metal-organic compounds
Poly[[diaqua-μ6-succinato-di-μ5-succinato-didysprosium(III)] monohydrate]
aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn
The title compound, {[Dy2(C4H4O4)3(H2O)2]·H2O}n, is isostructural with other lanthanide succinates of the same formula. The DyIII atom is nine-coordinated in a tricapped trigonal–prismatic environment by eight O atoms, derived from six carboxylate groups and a water molecule. One of the independent succinate anions is located about a crystallographic inversion center and the uncoordinated water molecule lies on a twofold axis. The comprises edge-shared DyO9 polyhedra linked by succinate bridges, forming a three-dimensional network architecture. Intra- and intermolecular O—H⋯O hydrogen bonds are present in the
Related literature
For related compounds, see: Perles et al. (2004); Serpaggi & Ferey (1999); He et al. (2007); Seguatni et al. (2004); Zhou et al. (2005); Cui et al. (2005); Yu et al. (2006); Li (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811024330/vm2100sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811024330/vm2100Isup2.hkl
A mixture of Dy(NO3)3.7H2O (0.1316 g, 0.30 mmol), succinic acid (0.0354 g, 0.30 mmol), 1,10-phenanthroline (0.0595 g, 0.30 mmol), water (10 ml) was adjusted to a pH = 5.25 by NaOH solution. The mixture was sealed in a Teflon-lined stainless steel reactor and heated at 443 K for 3 d. After the reaction system had cooled slowly to room temperature, a small quantity of colourless crystals was isolated.
H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.97 Å and Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier map and then refined using the riding model, with O–H distances fixed as initially found and with O–H distances 0.85 Å and Uiso(H) values set at 1.2 Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Dy2(C4H4O4)3(H2O)2]·H2O | F(000) = 1368 |
Mr = 727.26 | Dx = 2.634 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 8350 reflections |
a = 19.981 (4) Å | θ = 3.0–27.5° |
b = 7.7616 (16) Å | µ = 8.17 mm−1 |
c = 13.868 (3) Å | T = 293 K |
β = 121.49 (3)° | Prism, colorless |
V = 1834.0 (9) Å3 | 0.45 × 0.20 × 0.14 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 2093 independent reflections |
Radiation source: fine-focus sealed tube | 2016 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −25→25 |
Tmin = 0.154, Tmax = 0.319 | k = −10→9 |
8691 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.016 | H-atom parameters constrained |
wR(F2) = 0.038 | w = 1/[σ2(Fo2) + (0.0112P)2 + 12.5672P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.005 |
2093 reflections | Δρmax = 0.78 e Å−3 |
133 parameters | Δρmin = −0.73 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00050 (4) |
[Dy2(C4H4O4)3(H2O)2]·H2O | V = 1834.0 (9) Å3 |
Mr = 727.26 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.981 (4) Å | µ = 8.17 mm−1 |
b = 7.7616 (16) Å | T = 293 K |
c = 13.868 (3) Å | 0.45 × 0.20 × 0.14 mm |
β = 121.49 (3)° |
Rigaku R-AXIS RAPID diffractometer | 2093 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2016 reflections with I > 2σ(I) |
Tmin = 0.154, Tmax = 0.319 | Rint = 0.018 |
8691 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 0 restraints |
wR(F2) = 0.038 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0112P)2 + 12.5672P] where P = (Fo2 + 2Fc2)/3 |
2093 reflections | Δρmax = 0.78 e Å−3 |
133 parameters | Δρmin = −0.73 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Dy | 0.268767 (7) | 0.716662 (17) | 0.229964 (11) | 0.01104 (6) | |
O1 | 0.18695 (12) | 0.9822 (3) | 0.13564 (17) | 0.0161 (4) | |
O2 | 0.16984 (14) | 0.7651 (3) | 0.02657 (18) | 0.0179 (4) | |
O3 | 0.19605 (15) | 1.2559 (3) | −0.1745 (2) | 0.0225 (5) | |
O4 | 0.18010 (14) | 0.9767 (3) | −0.1583 (2) | 0.0214 (5) | |
C1 | 0.15245 (16) | 0.9157 (4) | 0.0371 (2) | 0.0118 (5) | |
C2 | 0.09015 (17) | 1.0166 (4) | −0.0632 (2) | 0.0152 (6) | |
H2A | 0.0506 | 1.0544 | −0.0473 | 0.018* | |
H2B | 0.0648 | 0.9413 | −0.1286 | 0.018* | |
C3 | 0.12259 (19) | 1.1741 (4) | −0.0920 (3) | 0.0167 (6) | |
H3A | 0.0791 | 1.2478 | −0.1429 | 0.020* | |
H3B | 0.1556 | 1.2388 | −0.0231 | 0.020* | |
C4 | 0.16978 (17) | 1.1315 (4) | −0.1461 (2) | 0.0131 (5) | |
O5 | 0.32431 (11) | 0.9822 (3) | 0.34063 (17) | 0.0142 (4) | |
O6 | 0.40702 (13) | 0.7716 (3) | 0.3808 (2) | 0.0195 (5) | |
C5 | 0.39496 (16) | 0.9239 (4) | 0.3932 (2) | 0.0131 (5) | |
C6 | 0.46055 (17) | 1.0439 (4) | 0.4690 (3) | 0.0240 (7) | |
H6A | 0.4498 | 1.0936 | 0.5237 | 0.029* | |
H6B | 0.4624 | 1.1373 | 0.4239 | 0.029* | |
O7 | 0.33328 (14) | 0.8880 (3) | 0.15135 (19) | 0.0200 (5) | |
H7A | 0.3304 | 0.9973 | 0.1475 | 0.024* | |
H7B | 0.3319 | 0.8471 | 0.0935 | 0.024* | |
O8 | 0.5000 | 0.9782 (13) | 0.2500 | 0.123 (3) | |
H8W | 0.4592 | 0.9198 | 0.2324 | 0.147* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy | 0.01269 (8) | 0.00799 (8) | 0.01316 (8) | −0.00046 (5) | 0.00725 (6) | −0.00019 (5) |
O1 | 0.0165 (10) | 0.0156 (10) | 0.0126 (9) | 0.0015 (8) | 0.0050 (8) | −0.0025 (8) |
O2 | 0.0279 (12) | 0.0099 (10) | 0.0135 (10) | 0.0003 (9) | 0.0091 (9) | 0.0001 (8) |
O3 | 0.0366 (14) | 0.0109 (10) | 0.0342 (13) | 0.0015 (9) | 0.0285 (12) | 0.0030 (9) |
O4 | 0.0332 (13) | 0.0104 (10) | 0.0346 (13) | 0.0020 (9) | 0.0274 (11) | 0.0002 (9) |
C1 | 0.0120 (13) | 0.0136 (14) | 0.0121 (12) | −0.0052 (11) | 0.0079 (11) | −0.0001 (11) |
C2 | 0.0122 (13) | 0.0200 (15) | 0.0132 (13) | 0.0005 (11) | 0.0064 (11) | 0.0030 (12) |
C3 | 0.0235 (15) | 0.0137 (14) | 0.0195 (14) | 0.0058 (12) | 0.0157 (13) | 0.0048 (12) |
C4 | 0.0159 (13) | 0.0105 (13) | 0.0144 (13) | 0.0015 (11) | 0.0088 (11) | 0.0026 (11) |
O5 | 0.0083 (9) | 0.0153 (10) | 0.0146 (9) | 0.0004 (8) | 0.0030 (8) | −0.0041 (8) |
O6 | 0.0127 (10) | 0.0118 (10) | 0.0261 (12) | 0.0008 (8) | 0.0046 (9) | −0.0003 (9) |
C5 | 0.0103 (13) | 0.0148 (14) | 0.0130 (12) | −0.0017 (11) | 0.0054 (11) | 0.0012 (11) |
C6 | 0.0108 (14) | 0.0159 (15) | 0.0325 (18) | −0.0014 (12) | 0.0024 (13) | −0.0079 (14) |
O7 | 0.0320 (13) | 0.0134 (11) | 0.0247 (11) | −0.0033 (9) | 0.0219 (10) | −0.0024 (9) |
O8 | 0.090 (6) | 0.136 (8) | 0.139 (7) | 0.000 | 0.058 (6) | 0.000 |
Dy—O4i | 2.312 (2) | C2—C3 | 1.531 (4) |
Dy—O5ii | 2.414 (2) | C2—H2A | 0.9700 |
Dy—O1ii | 2.417 (2) | C2—H2B | 0.9700 |
Dy—O3iii | 2.434 (2) | C3—C4 | 1.517 (4) |
Dy—O5 | 2.461 (2) | C3—H3A | 0.9700 |
Dy—O7 | 2.467 (2) | C3—H3B | 0.9700 |
Dy—O6 | 2.480 (2) | O5—C5 | 1.286 (3) |
Dy—O2 | 2.486 (2) | O5—Dyiv | 2.414 (2) |
Dy—O1 | 2.529 (2) | O6—C5 | 1.236 (4) |
O1—C1 | 1.275 (3) | C5—C6 | 1.500 (4) |
O1—Dyiv | 2.417 (2) | C6—C6vi | 1.508 (6) |
O2—C1 | 1.249 (4) | C6—H6A | 0.9700 |
O3—C4 | 1.257 (4) | C6—H6B | 0.9700 |
O3—Dyv | 2.434 (2) | O7—H7A | 0.8500 |
O4—C4 | 1.246 (4) | O7—H7B | 0.8501 |
O4—Dyi | 2.312 (2) | O8—H8W | 0.8503 |
C1—C2 | 1.513 (4) | ||
O4i—Dy—O5ii | 75.88 (8) | O6—Dy—C1 | 133.45 (8) |
O4i—Dy—O1ii | 77.11 (8) | O2—Dy—C1 | 25.28 (8) |
O5ii—Dy—O1ii | 68.86 (8) | O1—Dy—C1 | 25.96 (7) |
O4i—Dy—O3iii | 144.52 (8) | C5—Dy—C1 | 112.44 (9) |
O5ii—Dy—O3iii | 74.58 (8) | C1—O1—Dyiv | 155.0 (2) |
O1ii—Dy—O3iii | 74.22 (8) | C1—O1—Dy | 93.77 (18) |
O4i—Dy—O5 | 130.94 (8) | Dyiv—O1—Dy | 109.71 (8) |
O5ii—Dy—O5 | 152.29 (2) | C1—O2—Dy | 96.55 (17) |
O1ii—Dy—O5 | 106.58 (7) | C4—O3—Dyv | 134.7 (2) |
O3iii—Dy—O5 | 77.89 (7) | C4—O4—Dyi | 145.7 (2) |
O4i—Dy—O7 | 73.12 (8) | O2—C1—O1 | 118.4 (3) |
O5ii—Dy—O7 | 134.18 (7) | O2—C1—C2 | 121.5 (3) |
O1ii—Dy—O7 | 132.93 (8) | O1—C1—C2 | 120.0 (3) |
O3iii—Dy—O7 | 142.35 (7) | O2—C1—Dy | 58.17 (15) |
O5—Dy—O7 | 69.79 (7) | O1—C1—Dy | 60.27 (15) |
O4i—Dy—O6 | 85.79 (8) | C2—C1—Dy | 178.43 (19) |
O5ii—Dy—O6 | 138.96 (7) | C1—C2—C3 | 113.3 (2) |
O1ii—Dy—O6 | 71.41 (8) | C1—C2—H2A | 108.9 |
O3iii—Dy—O6 | 104.14 (9) | C3—C2—H2A | 108.9 |
O5—Dy—O6 | 52.36 (7) | C1—C2—H2B | 108.9 |
O7—Dy—O6 | 70.81 (8) | C3—C2—H2B | 108.9 |
O4i—Dy—O2 | 83.01 (8) | H2A—C2—H2B | 107.7 |
O5ii—Dy—O2 | 70.51 (7) | C4—C3—C2 | 114.3 (3) |
O1ii—Dy—O2 | 137.94 (7) | C4—C3—H3A | 108.7 |
O3iii—Dy—O2 | 104.93 (9) | C2—C3—H3A | 108.7 |
O5—Dy—O2 | 114.41 (7) | C4—C3—H3B | 108.7 |
O7—Dy—O2 | 72.92 (8) | C2—C3—H3B | 108.7 |
O6—Dy—O2 | 143.72 (8) | H3A—C3—H3B | 107.6 |
O4i—Dy—O1 | 128.17 (8) | O4—C4—O3 | 124.9 (3) |
O5ii—Dy—O1 | 104.58 (7) | O4—C4—C3 | 117.9 (3) |
O1ii—Dy—O1 | 152.80 (2) | O3—C4—C3 | 117.2 (3) |
O3iii—Dy—O1 | 78.58 (8) | C5—O5—Dyiv | 151.66 (19) |
O5—Dy—O1 | 66.36 (7) | C5—O5—Dy | 93.61 (17) |
O7—Dy—O1 | 71.21 (7) | Dyiv—O5—Dy | 112.19 (8) |
O6—Dy—O1 | 115.49 (7) | C5—O6—Dy | 93.98 (17) |
O2—Dy—O1 | 51.24 (7) | O6—C5—O5 | 119.6 (3) |
O4i—Dy—C5 | 107.57 (9) | O6—C5—C6 | 121.9 (3) |
O5ii—Dy—C5 | 157.37 (7) | O5—C5—C6 | 118.5 (3) |
O1ii—Dy—C5 | 89.81 (8) | O6—C5—Dy | 60.34 (15) |
O3iii—Dy—C5 | 92.88 (8) | O5—C5—Dy | 59.60 (15) |
O5—Dy—C5 | 26.79 (8) | C6—C5—Dy | 174.0 (2) |
O7—Dy—C5 | 66.22 (8) | C5—C6—C6vi | 112.9 (3) |
O6—Dy—C5 | 25.67 (8) | C5—C6—H6A | 109.0 |
O2—Dy—C5 | 131.74 (8) | C6vi—C6—H6A | 109.0 |
O1—Dy—C5 | 90.89 (8) | C5—C6—H6B | 109.0 |
O4i—Dy—C1 | 105.65 (8) | C6vi—C6—H6B | 109.0 |
O5ii—Dy—C1 | 87.20 (8) | H6A—C6—H6B | 107.8 |
O1ii—Dy—C1 | 154.72 (7) | Dy—O7—H7A | 122.1 |
O3iii—Dy—C1 | 92.12 (8) | Dy—O7—H7B | 116.7 |
O5—Dy—C1 | 90.70 (8) | H7A—O7—H7B | 110.3 |
O7—Dy—C1 | 70.00 (8) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y+2, z+1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, −y+2, z−1/2; (vi) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O3vii | 0.85 | 2.07 | 2.878 (3) | 158 |
O7—H7B···O2i | 0.85 | 1.86 | 2.710 (3) | 174 |
O8—H8W···O7 | 0.85 | 2.17 | 2.949 (4) | 153 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z; (vii) −x+1/2, −y+5/2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Dy2(C4H4O4)3(H2O)2]·H2O |
Mr | 727.26 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 19.981 (4), 7.7616 (16), 13.868 (3) |
β (°) | 121.49 (3) |
V (Å3) | 1834.0 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 8.17 |
Crystal size (mm) | 0.45 × 0.20 × 0.14 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.154, 0.319 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8691, 2093, 2016 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.016, 0.038, 1.09 |
No. of reflections | 2093 |
No. of parameters | 133 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0112P)2 + 12.5672P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.78, −0.73 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O3i | 0.85 | 2.07 | 2.878 (3) | 158 |
O7—H7B···O2ii | 0.85 | 1.86 | 2.710 (3) | 174 |
O8—H8W···O7 | 0.85 | 2.17 | 2.949 (4) | 153 |
Symmetry codes: (i) −x+1/2, −y+5/2, −z; (ii) −x+1/2, −y+3/2, −z. |
Acknowledgements
This project was supported by the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. Y201017782). Thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.
References
Cui, G. H., Li, J. R. & Bu, X. H. (2005). J. Mol. Struct. 740, 187–191. Web of Science CSD CrossRef CAS Google Scholar
He, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, F. (2007). Acta Cryst. E63, m840–m841. Web of Science CSD CrossRef IUCr Journals Google Scholar
Perles, J., Iglesias, M., Ruiz-Valero, C. & Snejko, N. (2004). J. Mater. Chem. 14, 2683–2698. CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Seguatni, A., Fakhfakh, M., Vauley, M. J. & Jouini, N. (2004). J. Solid State Chem. 177, 3402–3410. Web of Science CSD CrossRef CAS Google Scholar
Serpaggi, G. M. & Ferey, G. (1999). Micropor. Mesopor. Mat. 32, 311–318. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, B., Wang, X.-Q., Wang, R.-J., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, m1620–m1622. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, Y. F., Jiang, F. L., Yuan, D. Q., Wu, B. L. & Hong, M. C. (2005). J. Mol. Struct. 743, 21–27. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There is considerable interest in the study of coordination frameworks with suitable rigid multidentate ligands. Especially those having long chain dicarboxylates present interesting behavior owing to their conformational flexibility and coordination diversity. Lanthanide ions exhibit high affinity for oxygen and diverse coordination modes. In an attempt to further understand the formation of lanthanide–organic framework materials, we present here the hydrothermal synthesis and crystal structure of a new Ln–succinate complex, (I).
The title compound, (I), is isostructural with the known Ln–succinate complexes where Ln = Y and La (Perles et al., 2004), Pr (Serpaggi & Ferey, 1999), Nd (He et al., 2007), Sm (Seguatni et al., 2004), Gd (Zhou et al., 2005), Tb (Cui et al., 2005), Ho (Yu et al., 2006), and Er (Li, 2007) analogs, but it represents the first reported succinate coordination polymer of dysprosium (III).
The asymmetric unit in (I) comprises a Dy atom, one and a half succinate anions, a coordinated water molecule and half an uncoordinated water molecule (Fig. 1). The complete second succinate dianion, containing O5 and O6, is generated from the half-ion by inversion and the uncoordinated water molecule O atom is located on a twofold axis. The DyIII ion is nine-coordinated within a tricapped trigonal-prismatic geometry defined by eight O atoms, derived from six carboxylate anions, and a water molecule. The crystal structure comprises edge–sharing DyO8(OH2) polyhedra forming chains along the b–axis direction by sharing one edge with each neigboring polyhedron. The Dy···Dy distance within chains is 4.046 (1) Å. These chains are in turn linked via succinate bridges, forming a three-dimensional framework (Fig. 2.). Intra- and intermolecular O–H···O hydrogen bonds are present in the crystal structure (Table 1).