11—C12—C132.2 (6)
Cl1—Sb—N1—C15159.8 (2)C9—C8—C13—C120.5 (5)
C8—Sb—C1—C291.1 (3)Sb—C8—C13—C12175.4 (3)
N1—Sb—C1—C2165.8 (3)C9—C8—C13—C14176.9 (3)
Cl1—Sb—C1—C21.2 (3)Sb—C8—C13—C148.2 (4)
C8—Sb—C1—C692.5 (2)C11—C12—C13—C81.2 (5)
N1—Sb—C1—C617.8 (2)C11—C12—C13—C14177.6 (3)
Cl1—Sb—C1—C6175.2 (2)C7—N1—C14—C13137.9 (3)
C6—C1—C2—C30.9 (6)C15—N1—C14—C1395.7 (3)
Sb—C1—C2—C3177.2 (3)Sb—N1—C14—C1325.4 (3)
C1—C2—C3—C40.1 (7)C8—C13—C14—N124.4 (4)
C2—C3—C4—C50.2 (8)C12—C13—C14—N1159.2 (3)
C3—C4—C5—C60.3 (7)C14—N1—C15—C1672.1 (4)
C4—C5—C6—C11.0 (6)C7—N1—C15—C1654.0 (4)
C4—C5—C6—C7176.9 (4)Sb—N1—C15—C16167.5 (3)
C2—C1—C6—C51.3 (5)C14—N1—C15—C2054.4 (4)
Sb—C1—C6—C5178.0 (3)C7—N1—C15—C20179.5 (3)
C2—C1—C6—C7176.6 (3)Sb—N1—C15—C2066.0 (3)
Sb—C1—C6—C70.0 (4)C20—C15—C16—C1756.9 (5)
C14—N1—C7—C674.4 (3)N1—C15—C16—C17176.8 (4)
C15—N1—C7—C6156.9 (3)C15—C16—C17—C1855.8 (6)
Sb—N1—C7—C640.4 (3)C16—C17—C18—C1956.2 (7)
C5—C6—C7—N1151.3 (3)C17—C18—C19—C2057.1 (7)
C1—C6—C7—N130.7 (4)C16—C15—C20—C1957.3 (5)
C1—Sb—C8—C9117.3 (3)N1—C15—C20—C19174.6 (3)
N1—Sb—C8—C9169.3 (3)C18—C19—C20—C1557.0 (6)
Cl1—Sb—C8—C924.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl1i0.972.803.695 (4)154
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Sb(C20H23N)Cl]
Mr434.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.0771 (7), 16.2881 (12), 12.2040 (9)
β (°) 111.812 (1)
V3)1859.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.37 × 0.35 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.653, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10058, 3644, 3107
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.05
No. of reflections3644
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.55

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl1i0.972.803.695 (4)154.3
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors thank the NSFC for financial support (grant No. 21003040).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChovancová, M., Jambor, R., Růžička, A., Jirásko, R., Císařová, I. & Dostál, L. (2009). Organometallics, 28, 1934–1941.  Google Scholar
First citationKakusawa, N., Tobiyasu, Y., Yasuike, S., Yamaguchi, K., Seki, H. & Jyoji, K. (2006). J. Organomet. Chem. 691, 2953–2968.  CrossRef CAS Google Scholar
First citationOpris, L. M., Preda, A. M., Varga, R. A., Breunig, H. J. & Silvestru, C. (2009). Eur. J. Inorg. Chem. pp. 1187–1193.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvoboda, T., Jambor, R., Růžička, A., Padělková, Z., Erben, M. & Dostál, L. (2010). Eur. J. Inorg. Chem. pp. 5222–5230.  CrossRef Google Scholar
First citationTan, N. & Zhang, X. (2011). Acta Cryst. E67, m252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, J., Qiu, R.-H., Yin, S.-F., Zhang, X.-W., Luo, S.-L., Au, C.-T. & Wong, W.-Y. (2010). J. Organomet. Chem. 695, 1487–1492.  CrossRef CAS Google Scholar
First citationYin, S., Maruyama, J., Yamashita, T. & Shimada, S. (2008). Angew. Chem. Int. Ed. 47, 6590–6593.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds