metal-organic compounds
Poly[dimethylammonium [aquadi-μ2-oxalato-yttriate(III)] trihydrate]
aDepartment of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: ganlh@tongji.edu.cn
The title complex, {(C2H8N)[Y(C2O4)2(H2O)]·3H2O}n, was obtained accidentally under hydrothermal conditions. The YIII atom is chelated by four oxalate ligands and one water molecule resulting in a distorted tricapped trigonal–prismatic geometry. Each oxalate ligand bridges two YIII atoms, thus generating a three-dimensional network with cavities in which the ammonium cations and lattice water molecules reside. Various O—H⋯O and N—H⋯O hydrogen-bonding interactions stabilize the The title complex is isotypic with the Eu and Dy analogues.
Related literature
For general background to the rational design and synthesis of metal-organic polymers, see: Lv et al. (2010, 2011). For related structures, see: Platel et al. (2009); Gao & Cui (2008); Deguenon et al. (1990). The structure of the isotypic EuIII compound was reported by Yang et al. (2005), and that of the DyIII compound by Ye & Lin (2010). For decomposition products obtained under hydrothermal conditions, see: Song et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811019209/wm2489sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019209/wm2489Isup2.hkl
A mixture of D-saccharic acid potassium salt (0.248 g, 1.0 mmol), Y(NO3)3.6H2O (0.191 g, 0.5 mmol) and N,N-dimethylformamide (20 ml) was stirred and heated at 373 K for 1 hour. The resulted colorless solution was kept at 293 K. Colorless block-shaped crystals of the title compound suitable for X-ray crystallographic study were obtained via slow evaporation within 2 weeks.
It is most likely that the oxalate ligands in this complex originates from the decomposition of the potassium salt of D-saccharic acid, and the protonated dimethylamine cations compensating the negative charge of the anionic network are believed to result from decomposition of the N,N-dimethylformamide solvent (Song et al., 2004; Ye & Lin, 2010).
The hydrogen atoms attached to carbon and nitrogen atoms were positioned geometrically, while those attached to oxygen atom were located from difference Fourier maps. H atoms attached to C atoms were refined using a riding model with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C); H atoms attached to N atoms were refined with N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N); H atoms attached to O atoms were refined without distance restraints and with Uiso(H) = 1.2Ueq(O).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. An expanded vioew of the asymmetric unit of (I), showing the coordination of the YIII atom, and the presence of the lattice water molecules and the ammonium cation. All hydrogen atoms were omitted for clarity. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 2, -y + 2, -z + 1.] | |
Fig. 2. View of the three-dimensional framework of (I). All hydrogen atoms are omitted for clarity. Hydrogen bonding between donator and acceptor atoms is indicated by dashed lines. |
(C2H8N)[Y(C2O4)2(H2O)]·3H2O | F(000) = 776 |
Mr = 383.11 | Dx = 1.905 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2287 reflections |
a = 9.6008 (1) Å | θ = 2.0–28.0° |
b = 11.5422 (2) Å | µ = 4.43 mm−1 |
c = 14.2886 (2) Å | T = 293 K |
β = 122.460 (1)° | Block, colourless |
V = 1336.00 (3) Å3 | 0.31 × 0.20 × 0.19 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 3040 independent reflections |
Radiation source: fine-focus sealed tube | 2384 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.36, Tmax = 0.43 | k = −14→14 |
11935 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0359P)2 + 1.2217P] where P = (Fo2 + 2Fc2)/3 |
3040 reflections | (Δ/σ)max = 0.001 |
207 parameters | Δρmax = 0.70 e Å−3 |
13 restraints | Δρmin = −0.58 e Å−3 |
(C2H8N)[Y(C2O4)2(H2O)]·3H2O | V = 1336.00 (3) Å3 |
Mr = 383.11 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6008 (1) Å | µ = 4.43 mm−1 |
b = 11.5422 (2) Å | T = 293 K |
c = 14.2886 (2) Å | 0.31 × 0.20 × 0.19 mm |
β = 122.460 (1)° |
Bruker APEXII area-detector diffractometer | 3040 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2384 reflections with I > 2σ(I) |
Tmin = 0.36, Tmax = 0.43 | Rint = 0.044 |
11935 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 13 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.70 e Å−3 |
3040 reflections | Δρmin = −0.58 e Å−3 |
207 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Y1 | 0.61770 (3) | 0.98846 (2) | 0.33257 (2) | 0.01817 (10) | |
O1 | 0.7049 (3) | 0.78990 (17) | 0.34286 (19) | 0.0270 (5) | |
O2 | 0.6167 (3) | 0.60733 (18) | 0.2950 (2) | 0.0304 (6) | |
O3 | 0.3054 (3) | 0.68334 (17) | 0.17013 (18) | 0.0231 (5) | |
O4 | 0.3959 (3) | 0.86535 (17) | 0.20743 (19) | 0.0259 (5) | |
O6 | 0.5198 (3) | 0.88268 (18) | 0.4319 (2) | 0.0293 (5) | |
O7 | 0.5387 (3) | 1.11238 (19) | 0.4367 (2) | 0.0320 (6) | |
O8 | 0.8892 (3) | 0.99123 (17) | 0.35640 (19) | 0.0245 (5) | |
O9 | 0.8389 (3) | 0.98964 (18) | 0.52152 (19) | 0.0278 (5) | |
O1W | 0.6044 (3) | 0.9808 (2) | 0.1578 (2) | 0.0348 (6) | |
H1WA | 0.617 (5) | 1.039 (2) | 0.129 (3) | 0.042* | |
H1WB | 0.568 (4) | 0.931 (2) | 0.122 (3) | 0.042* | |
O2W | 1.3774 (5) | 0.8468 (3) | 0.9672 (3) | 0.0649 (10) | |
H2WA | 1.386 (6) | 0.785 (3) | 0.946 (4) | 0.078* | |
H2WB | 1.293 (4) | 0.850 (4) | 0.965 (5) | 0.078* | |
O3W | 0.8383 (7) | 0.5082 (4) | 0.5055 (4) | 0.1038 (17) | |
H3WA | 0.857 (10) | 0.539 (5) | 0.457 (5) | 0.125* | |
H3WB | 0.889 (8) | 0.444 (3) | 0.512 (6) | 0.125* | |
O4W | 1.0523 (5) | 0.7844 (3) | 0.9661 (3) | 0.0861 (13) | |
H4WA | 0.959 (3) | 0.758 (5) | 0.936 (4) | 0.103* | |
H4WB | 1.103 (6) | 0.758 (5) | 1.030 (2) | 0.103* | |
N1 | 0.9245 (4) | 0.6326 (3) | 0.6962 (3) | 0.0585 (11) | |
H1A | 0.8928 | 0.6007 | 0.7394 | 0.070* | |
H1B | 0.8808 | 0.5895 | 0.6341 | 0.070* | |
C1 | 0.5960 (4) | 0.7148 (2) | 0.2919 (3) | 0.0222 (7) | |
C2 | 0.4163 (4) | 0.7587 (2) | 0.2166 (3) | 0.0195 (6) | |
C3 | 0.4947 (4) | 0.9335 (3) | 0.4984 (3) | 0.0243 (7) | |
C4 | 1.0151 (4) | 1.0005 (2) | 0.4524 (3) | 0.0202 (6) | |
C5 | 1.0993 (6) | 0.6253 (6) | 0.7531 (5) | 0.0864 (19) | |
H5A | 1.1314 | 0.5459 | 0.7567 | 0.104* | |
H5B | 1.1476 | 0.6553 | 0.8269 | 0.104* | |
H5C | 1.1370 | 0.6699 | 0.7141 | 0.104* | |
C6 | 0.8547 (8) | 0.7488 (5) | 0.6652 (5) | 0.0897 (19) | |
H6A | 0.7365 | 0.7442 | 0.6254 | 0.108* | |
H6B | 0.8872 | 0.7841 | 0.6190 | 0.108* | |
H6C | 0.8944 | 0.7946 | 0.7309 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Y1 | 0.01775 (15) | 0.01434 (15) | 0.01968 (16) | −0.00007 (11) | 0.00824 (12) | −0.00024 (11) |
O1 | 0.0193 (12) | 0.0194 (11) | 0.0322 (14) | −0.0013 (8) | 0.0071 (11) | −0.0044 (9) |
O2 | 0.0264 (12) | 0.0173 (11) | 0.0332 (14) | 0.0029 (9) | 0.0066 (11) | −0.0002 (9) |
O3 | 0.0203 (11) | 0.0193 (10) | 0.0265 (13) | −0.0017 (8) | 0.0105 (10) | −0.0016 (9) |
O4 | 0.0232 (12) | 0.0170 (10) | 0.0285 (13) | 0.0016 (8) | 0.0079 (10) | 0.0003 (9) |
O6 | 0.0347 (13) | 0.0252 (12) | 0.0331 (15) | −0.0039 (9) | 0.0216 (12) | −0.0047 (10) |
O7 | 0.0424 (14) | 0.0252 (12) | 0.0402 (16) | 0.0045 (10) | 0.0301 (13) | 0.0060 (10) |
O8 | 0.0195 (10) | 0.0307 (12) | 0.0205 (11) | 0.0009 (9) | 0.0088 (9) | −0.0019 (9) |
O9 | 0.0209 (11) | 0.0368 (13) | 0.0265 (12) | −0.0014 (9) | 0.0132 (10) | −0.0004 (10) |
O1W | 0.0408 (14) | 0.0346 (14) | 0.0265 (14) | −0.0076 (12) | 0.0165 (12) | −0.0043 (11) |
O2W | 0.080 (3) | 0.0390 (17) | 0.069 (2) | 0.0025 (16) | 0.036 (2) | 0.0072 (16) |
O3W | 0.112 (4) | 0.095 (3) | 0.061 (3) | 0.031 (3) | 0.017 (3) | −0.013 (2) |
O4W | 0.070 (3) | 0.061 (2) | 0.069 (3) | −0.0094 (19) | −0.001 (2) | 0.0154 (19) |
N1 | 0.045 (2) | 0.071 (3) | 0.058 (3) | −0.0039 (18) | 0.027 (2) | 0.022 (2) |
C1 | 0.0233 (16) | 0.0187 (15) | 0.0242 (17) | 0.0003 (11) | 0.0124 (14) | −0.0014 (12) |
C2 | 0.0236 (17) | 0.0206 (15) | 0.0165 (16) | −0.0012 (11) | 0.0121 (14) | −0.0026 (12) |
C3 | 0.0184 (14) | 0.0272 (17) | 0.0257 (17) | −0.0012 (12) | 0.0108 (13) | −0.0008 (13) |
C4 | 0.0205 (14) | 0.0145 (14) | 0.0222 (16) | 0.0004 (11) | 0.0092 (13) | −0.0013 (12) |
C5 | 0.046 (3) | 0.144 (6) | 0.066 (4) | −0.004 (3) | 0.028 (3) | 0.027 (4) |
C6 | 0.110 (5) | 0.073 (4) | 0.103 (5) | 0.024 (3) | 0.068 (4) | 0.029 (3) |
Y1—O3i | 2.374 (2) | O2W—H2WA | 0.805 (19) |
Y1—O9 | 2.376 (2) | O2W—H2WB | 0.794 (19) |
Y1—O4 | 2.380 (2) | O3W—H3WA | 0.88 (2) |
Y1—O6 | 2.413 (2) | O3W—H3WB | 0.86 (2) |
Y1—O1 | 2.417 (2) | O4W—H4WA | 0.82 (2) |
Y1—O2i | 2.422 (2) | O4W—H4WB | 0.83 (2) |
Y1—O1W | 2.432 (3) | N1—C5 | 1.421 (6) |
Y1—O8 | 2.441 (2) | N1—C6 | 1.458 (6) |
Y1—O7 | 2.459 (2) | N1—H1A | 0.9000 |
O1—C1 | 1.247 (3) | N1—H1B | 0.9000 |
O2—C1 | 1.254 (3) | C1—C2 | 1.548 (4) |
O2—Y1ii | 2.422 (2) | C3—O7iii | 1.250 (4) |
O3—C2 | 1.254 (3) | C3—C3iii | 1.536 (6) |
O3—Y1ii | 2.374 (2) | C4—O9iv | 1.248 (4) |
O4—C2 | 1.243 (3) | C4—C4iv | 1.535 (6) |
O6—C3 | 1.246 (4) | C5—H5A | 0.9600 |
O7—C3iii | 1.250 (4) | C5—H5B | 0.9600 |
O8—C4 | 1.255 (4) | C5—H5C | 0.9600 |
O9—C4iv | 1.248 (4) | C6—H6A | 0.9600 |
O1W—H1WA | 0.828 (18) | C6—H6B | 0.9600 |
O1W—H1WB | 0.720 (17) | C6—H6C | 0.9600 |
O3i—Y1—O9 | 85.24 (7) | C3—O6—Y1 | 120.4 (2) |
O3i—Y1—O4 | 135.57 (7) | C3iii—O7—Y1 | 119.2 (2) |
O9—Y1—O4 | 138.66 (8) | C4—O8—Y1 | 118.9 (2) |
O3i—Y1—O6 | 135.37 (8) | C4iv—O9—Y1 | 121.0 (2) |
O9—Y1—O6 | 74.17 (8) | Y1—O1W—H1WA | 122 (3) |
O4—Y1—O6 | 70.48 (8) | Y1—O1W—H1WB | 119 (3) |
O3i—Y1—O1 | 143.01 (7) | H1WA—O1W—H1WB | 117 (3) |
O9—Y1—O1 | 82.37 (7) | H2WA—O2W—H2WB | 110 (3) |
O4—Y1—O1 | 67.70 (7) | H3WA—O3W—H3WB | 95 (7) |
O6—Y1—O1 | 73.50 (8) | H4WA—O4W—H4WB | 106 (3) |
O3i—Y1—O2i | 67.82 (7) | C5—N1—C6 | 115.9 (5) |
O9—Y1—O2i | 139.01 (8) | C5—N1—H1A | 108.3 |
O4—Y1—O2i | 71.18 (7) | C6—N1—H1A | 108.3 |
O6—Y1—O2i | 103.39 (8) | C5—N1—H1B | 108.3 |
O1—Y1—O2i | 137.25 (7) | C6—N1—H1B | 108.3 |
O3i—Y1—O1W | 82.13 (8) | H1A—N1—H1B | 107.4 |
O9—Y1—O1W | 133.57 (8) | O1—C1—O2 | 126.8 (3) |
O4—Y1—O1W | 70.99 (8) | O1—C1—C2 | 116.8 (2) |
O6—Y1—O1W | 139.75 (8) | O2—C1—C2 | 116.4 (3) |
O1—Y1—O1W | 81.59 (8) | O4—C2—O3 | 126.2 (3) |
O2i—Y1—O1W | 74.46 (9) | O4—C2—C1 | 116.8 (3) |
O3i—Y1—O8 | 70.84 (7) | O3—C2—C1 | 117.0 (3) |
O9—Y1—O8 | 66.75 (7) | O6—C3—O7iii | 126.7 (3) |
O4—Y1—O8 | 124.78 (8) | O6—C3—C3iii | 117.1 (4) |
O6—Y1—O8 | 130.44 (8) | O7iii—C3—C3iii | 116.2 (4) |
O1—Y1—O8 | 72.24 (7) | O9iv—C4—O8 | 127.1 (3) |
O2i—Y1—O8 | 126.06 (8) | O9iv—C4—C4iv | 116.9 (3) |
O1W—Y1—O8 | 66.89 (8) | O8—C4—C4iv | 116.0 (3) |
O3i—Y1—O7 | 70.02 (7) | N1—C5—H5A | 109.5 |
O9—Y1—O7 | 71.75 (8) | N1—C5—H5B | 109.5 |
O4—Y1—O7 | 111.09 (8) | H5A—C5—H5B | 109.5 |
O6—Y1—O7 | 66.06 (8) | N1—C5—H5C | 109.5 |
O1—Y1—O7 | 136.38 (8) | H5A—C5—H5C | 109.5 |
O2i—Y1—O7 | 70.27 (8) | H5B—C5—H5C | 109.5 |
O1W—Y1—O7 | 141.16 (8) | N1—C6—H6A | 109.5 |
O8—Y1—O7 | 124.12 (8) | N1—C6—H6B | 109.5 |
C1—O1—Y1 | 117.95 (18) | H6A—C6—H6B | 109.5 |
C1—O2—Y1ii | 117.94 (19) | N1—C6—H6C | 109.5 |
C2—O3—Y1ii | 118.85 (19) | H6A—C6—H6C | 109.5 |
C2—O4—Y1 | 119.03 (19) | H6B—C6—H6C | 109.5 |
O3i—Y1—O1—C1 | −146.8 (2) | O3i—Y1—O8—C4 | 87.9 (2) |
O9—Y1—O1—C1 | 141.7 (2) | O9—Y1—O8—C4 | −5.14 (19) |
O4—Y1—O1—C1 | −9.2 (2) | O4—Y1—O8—C4 | −139.29 (19) |
O6—Y1—O1—C1 | 66.0 (2) | O6—Y1—O8—C4 | −46.0 (2) |
O2i—Y1—O1—C1 | −26.0 (3) | O1—Y1—O8—C4 | −94.3 (2) |
O1W—Y1—O1—C1 | −82.0 (2) | O2i—Y1—O8—C4 | 129.6 (2) |
O8—Y1—O1—C1 | −150.3 (3) | O1W—Y1—O8—C4 | 177.4 (2) |
O7—Y1—O1—C1 | 88.5 (3) | O7—Y1—O8—C4 | 40.2 (2) |
O3i—Y1—O4—C2 | 156.4 (2) | O3i—Y1—O9—C4iv | −65.9 (2) |
O9—Y1—O4—C2 | −35.0 (3) | O4—Y1—O9—C4iv | 122.1 (2) |
O6—Y1—O4—C2 | −67.7 (2) | O6—Y1—O9—C4iv | 154.1 (2) |
O1—Y1—O4—C2 | 11.9 (2) | O1—Y1—O9—C4iv | 79.1 (2) |
O2i—Y1—O4—C2 | 179.9 (3) | O2i—Y1—O9—C4iv | −113.6 (2) |
O1W—Y1—O4—C2 | 100.4 (2) | O1W—Y1—O9—C4iv | 8.5 (3) |
O8—Y1—O4—C2 | 58.5 (3) | O8—Y1—O9—C4iv | 5.23 (19) |
O7—Y1—O4—C2 | −121.0 (2) | O7—Y1—O9—C4iv | −136.5 (2) |
O3i—Y1—O6—C3 | 2.2 (3) | Y1—O1—C1—O2 | −173.7 (3) |
O9—Y1—O6—C3 | 68.0 (2) | Y1—O1—C1—C2 | 6.4 (4) |
O4—Y1—O6—C3 | −133.8 (3) | Y1ii—O2—C1—O1 | −172.3 (3) |
O1—Y1—O6—C3 | 154.5 (3) | Y1ii—O2—C1—C2 | 7.6 (4) |
O2i—Y1—O6—C3 | −69.7 (2) | Y1—O4—C2—O3 | 167.4 (2) |
O1W—Y1—O6—C3 | −151.3 (2) | Y1—O4—C2—C1 | −13.2 (4) |
O8—Y1—O6—C3 | 106.6 (2) | Y1ii—O3—C2—O4 | 165.7 (3) |
O7—Y1—O6—C3 | −8.7 (2) | Y1ii—O3—C2—C1 | −13.8 (4) |
O3i—Y1—O7—C3iii | −163.4 (3) | O1—C1—C2—O4 | 4.4 (4) |
O9—Y1—O7—C3iii | −71.8 (2) | O2—C1—C2—O4 | −175.5 (3) |
O4—Y1—O7—C3iii | 64.3 (3) | O1—C1—C2—O3 | −176.1 (3) |
O6—Y1—O7—C3iii | 8.5 (2) | O2—C1—C2—O3 | 4.0 (4) |
O1—Y1—O7—C3iii | −15.1 (3) | Y1—O6—C3—O7iii | −171.9 (3) |
O2i—Y1—O7—C3iii | 123.9 (3) | Y1—O6—C3—C3iii | 8.3 (5) |
O1W—Y1—O7—C3iii | 149.8 (2) | Y1—O8—C4—O9iv | −175.3 (2) |
O8—Y1—O7—C3iii | −115.3 (2) | Y1—O8—C4—C4iv | 4.7 (4) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2Wiv | 0.83 (2) | 1.93 (2) | 2.742 (4) | 167 (4) |
O1W—H1WB···O2Wv | 0.72 (2) | 2.20 (2) | 2.861 (4) | 152 (4) |
O2W—H2WA···O6vi | 0.81 (2) | 2.38 (2) | 3.143 (4) | 158 (5) |
O2W—H2WA···O7vii | 0.81 (2) | 2.45 (5) | 2.944 (4) | 121 (5) |
O2W—H2WB···O3Wviii | 0.79 (2) | 2.38 (3) | 2.963 (7) | 131 (4) |
O2W—H2WB···O4W | 0.79 (2) | 2.44 (3) | 3.194 (6) | 159 (5) |
O3W—H3WA···O2 | 0.88 (2) | 2.36 (7) | 2.830 (5) | 114 (6) |
O3W—H3WB···O4Wvii | 0.86 (2) | 1.90 (3) | 2.735 (6) | 161 (6) |
O4W—H4WA···O1ix | 0.82 (2) | 2.13 (2) | 2.943 (4) | 172 (5) |
O4W—H4WB···O3x | 0.83 (2) | 2.08 (3) | 2.857 (4) | 155 (6) |
N1—H1A···O8ix | 0.90 | 2.00 | 2.869 (4) | 163 |
N1—H1A···O1Wix | 0.90 | 2.54 | 3.107 (4) | 122 |
N1—H1B···O3W | 0.90 | 1.90 | 2.784 (6) | 166 |
Symmetry codes: (iv) −x+2, −y+2, −z+1; (v) x−1, y, z−1; (vi) x+1, −y+3/2, z+1/2; (vii) −x+2, y−1/2, −z+3/2; (viii) −x+2, y+1/2, −z+3/2; (ix) x, −y+3/2, z+1/2; (x) x+1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | (C2H8N)[Y(C2O4)2(H2O)]·3H2O |
Mr | 383.11 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.6008 (1), 11.5422 (2), 14.2886 (2) |
β (°) | 122.460 (1) |
V (Å3) | 1336.00 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.43 |
Crystal size (mm) | 0.31 × 0.20 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.36, 0.43 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11935, 3040, 2384 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.082, 1.00 |
No. of reflections | 3040 |
No. of parameters | 207 |
No. of restraints | 13 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.70, −0.58 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2Wi | 0.828 (18) | 1.93 (2) | 2.742 (4) | 167 (4) |
O1W—H1WB···O2Wii | 0.720 (17) | 2.20 (2) | 2.861 (4) | 152 (4) |
O2W—H2WA···O6iii | 0.805 (19) | 2.38 (2) | 3.143 (4) | 158 (5) |
O2W—H2WA···O7iv | 0.805 (19) | 2.45 (5) | 2.944 (4) | 121 (5) |
O2W—H2WB···O3Wv | 0.794 (19) | 2.38 (3) | 2.963 (7) | 131 (4) |
O2W—H2WB···O4W | 0.794 (19) | 2.44 (3) | 3.194 (6) | 159 (5) |
O3W—H3WA···O2 | 0.88 (2) | 2.36 (7) | 2.830 (5) | 114 (6) |
O3W—H3WB···O4Wiv | 0.86 (2) | 1.90 (3) | 2.735 (6) | 161 (6) |
O4W—H4WA···O1vi | 0.82 (2) | 2.13 (2) | 2.943 (4) | 172 (5) |
O4W—H4WB···O3vii | 0.83 (2) | 2.08 (3) | 2.857 (4) | 155 (6) |
N1—H1A···O8vi | 0.90 | 2.00 | 2.869 (4) | 163 |
N1—H1A···O1Wvi | 0.90 | 2.54 | 3.107 (4) | 122 |
N1—H1B···O3W | 0.90 | 1.90 | 2.784 (6) | 166 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x−1, y, z−1; (iii) x+1, −y+3/2, z+1/2; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, y+1/2, −z+3/2; (vi) x, −y+3/2, z+1/2; (vii) x+1, y, z+1. |
Acknowledgements
The present work was supported financially by the National Natural Science Foundation of China (No. 20973127) and Shanghai Nanotechnology Promotion Center (No. 0952nm00800).
References
Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deguenon, D., Bernardinelli, G., Tuchagues, J. P. & Castan, P. (1990). Inorg. Chem. 29, 3031–3037. CrossRef CAS Google Scholar
Gao, W. & Cui, D. M. (2008). J. Am. Chem. Soc. 130, 4984–4991. Web of Science CrossRef PubMed CAS Google Scholar
Lv, Y. K., Feng, Y. L., Liu, J. W. & Jiang, Z. G. (2011). J. Solid State Chem. 184, 1339–1345. CrossRef CAS Google Scholar
Lv, Y. K., Zhan, C. H. & Feng, Y. L. (2010). CrystEngComm, 13, 3052–3056. CrossRef Google Scholar
Platel, R. H., White, A. J. P. & Williams, C. K. (2009). Chem. Commun. pp. 4115–4117. CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, Y., Yu, J., Li, Y., Li, G. & Xu, R. (2004). Angew. Chem. Int. Ed. 43, 2399–2402. CrossRef Google Scholar
Yang, Y.-Y., Zai, S.-B., Wong, W.-T. & Ng, S. W. (2005). Acta Cryst. E61, m1912–m1914. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ye, S.-F. & Lin, H. (2010). Acta Cryst. E66, m901–m902. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rational design and synthesis of metal-organic polymers have attracted much attention in the field of supramolecular chemistry and crystal engineering (Lv et al., 2010; 2011). Oxalate, which usually represent one of the products of the degradation of some organic compounds, is one of the simplest multidentate organic ligands potentially able to bridge metal ions in a bidentate chelating manner (Deguenon et al., 1990). Herein, we report the synthesis and structure of a novel yttrium(III) complex, (C2H8N)[Y(C2O4)2(H2O)].3H2O, (I).
Complex (I) is isotypic with its Eu(III) (Yang et al., 2005) and Dy(III) (Ye & Lin, 2010) analogues. As shown in Fig. 1, the YIII atom is chelated by four oxalate ligands and one water molecule resulting in a distorted tricapped trigonal-prismatic coordination environment. The Y—O bond lengths fall in the range of 2.374 (2)-2.459 (2) Å, which is in agreement with comparable values reported elsewhere (Platel et al., 2009; Gao & Cui, 2008). Each oxalate ligand bridges two YIII atoms, thus generating a three-dimensional network with cavities where the ammonium cations and lattice water molecules reside (Fig. 2). Furthermore, there are various hydrogen-bonding interactions (N—H···O and O—H···O), involving the lattice water molecules and the cations, which give rise to a tightly held network structure.