metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua-μ6-succinato-di-μ5-succinato-didysprosium(III)] mono­hydrate]

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 2 June 2011; accepted 21 June 2011; online 30 June 2011)

The title compound, {[Dy2(C4H4O4)3(H2O)2]·H2O}n, is isostructural with other lanthanide succinates of the same formula. The DyIII atom is nine-coordinated in a tricapped trigonal–prismatic environment by eight O atoms, derived from six carboxyl­ate groups and a water mol­ecule. One of the independent succinate anions is located about a crystallographic inversion center and the uncoordinated water mol­ecule lies on a twofold axis. The crystal structure comprises edge-shared DyO9 polyhedra linked by succinate bridges, forming a three-dimensional network architecture. Intra- and inter­molecular O—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For related compounds, see: Perles et al. (2004[Perles, J., Iglesias, M., Ruiz-Valero, C. & Snejko, N. (2004). J. Mater. Chem. 14, 2683-2698.]); Serpaggi & Ferey (1999[Serpaggi, G. M. & Ferey, G. (1999). Micropor. Mesopor. Mat. 32, 311-318.]); He et al. (2007[He, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.]); Seguatni et al. (2004[Seguatni, A., Fakhfakh, M., Vauley, M. J. & Jouini, N. (2004). J. Solid State Chem. 177, 3402-3410.]); Zhou et al. (2005[Zhou, Y. F., Jiang, F. L., Yuan, D. Q., Wu, B. L. & Hong, M. C. (2005). J. Mol. Struct. 743, 21-27.]); Cui et al. (2005[Cui, G. H., Li, J. R. & Bu, X. H. (2005). J. Mol. Struct. 740, 187-191.]); Yu et al. (2006[Yu, B., Wang, X.-Q., Wang, R.-J., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, m1620-m1622.]); Li (2007[Li, F. (2007). Acta Cryst. E63, m840-m841.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy2(C4H4O4)3(H2O)2]·H2O

  • Mr = 727.26

  • Monoclinic, C 2/c

  • a = 19.981 (4) Å

  • b = 7.7616 (16) Å

  • c = 13.868 (3) Å

  • β = 121.49 (3)°

  • V = 1834.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.17 mm−1

  • T = 293 K

  • 0.45 × 0.20 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.154, Tmax = 0.319

  • 8691 measured reflections

  • 2093 independent reflections

  • 2016 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.038

  • S = 1.09

  • 2093 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3i 0.85 2.07 2.878 (3) 158
O7—H7B⋯O2ii 0.85 1.86 2.710 (3) 174
O8—H8W⋯O7 0.85 2.17 2.949 (4) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is considerable interest in the study of coordination frameworks with suitable rigid multidentate ligands. Especially those having long chain dicarboxylates present interesting behavior owing to their conformational flexibility and coordination diversity. Lanthanide ions exhibit high affinity for oxygen and diverse coordination modes. In an attempt to further understand the formation of lanthanide–organic framework materials, we present here the hydrothermal synthesis and crystal structure of a new Ln–succinate complex, (I).

The title compound, (I), is isostructural with the known Ln–succinate complexes where Ln = Y and La (Perles et al., 2004), Pr (Serpaggi & Ferey, 1999), Nd (He et al., 2007), Sm (Seguatni et al., 2004), Gd (Zhou et al., 2005), Tb (Cui et al., 2005), Ho (Yu et al., 2006), and Er (Li, 2007) analogs, but it represents the first reported succinate coordination polymer of dysprosium (III).

The asymmetric unit in (I) comprises a Dy atom, one and a half succinate anions, a coordinated water molecule and half an uncoordinated water molecule (Fig. 1). The complete second succinate dianion, containing O5 and O6, is generated from the half-ion by inversion and the uncoordinated water molecule O atom is located on a twofold axis. The DyIII ion is nine-coordinated within a tricapped trigonal-prismatic geometry defined by eight O atoms, derived from six carboxylate anions, and a water molecule. The crystal structure comprises edge–sharing DyO8(OH2) polyhedra forming chains along the b–axis direction by sharing one edge with each neigboring polyhedron. The Dy···Dy distance within chains is 4.046 (1) Å. These chains are in turn linked via succinate bridges, forming a three-dimensional framework (Fig. 2.). Intra- and intermolecular O–H···O hydrogen bonds are present in the crystal structure (Table 1).

Related literature top

For related compounds, see: Perles et al. (2004); Serpaggi & Ferey (1999); He et al. (2007); Seguatni et al. (2004); Zhou et al. (2005); Cui et al. (2005); Yu et al. (2006); Li (2007).

Experimental top

A mixture of Dy(NO3)3.7H2O (0.1316 g, 0.30 mmol), succinic acid (0.0354 g, 0.30 mmol), 1,10-phenanthroline (0.0595 g, 0.30 mmol), water (10 ml) was adjusted to a pH = 5.25 by NaOH solution. The mixture was sealed in a Teflon-lined stainless steel reactor and heated at 443 K for 3 d. After the reaction system had cooled slowly to room temperature, a small quantity of colourless crystals was isolated.

Refinement top

H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.97 Å and Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier map and then refined using the riding model, with O–H distances fixed as initially found and with O–H distances 0.85 Å and Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the DyIII ion in (I), showing the atom labeling and dispacement ellipsoids drawn at the 45% probability level. H atoms have been removed for clarity. [Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x, -y, -z + 1; (iii) -x + 1/2, y - 1/2, -z + 1/2; (iv) -x + 1, -y + 2, -z + 1.]
[Figure 2] Fig. 2. View of the packing in (I), drawing the tricapped trigonal-prismatic geometry of DyIII in green. H atoms have been removed for clarity.
Poly[[diaqua-µ6-succinato-di-µ5-succinato- didysprosium(III)] monohydrate] top
Crystal data top
[Dy2(C4H4O4)3(H2O)2]·H2OF(000) = 1368
Mr = 727.26Dx = 2.634 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8350 reflections
a = 19.981 (4) Åθ = 3.0–27.5°
b = 7.7616 (16) ŵ = 8.17 mm1
c = 13.868 (3) ÅT = 293 K
β = 121.49 (3)°Prism, colorless
V = 1834.0 (9) Å30.45 × 0.20 × 0.14 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2093 independent reflections
Radiation source: fine-focus sealed tube2016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2525
Tmin = 0.154, Tmax = 0.319k = 109
8691 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0112P)2 + 12.5672P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.005
2093 reflectionsΔρmax = 0.78 e Å3
133 parametersΔρmin = 0.73 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00050 (4)
Crystal data top
[Dy2(C4H4O4)3(H2O)2]·H2OV = 1834.0 (9) Å3
Mr = 727.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.981 (4) ŵ = 8.17 mm1
b = 7.7616 (16) ÅT = 293 K
c = 13.868 (3) Å0.45 × 0.20 × 0.14 mm
β = 121.49 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2093 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2016 reflections with I > 2σ(I)
Tmin = 0.154, Tmax = 0.319Rint = 0.018
8691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.038H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0112P)2 + 12.5672P]
where P = (Fo2 + 2Fc2)/3
2093 reflectionsΔρmax = 0.78 e Å3
133 parametersΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy0.268767 (7)0.716662 (17)0.229964 (11)0.01104 (6)
O10.18695 (12)0.9822 (3)0.13564 (17)0.0161 (4)
O20.16984 (14)0.7651 (3)0.02657 (18)0.0179 (4)
O30.19605 (15)1.2559 (3)0.1745 (2)0.0225 (5)
O40.18010 (14)0.9767 (3)0.1583 (2)0.0214 (5)
C10.15245 (16)0.9157 (4)0.0371 (2)0.0118 (5)
C20.09015 (17)1.0166 (4)0.0632 (2)0.0152 (6)
H2A0.05061.05440.04730.018*
H2B0.06480.94130.12860.018*
C30.12259 (19)1.1741 (4)0.0920 (3)0.0167 (6)
H3A0.07911.24780.14290.020*
H3B0.15561.23880.02310.020*
C40.16978 (17)1.1315 (4)0.1461 (2)0.0131 (5)
O50.32431 (11)0.9822 (3)0.34063 (17)0.0142 (4)
O60.40702 (13)0.7716 (3)0.3808 (2)0.0195 (5)
C50.39496 (16)0.9239 (4)0.3932 (2)0.0131 (5)
C60.46055 (17)1.0439 (4)0.4690 (3)0.0240 (7)
H6A0.44981.09360.52370.029*
H6B0.46241.13730.42390.029*
O70.33328 (14)0.8880 (3)0.15135 (19)0.0200 (5)
H7A0.33040.99730.14750.024*
H7B0.33190.84710.09350.024*
O80.50000.9782 (13)0.25000.123 (3)
H8W0.45920.91980.23240.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy0.01269 (8)0.00799 (8)0.01316 (8)0.00046 (5)0.00725 (6)0.00019 (5)
O10.0165 (10)0.0156 (10)0.0126 (9)0.0015 (8)0.0050 (8)0.0025 (8)
O20.0279 (12)0.0099 (10)0.0135 (10)0.0003 (9)0.0091 (9)0.0001 (8)
O30.0366 (14)0.0109 (10)0.0342 (13)0.0015 (9)0.0285 (12)0.0030 (9)
O40.0332 (13)0.0104 (10)0.0346 (13)0.0020 (9)0.0274 (11)0.0002 (9)
C10.0120 (13)0.0136 (14)0.0121 (12)0.0052 (11)0.0079 (11)0.0001 (11)
C20.0122 (13)0.0200 (15)0.0132 (13)0.0005 (11)0.0064 (11)0.0030 (12)
C30.0235 (15)0.0137 (14)0.0195 (14)0.0058 (12)0.0157 (13)0.0048 (12)
C40.0159 (13)0.0105 (13)0.0144 (13)0.0015 (11)0.0088 (11)0.0026 (11)
O50.0083 (9)0.0153 (10)0.0146 (9)0.0004 (8)0.0030 (8)0.0041 (8)
O60.0127 (10)0.0118 (10)0.0261 (12)0.0008 (8)0.0046 (9)0.0003 (9)
C50.0103 (13)0.0148 (14)0.0130 (12)0.0017 (11)0.0054 (11)0.0012 (11)
C60.0108 (14)0.0159 (15)0.0325 (18)0.0014 (12)0.0024 (13)0.0079 (14)
O70.0320 (13)0.0134 (11)0.0247 (11)0.0033 (9)0.0219 (10)0.0024 (9)
O80.090 (6)0.136 (8)0.139 (7)0.0000.058 (6)0.000
Geometric parameters (Å, º) top
Dy—O4i2.312 (2)C2—C31.531 (4)
Dy—O5ii2.414 (2)C2—H2A0.9700
Dy—O1ii2.417 (2)C2—H2B0.9700
Dy—O3iii2.434 (2)C3—C41.517 (4)
Dy—O52.461 (2)C3—H3A0.9700
Dy—O72.467 (2)C3—H3B0.9700
Dy—O62.480 (2)O5—C51.286 (3)
Dy—O22.486 (2)O5—Dyiv2.414 (2)
Dy—O12.529 (2)O6—C51.236 (4)
O1—C11.275 (3)C5—C61.500 (4)
O1—Dyiv2.417 (2)C6—C6vi1.508 (6)
O2—C11.249 (4)C6—H6A0.9700
O3—C41.257 (4)C6—H6B0.9700
O3—Dyv2.434 (2)O7—H7A0.8500
O4—C41.246 (4)O7—H7B0.8501
O4—Dyi2.312 (2)O8—H8W0.8503
C1—C21.513 (4)
O4i—Dy—O5ii75.88 (8)O6—Dy—C1133.45 (8)
O4i—Dy—O1ii77.11 (8)O2—Dy—C125.28 (8)
O5ii—Dy—O1ii68.86 (8)O1—Dy—C125.96 (7)
O4i—Dy—O3iii144.52 (8)C5—Dy—C1112.44 (9)
O5ii—Dy—O3iii74.58 (8)C1—O1—Dyiv155.0 (2)
O1ii—Dy—O3iii74.22 (8)C1—O1—Dy93.77 (18)
O4i—Dy—O5130.94 (8)Dyiv—O1—Dy109.71 (8)
O5ii—Dy—O5152.29 (2)C1—O2—Dy96.55 (17)
O1ii—Dy—O5106.58 (7)C4—O3—Dyv134.7 (2)
O3iii—Dy—O577.89 (7)C4—O4—Dyi145.7 (2)
O4i—Dy—O773.12 (8)O2—C1—O1118.4 (3)
O5ii—Dy—O7134.18 (7)O2—C1—C2121.5 (3)
O1ii—Dy—O7132.93 (8)O1—C1—C2120.0 (3)
O3iii—Dy—O7142.35 (7)O2—C1—Dy58.17 (15)
O5—Dy—O769.79 (7)O1—C1—Dy60.27 (15)
O4i—Dy—O685.79 (8)C2—C1—Dy178.43 (19)
O5ii—Dy—O6138.96 (7)C1—C2—C3113.3 (2)
O1ii—Dy—O671.41 (8)C1—C2—H2A108.9
O3iii—Dy—O6104.14 (9)C3—C2—H2A108.9
O5—Dy—O652.36 (7)C1—C2—H2B108.9
O7—Dy—O670.81 (8)C3—C2—H2B108.9
O4i—Dy—O283.01 (8)H2A—C2—H2B107.7
O5ii—Dy—O270.51 (7)C4—C3—C2114.3 (3)
O1ii—Dy—O2137.94 (7)C4—C3—H3A108.7
O3iii—Dy—O2104.93 (9)C2—C3—H3A108.7
O5—Dy—O2114.41 (7)C4—C3—H3B108.7
O7—Dy—O272.92 (8)C2—C3—H3B108.7
O6—Dy—O2143.72 (8)H3A—C3—H3B107.6
O4i—Dy—O1128.17 (8)O4—C4—O3124.9 (3)
O5ii—Dy—O1104.58 (7)O4—C4—C3117.9 (3)
O1ii—Dy—O1152.80 (2)O3—C4—C3117.2 (3)
O3iii—Dy—O178.58 (8)C5—O5—Dyiv151.66 (19)
O5—Dy—O166.36 (7)C5—O5—Dy93.61 (17)
O7—Dy—O171.21 (7)Dyiv—O5—Dy112.19 (8)
O6—Dy—O1115.49 (7)C5—O6—Dy93.98 (17)
O2—Dy—O151.24 (7)O6—C5—O5119.6 (3)
O4i—Dy—C5107.57 (9)O6—C5—C6121.9 (3)
O5ii—Dy—C5157.37 (7)O5—C5—C6118.5 (3)
O1ii—Dy—C589.81 (8)O6—C5—Dy60.34 (15)
O3iii—Dy—C592.88 (8)O5—C5—Dy59.60 (15)
O5—Dy—C526.79 (8)C6—C5—Dy174.0 (2)
O7—Dy—C566.22 (8)C5—C6—C6vi112.9 (3)
O6—Dy—C525.67 (8)C5—C6—H6A109.0
O2—Dy—C5131.74 (8)C6vi—C6—H6A109.0
O1—Dy—C590.89 (8)C5—C6—H6B109.0
O4i—Dy—C1105.65 (8)C6vi—C6—H6B109.0
O5ii—Dy—C187.20 (8)H6A—C6—H6B107.8
O1ii—Dy—C1154.72 (7)Dy—O7—H7A122.1
O3iii—Dy—C192.12 (8)Dy—O7—H7B116.7
O5—Dy—C190.70 (8)H7A—O7—H7B110.3
O7—Dy—C170.00 (8)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+2, z1/2; (vi) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3vii0.852.072.878 (3)158
O7—H7B···O2i0.851.862.710 (3)174
O8—H8W···O70.852.172.949 (4)153
Symmetry codes: (i) x+1/2, y+3/2, z; (vii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formula[Dy2(C4H4O4)3(H2O)2]·H2O
Mr727.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.981 (4), 7.7616 (16), 13.868 (3)
β (°) 121.49 (3)
V3)1834.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)8.17
Crystal size (mm)0.45 × 0.20 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.154, 0.319
No. of measured, independent and
observed [I > 2σ(I)] reflections
8691, 2093, 2016
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.038, 1.09
No. of reflections2093
No. of parameters133
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0112P)2 + 12.5672P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.78, 0.73

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3i0.852.072.878 (3)158
O7—H7B···O2ii0.851.862.710 (3)174
O8—H8W···O70.852.172.949 (4)153
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. Y201017782). Thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

References

First citationCui, G. H., Li, J. R. & Bu, X. H. (2005). J. Mol. Struct. 740, 187–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, F. (2007). Acta Cryst. E63, m840–m841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerles, J., Iglesias, M., Ruiz-Valero, C. & Snejko, N. (2004). J. Mater. Chem. 14, 2683–2698.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSeguatni, A., Fakhfakh, M., Vauley, M. J. & Jouini, N. (2004). J. Solid State Chem. 177, 3402–3410.  Web of Science CSD CrossRef CAS Google Scholar
First citationSerpaggi, G. M. & Ferey, G. (1999). Micropor. Mesopor. Mat. 32, 311–318.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, B., Wang, X.-Q., Wang, R.-J., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, m1620–m1622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y. F., Jiang, F. L., Yuan, D. Q., Wu, B. L. & Hong, M. C. (2005). J. Mol. Struct. 743, 21–27.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds