metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-methyl­piperazine-1,4-diium) tetra­bromidocuprate(II)

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitpch@yahoo.com.cn

(Received 14 June 2011; accepted 20 June 2011; online 25 June 2011)

The title compound, (C5H14N2)[CuBr4], was synthesized by hydro­thermal reaction of CuBr2 with 1-methyl­piperazine in an HBr/water solution. Both amine N atoms are protonated. The Cu—Br distances in the tetrahedral anion are in the range 2.3809 (11)–2.4131 (11) Å. In the crystal, moderately strong and weak inter­molecular N—H⋯Br hydrogen bonds link the anion and cation units into an infinite two-dimensional network parallel to the ab plane.

Related literature

For related amino coordination compounds, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]); Dai & Fu (2008a[Dai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.],b[Dai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.]). For halogen atoms as hydrogen-bond acceptors, see: Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]). For the chlorine analogue of the title compound, see: Peng (2011[Peng, C. (2011). Acta Cryst. E67, m979.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[CuBr4]

  • Mr = 485.36

  • Orthorhombic, P 21 21 21

  • a = 9.1933 (18) Å

  • b = 10.341 (2) Å

  • c = 14.255 (3) Å

  • V = 1355.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.37 mm−1

  • T = 298 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.89, Tmax = 1.00

  • 14009 measured reflections

  • 3092 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.088

  • S = 1.08

  • 3092 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1312 Friedel pairs

  • Flack parameter: 0.05 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Br3i 0.90 2.50 3.339 (6) 154
N2—H2D⋯Br1ii 0.90 2.68 3.354 (5) 133
N2—H2D⋯Br2ii 0.90 2.76 3.457 (5) 135
N1—H1⋯Br4 0.90 2.55 3.345 (5) 148
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amino derivatives of piperazine have found a wide range of applications in material science, due to their magnetic, fluorescent and dielectric properties. There has also been an increased interest in the preparation of amino coordination compounds (Aminabhavi et al. 1986; Dai & Fu 2008a; Dai & Fu 2008b; Fu, et al. 2009). We report here the crystal structure of the title compound, bis-(1-methylpiperazine-1,4-diium) tetrabromide copper(II).

The asymmetric unit is composed of one CuBr42- anion and one 1-methylpiperazine-1,4-diium cation (Fig.1). Both amine N atoms are protonated, indicating thus two positive charges on the cation that balance the two negative charges on the CuBr42- anion. Geometric parameters of the title compound are in the normal range.

In the crystal structure, all H atoms of the amine groups are involved in intermolecular N—H···Br hydrogen bonds with the bond angles ranging from 132.7° to 154.3° and N···Br distances from 3.339 (6)Å to 3.457 (5)Å, respectively. Following the survey by Brammer et al. (2001) the N2—H2D···Br1 and N2—H2D···Br2 H-bonds should be considered to be clearly weaker than the N2—H2C···Br3 and N1—H1···Br4 interactions (Table 1). The hydrogen bonds link the cations and anions into an infinite two-dimensional network parallel to the ab-plane (Fig.2). The chlorine analogue of the title compound is reported elsewhere in this issue (Peng, 2011).

Related literature top

For related amino coordination compounds, see: Fu et al. (2009); Aminabhavi et al. (1986); Dai & Fu (2008a,b). For halogens as hydrogen-bond acceptors, see: Brammer et al. (2001). For the chlorine analogue of the title compound, see: Peng (2011).

Experimental top

A mixture of 1-methylpiperazine (0.4 mmol), CuBr2 (0.4 mmol) and HBr/distilled water (10ml,1:4) sealed in a teflon-lined stainless steel vessel, was maintained at 100 °C. Blue block -shaped crystals suitable for X-ray analysis were obtained after 3 days.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding on the parent atoms with C-H = 0.97 Å (methylene) and C-H = 0.96 Å (methyl) with Uiso(H) = 1.2Ueq (methylene) and Uiso(H) = 1.5Ueq (methyl). The positional parameters of the H atoms (N1, N2) were initially refined freely, subsequently restrained using a distance of 0.90 Å and in the final refinements treated in riding motion on their parent nitrogen atoms with Uiso(H)=1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis showing the two-dimensional hydrogen bond network (dashed lines). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Bis(1-methylpiperazine-1,4-diium) tetrabromidocuprate(II) top
Crystal data top
(C5H14N2)[CuBr4]F(000) = 908
Mr = 485.36Dx = 2.379 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3092 reflections
a = 9.1933 (18) Åθ = 3.3–27.5°
b = 10.341 (2) ŵ = 13.37 mm1
c = 14.255 (3) ÅT = 298 K
V = 1355.2 (5) Å3Block, blue
Z = 40.20 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury2
diffractometer
3092 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
profile data from ϕ scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.89, Tmax = 1.00l = 1818
14009 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0277P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3092 reflectionsΔρmax = 0.92 e Å3
109 parametersΔρmin = 0.71 e Å3
0 restraintsAbsolute structure: Flack (1983), 1312 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (2)
Crystal data top
(C5H14N2)[CuBr4]V = 1355.2 (5) Å3
Mr = 485.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1933 (18) ŵ = 13.37 mm1
b = 10.341 (2) ÅT = 298 K
c = 14.255 (3) Å0.20 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury2
diffractometer
3092 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2545 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 1.00Rint = 0.079
14009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.92 e Å3
S = 1.08Δρmin = 0.71 e Å3
3092 reflectionsAbsolute structure: Flack (1983), 1312 Friedel pairs
109 parametersAbsolute structure parameter: 0.05 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.99472 (8)0.08523 (7)0.59527 (5)0.0496 (2)
Br20.89670 (8)0.22010 (7)0.49622 (5)0.0430 (2)
Br30.72439 (8)0.21019 (7)0.72661 (5)0.04138 (19)
Cu10.79551 (9)0.06642 (7)0.60209 (5)0.0365 (2)
Br40.60073 (8)0.08567 (7)0.61127 (6)0.0501 (2)
N20.6726 (5)0.5289 (5)0.5927 (4)0.0367 (14)
H2C0.71500.59850.61900.044*
H2D0.62250.55190.54110.044*
N10.7844 (6)0.3272 (4)0.7129 (3)0.0298 (12)
H10.77030.26090.67310.036*
C40.8043 (7)0.4533 (7)0.5656 (5)0.0384 (16)
H4A0.86840.50690.52810.046*
H4B0.77560.37930.52810.046*
C50.8841 (7)0.4074 (6)0.6529 (5)0.0364 (16)
H5A0.96800.35640.63480.044*
H5B0.91810.48150.68840.044*
C20.6566 (7)0.4061 (7)0.7413 (4)0.0413 (17)
H2A0.68920.47900.77860.050*
H2B0.59220.35410.77980.050*
C30.5744 (7)0.4550 (7)0.6565 (5)0.0397 (17)
H3A0.53290.38240.62280.048*
H3B0.49530.51040.67690.048*
C10.8613 (8)0.2694 (7)0.7956 (5)0.050 (2)
H1A0.79410.21810.83120.075*
H1B0.89920.33740.83440.075*
H1C0.93980.21590.77410.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0533 (5)0.0344 (4)0.0610 (5)0.0140 (4)0.0190 (4)0.0117 (4)
Br20.0539 (4)0.0333 (4)0.0418 (4)0.0101 (4)0.0066 (3)0.0080 (3)
Br30.0424 (4)0.0365 (4)0.0452 (4)0.0005 (3)0.0098 (3)0.0034 (3)
Cu10.0389 (5)0.0269 (4)0.0436 (5)0.0011 (4)0.0015 (4)0.0011 (4)
Br40.0374 (4)0.0322 (4)0.0805 (5)0.0010 (3)0.0113 (4)0.0026 (4)
N20.033 (3)0.035 (3)0.041 (3)0.002 (3)0.003 (3)0.001 (3)
N10.032 (3)0.024 (3)0.033 (3)0.000 (2)0.000 (2)0.002 (2)
C40.043 (4)0.033 (4)0.040 (4)0.008 (3)0.010 (3)0.002 (3)
C50.026 (4)0.027 (4)0.057 (4)0.006 (3)0.003 (3)0.003 (3)
C20.038 (4)0.046 (4)0.040 (4)0.009 (3)0.011 (3)0.003 (4)
C30.025 (4)0.047 (4)0.047 (4)0.004 (3)0.005 (3)0.009 (4)
C10.053 (5)0.048 (4)0.049 (4)0.015 (4)0.007 (3)0.007 (4)
Geometric parameters (Å, º) top
Br1—Cu12.4131 (11)C4—H4A0.9700
Br2—Cu12.3809 (11)C4—H4B0.9700
Br3—Cu12.4059 (10)C5—H5A0.9700
Cu1—Br42.3869 (11)C5—H5B0.9700
N2—C31.492 (8)C2—C31.513 (9)
N2—C41.493 (7)C2—H2A0.9700
N2—H2C0.9000C2—H2B0.9700
N2—H2D0.9000C3—H3A0.9700
N1—C21.486 (8)C3—H3B0.9700
N1—C11.499 (8)C1—H1A0.9600
N1—C51.503 (8)C1—H1B0.9600
N1—H10.9000C1—H1C0.9600
C4—C51.520 (9)
Br2—Cu1—Br4140.15 (4)N1—C5—C4110.1 (5)
Br2—Cu1—Br399.28 (4)N1—C5—H5A109.6
Br4—Cu1—Br399.38 (4)C4—C5—H5A109.6
Br2—Cu1—Br196.41 (4)N1—C5—H5B109.6
Br4—Cu1—Br198.24 (4)C4—C5—H5B109.6
Br3—Cu1—Br1129.61 (4)H5A—C5—H5B108.2
C3—N2—C4112.3 (5)N1—C2—C3111.1 (5)
C3—N2—H2C114.7N1—C2—H2A109.4
C4—N2—H2C100.1C3—C2—H2A109.4
C3—N2—H2D109.0N1—C2—H2B109.4
C4—N2—H2D109.9C3—C2—H2B109.4
H2C—N2—H2D110.6H2A—C2—H2B108.0
C2—N1—C1112.2 (5)N2—C3—C2110.9 (5)
C2—N1—C5109.5 (5)N2—C3—H3A109.5
C1—N1—C5112.3 (5)C2—C3—H3A109.5
C2—N1—H1118.5N2—C3—H3B109.5
C1—N1—H1105.1C2—C3—H3B109.5
C5—N1—H198.6H3A—C3—H3B108.1
N2—C4—C5110.1 (5)N1—C1—H1A109.5
N2—C4—H4A109.7N1—C1—H1B109.5
C5—C4—H4A109.7H1A—C1—H1B109.5
N2—C4—H4B109.7N1—C1—H1C109.5
C5—C4—H4B109.7H1A—C1—H1C109.5
H4A—C4—H4B108.2H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Br3i0.902.503.339 (6)154
N2—H2D···Br1ii0.902.683.354 (5)133
N2—H2D···Br2ii0.902.763.457 (5)135
N1—H1···Br40.902.553.345 (5)148
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula(C5H14N2)[CuBr4]
Mr485.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.1933 (18), 10.341 (2), 14.255 (3)
V3)1355.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)13.37
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.89, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
14009, 3092, 2545
Rint0.079
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.088, 1.08
No. of reflections3092
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.71
Absolute structureFlack (1983), 1312 Friedel pairs
Absolute structure parameter0.05 (2)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Br3i0.902.503.339 (6)154
N2—H2D···Br1ii0.902.683.354 (5)133
N2—H2D···Br2ii0.902.763.457 (5)135
N1—H1···Br40.902.553.345 (5)148
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the start-up fund of Anyang Institute of Technology, People's Republic of China.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.  Web of Science CrossRef CAS Google Scholar
First citationDai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, C. (2011). Acta Cryst. E67, m979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds