metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[chloridocadmium(II)]bis­­{μ-1-[(2-ethyl-1H-imidazol-1-yl)meth­yl]-1H-benzotriazole}[chloridocadmium(II)]di-μ-chlorido]

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Petroleum & Chemical Engineering, Puyang Vocational and Technical College, Puyang 457000, People's Republic of China
*Correspondence e-mail: wangxiawx83@yahoo.com.cn

(Received 12 May 2011; accepted 25 May 2011; online 4 June 2011)

In the polymeric title complex, [CdCl2(C12H13N5)]n, the CdII atom is five-coordinated by two N atoms from two bridging 1-[(2-ethyl-1H-imidazol-1-yl)meth­yl]-1H-benzotriazole (bmei) ligands, two bridging Cl atoms and one terminal Cl atom in a distorted trigonal–bipyramidal geometry. The CdII atoms are connected alternately by the Cl atoms and bmei ligands, leading to a zigzag chain extending parallel to [011]. ππ inter­actions, with a centroid–centroid distance of 3.3016 (3) Å, help to stabilize the crystal packing.

Related literature

For similar compounds with symmetric or asymmetric N-heterocyclic ligands, see: Li et al. (2011[Li, B.-Y., Yang, F., Li, G.-H., Liu, D., Zhou, Q., Shi, Z. & Feng, S.-H. (2011). Cryst. Growth Des. 11, 1475-1485.]); Hu et al. (2009[Hu, M.-C., Wang, Y., Zhai, Q.-G., Li, S.-N., Jiang, Y.-C. & Zhang, Y. (2009). Inorg. Chem. 48, 1449-1468.]); Meng et al. (2009[Meng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519-1527.]); Huang et al. (2006[Huang, M.-H., Liu, P., Wang, J., Chen, Y. & Liu, Q.-Y. (2006). Inorg. Chem. Commun. 9, 952-954.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C12H13N5)]

  • Mr = 410.57

  • Triclinic, [P \overline 1]

  • a = 7.6055 (6) Å

  • b = 9.7027 (11) Å

  • c = 10.3144 (10) Å

  • α = 74.431 (9)°

  • β = 81.609 (7)°

  • γ = 87.720 (8)°

  • V = 725.36 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.] Tmin = 0.993, Tmax = 1.000

  • 6082 measured reflections

  • 2963 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.069

  • S = 1.02

  • 2963 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]; cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Comment top

In coordination and supramolecular chemistry many symmetric imidazole and benzotriazole ligands have been applied (Li et al., 2011; Hu et al., 2009). However, studies involving asymmetric imidazole and benzotriazole ligands are rather rare (Meng et al., 2009; Huang et al., 2006). We were thus engaged in the synthesis of asymmetric N-heterocyclic ligands and synthesized the compound 1-[(1H-benzotriazol-1-yl)methyl]-1H-1,3-(2-ethyl-imidazol) (bmei). In this work, we selected this compound as a ligand for generation of the new complex [Cd(C12H13N5)Cl2]n, (I), that is reported here.

In the complex (I) the CdII atom is five-coordinated by two N atoms from two bridging bmei ligands, two bridging Cl atoms and one terminal Cl atom in a distorted trigonal-bipyramidal geometry (Fig. 1). The two CdII ions are connected by a pair of bridging Cl atoms, yielding a centrosymmetric Cd2Cl2 binuclear unit with a Cd···Cd distance of 3.9657 (6) Å. The dimers are further linked by bmei ligands to give a zigzag chain extending parallel to [011] (Fig. 2). The distance between two Cd atoms bridged by the bmei ligand is 9.0727 (12) Å. In addition, the benzotriazole rings between adjacent chains are stacked in a face-to-face orientation with a centroid—centroid distance of 3.3016 (3) Å, so the crystal structure involves also ππ interactions.

Related literature top

For similar compounds with symmetric or asymmetric N-heterocyclic ligands, see: Li et al. (2011); Hu et al. (2009); Meng et al. (2009); Huang et al. (2006).

Experimental top

The ligand 1-[(1H-benzotriazol-1-yl)methyl]-1H-1,3-(2-ethyl-imidazol) (0.04 mmol, 0.0096 g) in methanol (6 ml) was added dropwise to a methanol solution (5 ml) of CdCl2 (0.04 mmol, 0.0074 g) in methanol. The resulting solution was allowed to stand at room temperature. After one week good quality colourless crystals were obtained and dried in air.

Refinement top

H atoms were placed geometrically and refined as riding atoms with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A fragment of the title complex, showing the coordination of the CdII atom with atom labelling of the non-H atoms and with 30% probability ellipsolids. [Symmetry codes: (i) -x + 1,-y + 1,-z + 1; (ii) -x + 1, -y + 2, -z.]
[Figure 2] Fig. 2. View of the zigzag chain structure of the title complex.
catena-Poly[[chloridocadmium(II)]bis{µ-1-[(2-ethyl-1H- imidazol-1-yl)methyl]-1H-benzotriazole}[chloridocadmium(II)]di- µ-chlorido] top
Crystal data top
[CdCl2(C12H13N5)]Z = 2
Mr = 410.57F(000) = 404
Triclinic, P1Dx = 1.880 Mg m3
a = 7.6055 (6) ÅMo Kα radiation, λ = 0.7107 Å
b = 9.7027 (11) ÅCell parameters from 2806 reflections
c = 10.3144 (10) Åθ = 3.2–26.3°
α = 74.431 (9)°µ = 1.87 mm1
β = 81.609 (7)°T = 293 K
γ = 87.720 (8)°Prismatic, colorless
V = 725.36 (12) Å30.20 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2963 independent reflections
Radiation source: Enhance (Mo) X-ray Source2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.2312 pixels mm-1θmax = 26.3°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1211
Tmin = 0.993, Tmax = 1.000l = 1211
6082 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0217P)2]
where P = (Fo2 + 2Fc2)/3
2963 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[CdCl2(C12H13N5)]γ = 87.720 (8)°
Mr = 410.57V = 725.36 (12) Å3
Triclinic, P1Z = 2
a = 7.6055 (6) ÅMo Kα radiation
b = 9.7027 (11) ŵ = 1.87 mm1
c = 10.3144 (10) ÅT = 293 K
α = 74.431 (9)°0.20 × 0.20 × 0.18 mm
β = 81.609 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2963 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2534 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 1.000Rint = 0.027
6082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
2963 reflectionsΔρmin = 0.50 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.37119 (4)0.60250 (3)0.34830 (3)0.02594 (10)
Cl10.10727 (13)0.49171 (10)0.30891 (11)0.0366 (3)
Cl20.41293 (13)0.62093 (9)0.58398 (10)0.0321 (2)
N10.2477 (4)0.8391 (3)0.3168 (3)0.0266 (7)
N20.3564 (4)0.9476 (3)0.2763 (3)0.0270 (7)
N30.2578 (4)1.0677 (3)0.2711 (3)0.0240 (7)
N40.3531 (4)1.2614 (3)0.0745 (3)0.0268 (7)
N50.4535 (4)1.3280 (3)0.1440 (3)0.0302 (8)
C10.0746 (5)0.8865 (4)0.3398 (4)0.0241 (8)
C20.0805 (5)1.0354 (4)0.3106 (4)0.0223 (8)
C30.0701 (5)1.1177 (4)0.3322 (4)0.0267 (8)
H30.06561.21670.31510.032*
C40.2255 (5)1.0418 (4)0.3806 (4)0.0303 (9)
H40.32991.09150.39690.036*
C50.2333 (5)0.8923 (4)0.4064 (4)0.0322 (9)
H50.34260.84660.43740.039*
C60.0851 (5)0.8122 (4)0.3874 (4)0.0281 (9)
H60.09040.71320.40520.034*
C70.3445 (5)1.2069 (4)0.2205 (4)0.0294 (9)
H7B0.27971.27420.26430.035*
H7A0.46401.19870.24420.035*
C80.2094 (5)1.3085 (4)0.0082 (4)0.0345 (10)
H80.09191.31190.04790.041*
C90.2719 (5)1.3492 (4)0.1261 (4)0.0382 (10)
H90.20351.38560.19540.046*
C100.4998 (5)1.2744 (4)0.0210 (4)0.0266 (8)
C110.6844 (5)1.2391 (4)0.0090 (4)0.0365 (10)
H11B0.70091.27150.08760.044*
H11A0.76651.29220.06740.044*
C120.7329 (6)1.0793 (4)0.0370 (4)0.0457 (11)
H12A0.71401.04510.03890.069*
H12B0.65931.02640.11730.069*
H12C0.85551.06680.05020.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02975 (16)0.02168 (16)0.02519 (18)0.00200 (11)0.00631 (12)0.00314 (12)
Cl10.0331 (5)0.0287 (5)0.0511 (7)0.0001 (4)0.0110 (5)0.0133 (5)
Cl20.0412 (6)0.0275 (5)0.0290 (6)0.0108 (4)0.0100 (4)0.0087 (4)
N10.0333 (18)0.0213 (16)0.0227 (19)0.0029 (14)0.0050 (14)0.0014 (13)
N20.0319 (18)0.0236 (16)0.0238 (19)0.0048 (14)0.0044 (14)0.0038 (13)
N30.0314 (18)0.0182 (15)0.0197 (18)0.0015 (13)0.0017 (14)0.0017 (13)
N40.0287 (17)0.0235 (16)0.0251 (19)0.0018 (13)0.0074 (14)0.0005 (13)
N50.0283 (18)0.0332 (18)0.0240 (19)0.0025 (14)0.0036 (14)0.0009 (14)
C10.031 (2)0.0235 (19)0.017 (2)0.0042 (16)0.0018 (16)0.0045 (15)
C20.0267 (19)0.0219 (19)0.017 (2)0.0004 (15)0.0028 (15)0.0036 (15)
C30.037 (2)0.0228 (19)0.021 (2)0.0059 (17)0.0074 (17)0.0064 (16)
C40.027 (2)0.036 (2)0.028 (2)0.0062 (17)0.0050 (17)0.0095 (18)
C50.029 (2)0.036 (2)0.029 (2)0.0055 (18)0.0010 (18)0.0051 (18)
C60.035 (2)0.0225 (19)0.025 (2)0.0036 (17)0.0068 (17)0.0011 (16)
C70.040 (2)0.025 (2)0.023 (2)0.0029 (17)0.0034 (18)0.0063 (17)
C80.027 (2)0.036 (2)0.035 (3)0.0032 (18)0.0033 (18)0.0013 (19)
C90.030 (2)0.045 (2)0.032 (3)0.0039 (19)0.0086 (19)0.004 (2)
C100.030 (2)0.0191 (18)0.028 (2)0.0003 (16)0.0031 (17)0.0019 (16)
C110.029 (2)0.047 (3)0.029 (2)0.0005 (19)0.0057 (18)0.002 (2)
C120.046 (3)0.056 (3)0.034 (3)0.021 (2)0.012 (2)0.009 (2)
Geometric parameters (Å, º) top
Cd1—Cl12.4482 (10)C3—H30.9300
Cd1—Cl2i2.6687 (10)C3—C41.374 (5)
Cd1—Cl22.5505 (10)C4—H40.9300
Cd1—N12.403 (3)C4—C51.405 (5)
Cd1—N5ii2.272 (3)C5—H50.9300
Cl2—Cd1i2.6686 (10)C5—C61.363 (5)
N1—N21.303 (4)C6—H60.9300
N1—C11.386 (5)C7—H7B0.9700
N2—N31.353 (4)C7—H7A0.9700
N3—C21.374 (4)C8—H80.9300
N3—C71.457 (4)C8—C91.353 (5)
N4—C71.449 (5)C9—H90.9300
N4—C81.371 (5)C10—C111.488 (5)
N4—C101.362 (5)C11—H11B0.9700
N5—Cd1ii2.272 (3)C11—H11A0.9700
N5—C91.381 (5)C11—C121.539 (5)
N5—C101.329 (5)C12—H12A0.9600
C1—C21.395 (5)C12—H12B0.9600
C1—C61.394 (5)C12—H12C0.9600
C2—C31.396 (5)
Cd1—Cl2—Cd1i98.87 (3)C3—C4—H4118.6
Cl1—Cd1—Cl2i102.49 (3)C3—C4—C5122.8 (4)
Cl1—Cd1—Cl2121.87 (4)C4—C3—C2115.1 (3)
Cl2—Cd1—Cl2i81.13 (3)C4—C3—H3122.5
N1—Cd1—Cl195.86 (8)C4—C5—H5119.1
N1—Cd1—Cl285.51 (8)C5—C4—H4118.6
N1—Cd1—Cl2i161.13 (8)C5—C6—C1116.5 (3)
N1—N2—N3107.5 (3)C5—C6—H6121.7
N1—C1—C2107.3 (3)C6—C1—C2121.3 (3)
N1—C1—C6131.4 (3)C6—C5—C4121.8 (4)
N2—N1—Cd1118.2 (2)C6—C5—H5119.1
N2—N1—C1110.0 (3)H7B—C7—H7A107.9
N2—N3—C2111.1 (3)C8—N4—C7124.7 (3)
N2—N3—C7119.4 (3)C8—C9—N5109.1 (4)
N3—C2—C1104.2 (3)C8—C9—H9125.4
N3—C2—C3133.2 (3)C9—N5—Cd1ii123.7 (3)
N3—C7—H7B109.2C9—C8—N4106.6 (4)
N3—C7—H7A109.2C9—C8—H8126.7
N4—C7—N3112.0 (3)C10—N4—C7127.5 (3)
N4—C7—H7B109.2C10—N4—C8107.9 (3)
N4—C7—H7A109.2C10—N5—Cd1ii129.2 (3)
N4—C8—H8126.7C10—N5—C9106.8 (3)
N4—C10—C11124.9 (4)C10—C11—H11B108.5
N5ii—Cd1—Cl1106.55 (8)C10—C11—H11A108.5
N5ii—Cd1—Cl2i88.42 (8)C10—C11—C12115.0 (3)
N5ii—Cd1—Cl2131.58 (8)C11—C12—H12A109.5
N5ii—Cd1—N190.57 (11)C11—C12—H12B109.5
N5—C9—H9125.4C11—C12—H12C109.5
N5—C10—N4109.5 (3)H11B—C11—H11A107.5
N5—C10—C11125.5 (4)C12—C11—H11B108.5
C1—N1—Cd1131.7 (2)C12—C11—H11A108.5
C1—C2—C3122.5 (3)H12A—C12—H12B109.5
C1—C6—H6121.7H12A—C12—H12C109.5
C2—N3—C7129.5 (3)H12B—C12—H12C109.5
C2—C3—H3122.5
Cd1—N1—N2—N3177.7 (2)N4—C10—C11—C1281.6 (5)
Cd1—N1—C1—C2176.9 (2)N5ii—Cd1—Cl2—Cd1i79.87 (11)
Cd1—N1—C1—C60.9 (6)N5ii—Cd1—N1—N247.0 (3)
Cd1ii—N5—C9—C8174.2 (2)N5ii—Cd1—N1—C1136.3 (3)
Cd1ii—N5—C10—N4173.7 (2)N5—C10—C11—C12100.9 (4)
Cd1ii—N5—C10—C114.0 (5)C1—N1—N2—N30.3 (4)
Cl1—Cd1—Cl2—Cd1i99.25 (4)C1—C2—C3—C41.8 (5)
Cl1—Cd1—N1—N2153.7 (2)C2—N3—C7—N487.5 (4)
Cl1—Cd1—N1—C129.6 (3)C2—C1—C6—C51.4 (5)
Cl2i—Cd1—Cl2—Cd1i0.000 (2)C2—C3—C4—C50.1 (6)
Cl2i—Cd1—N1—N239.8 (4)C3—C4—C5—C61.3 (6)
Cl2—Cd1—N1—N284.7 (2)C4—C5—C6—C10.5 (6)
Cl2—Cd1—N1—C192.0 (3)C6—C1—C2—N3178.3 (3)
Cl2i—Cd1—N1—C1136.9 (3)C6—C1—C2—C32.7 (6)
N1—Cd1—Cl2—Cd1i166.64 (8)C7—N3—C2—C1175.8 (3)
N1—N2—N3—C20.5 (4)C7—N3—C2—C39.3 (6)
N1—N2—N3—C7176.2 (3)C7—N4—C8—C9179.5 (3)
N1—C1—C2—N30.3 (4)C7—N4—C10—N5179.6 (3)
N1—C1—C2—C3175.3 (3)C7—N4—C10—C112.6 (6)
N1—C1—C6—C5176.1 (4)C8—N4—C7—N370.3 (4)
N2—N1—C1—C20.0 (4)C8—N4—C10—N50.1 (4)
N2—N1—C1—C6177.7 (4)C8—N4—C10—C11177.9 (3)
N2—N3—C2—C10.5 (4)C9—N5—C10—N40.2 (4)
N2—N3—C2—C3174.4 (4)C9—N5—C10—C11178.0 (3)
N2—N3—C7—N488.6 (4)C10—N4—C7—N3109.1 (4)
N3—C2—C3—C4176.0 (4)C10—N4—C8—C90.0 (4)
N4—C8—C9—N50.1 (4)C10—N5—C9—C80.2 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[CdCl2(C12H13N5)]
Mr410.57
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6055 (6), 9.7027 (11), 10.3144 (10)
α, β, γ (°)74.431 (9), 81.609 (7), 87.720 (8)
V3)725.36 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.993, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6082, 2963, 2534
Rint0.027
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.069, 1.02
No. of reflections2963
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.50

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Department of Science and Technology of Henan Province for financial support (No. 082102330003), and Professors Hong-Wei Hou and Meng Xiang-Ru of Zhengzhou University for their help.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, M.-C., Wang, Y., Zhai, Q.-G., Li, S.-N., Jiang, Y.-C. & Zhang, Y. (2009). Inorg. Chem. 48, 1449–1468.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, M.-H., Liu, P., Wang, J., Chen, Y. & Liu, Q.-Y. (2006). Inorg. Chem. Commun. 9, 952–954.  CrossRef CAS Google Scholar
First citationLi, B.-Y., Yang, F., Li, G.-H., Liu, D., Zhou, Q., Shi, Z. & Feng, S.-H. (2011). Cryst. Growth Des. 11, 1475–1485.  CrossRef CAS Google Scholar
First citationMeng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519–1527.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds