organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1682-o1683

2-[(1-{[3-(di­methylazaniumyl)propyl]methylamino}ethyl­idene)azaniumyl]­nona­hydro-closo-deca­borate di­methyl sulfoxide disolvate

aDepartment of Chemistry, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA, and bDepartment of Chemistry, Michigan Technological University, Houghton, MI, USA
*Correspondence e-mail: tgetman@nmu.edu

(Received 18 May 2011; accepted 26 May 2011; online 18 June 2011)

The title compound, 2-B10H9NH=C(CH3)N(CH3)CH2CH2CH2N(CH3)2H·2C2H6OS or C8H29B10N3·2C2H6OS, is zwitterionic with the negative charge localized on the deca­borate cage and the positive charge on the terminal ammonium group. Two mol­ecules of dimethyl sulfoxide (DMSO) and one mol­ecule of the title compound constitute the asymmetric unit. One DMSO mol­ecule is disordered [ratio 0.739 (3):0.261 (3)]. The bonds and angles within the deca­borate cage are within the normal ranges. The amidine fragment of the ligand, which is expected to be planar, is significantly distorted from planarity as exemplified by four torsion angles [B—N—C—C = 8.4 (3), H—N—C—N = 5(2), N—C—N—C = 7.3 (3) and C—C—N—C = 14.8 (3)°] found within this portion of the mol­ecule. The crystal packing consists of head-to-tail-arranged dimers of the title mol­ecule held together by four mol­ecules of DMSO which are attached via strong N—H⋯O and weak C—H⋯O hydrogen bonds.

Related literature

For related structures of 2-substituted deca­borate compounds, see: Dou et al. (1994[Dou, D., Mavunkal, I. J., Krause Bauer, J. A., Knobler, C. B., Hawthorne, M. F. & Shore, S. G. (1994). Inorg. Chem. 33, 6432-6434.]); Siriwardane et al. (1989[Siriwardane, U., Chu, S. S. C., Hosmane, N. S., Zhang, G., Zhu, W. & Zhu, H. (1989). Acta Cryst. C45, 294-297.]). For related structures of amidine-substituted polyhedral boranes, see: Froehner et al. (2006[Froehner, G., Challis, K., Gagnon, K., Getman, T. D. & Luck, R. L. (2006). Synth. React. Inorg. Met. Org. Nano-Mat. Chem. 36, 777-785.]). For related structures involving DMSO as solvate, see: Geremia et al. (2000[Geremia, S., Calligaris, M., Kukushkin, Y. N., Zinchenko, A. V. & Kukushkin, V. Yu. (2000). J. Mol. Struct. 516, 49-56.]); Hulme & Tocher (2004[Hulme, A. T. & Tocher, D. A. (2004). Acta Cryst. E60, o1786-o1787.]). For structural parameters involving amidinium cations, see: Häfelinger & Kuske (1991[Häfelinger, G. & Kuske, F. K. H. (1991). The Chemistry of Amidines and Imidates Vol. 2, edited by S. Patai, Z. Rappoport, pp. 19-26. New York: John Wiley and Sons.]). For related synthetic work, see: Froehner et al. (2006[Froehner, G., Challis, K., Gagnon, K., Getman, T. D. & Luck, R. L. (2006). Synth. React. Inorg. Met. Org. Nano-Mat. Chem. 36, 777-785.]).

[Scheme 1]

Experimental

Crystal data
  • C8H29B10N3·2C2H6OS

  • Mr = 431.7

  • Monoclinic, P 21 /n

  • a = 9.503 (2) Å

  • b = 15.123 (5) Å

  • c = 18.032 (5) Å

  • β = 103.94 (2)°

  • V = 2515.1 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 564 K

  • 0.54 × 0.42 × 0.25 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.989, Tmax = 1.000

  • 5016 measured reflections

  • 4412 independent reflections

  • 3208 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 166 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.03

  • 4412 reflections

  • 316 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H91A⋯O211i 0.84 (3) 1.82 (3) 2.651 (6) 169 (3)
N9—H91A⋯O212i 0.84 (3) 1.98 (3) 2.817 (15) 172 (3)
N1—H11D⋯O111ii 0.79 (3) 2.67 (3) 3.446 (3) 168 (3)
C5—H5C⋯O111ii 0.96 2.46 3.114 (3) 125
C6—H6B⋯O111 0.97 2.5 3.256 (3) 135
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, 2-B10H9NH=C(CH3)N(CH3)CH2CH2CH2N(CH3)2H, (I), is zwitterionic with the negative charge localized on the decaborate cage and the positive charge on the terminal ammonium group. Two molecules of DMSO and one molecule of I constitute the asymmetric unit. One DMSO molecule is disordered over two closely situated sites with a 0.739 (3):0.261 (3) occupancy ratio. The disordered DMSO molecules display inverted conformations relative to each other, and such an arrangement was noted previously in a structure containing DMSO with a 0.95:0.05 disordered ratio (Hulme & Tocher, 2004). Fig. 1 shows the asymmetric unit, with only the major orientation of the disordered DMSO molecule drawn. Molecule I crystallizes in the form of head to tail arranged dimers held together by four molecules of DMSO which are attached via strong and weak hydrogen bonds as illustrated in Fig. 2. Both disordered DMSO molecules are involved with strong H-bonds involving the O atoms and a hydrogen atom bonded to atom N9 of I. As expected (Geremia et al., 2000), this results in longer S—O bonds for S2—O211 = 1.509 (5) Å and S21—O212 = 1.53 (1) Å compared to the S1—O111 distance of 1.478 (2) Å where weaker interactions exist. The ordered DMSO molecule binds to two molecules of I via weak long range H-bonded interactions and close contacts, see Fig. 2. The H9···S1 interaction at 2.9Å is less than the sum of the van der Waals radii at 3.05Å and, given the hydridic nature of H9, is best thought of as a close contact between a hydridic hydrogen and the partially positively charged sulfur of a DMSO molecule. The "dimers" are further weakly linked to adjacent dimers via long range H-bonded interactions resulting in a three-dimensional linked unit.

The molecular structure of I defines a slightly distorted bicapped square antiprism with an amidine ligand coordinated to an equatorial boron atom (B2). The exo B—N distance, 1.541 (3) Å, in I is slightly longer than that found in [2-B10H9NCCH3]- (II), 1.515 (5) Å, (Dou et al., 1994) and [2-B10H9NCCH=CH2]- (III), 1.523 (4) Å (Siriwardane et al., 1989). The average apical-equatorial distance in I is B1—Beq = 1.693 (5) Å, which compares favorably to the analogous distances of 1.682 (4) Å and 1.693 (5) Å in II and III, respectively, and B10—Beq = 1.692 (11) Å, which compares favorably to the analogous distances of 1.689 (2)Å and 1.686 (5) Å in II and III, respectively. The average B—B distance between equatorial planes is 1.815 (9) Å. The average Beq—Beq distance defined by B2, B3, B4 and B5 is 1.835 (13) Å, and that defined by B6, B7, B8 and B9 is 1.826 (5) Å. Each of these distances is similar to those found in II and III.

The amidine ligand found in I is analogous to a protonated amidinium cation, wherein the boron hydride cage substitutes for a proton on the imino nitrogen. Amidines contain two different nitrogen atoms: a formally single-bonded amide like amino nitrogen (Nam) and a formally double-bonded imino nitrogen (Nim). The sp2 characters of the atoms N1, C2, and N4 are supported by the sum of the bond angles about each of these atoms of 360°, 360.0° and 359.6°, respectively. The CNim and CNam bond lengths C2—N1, 1.318 (3) Å, and C2—N4, 1.335 (3) Å, respectively, as well as the difference between these bonds 0.016 Å, found in I are consistent with CNim, CNam bonds, and the difference(CNam—CNim) found within other reported amidine substituted polyhedral borane molecules (Froehner et al., 2006) as well as amidinium cations (Häfelinger & Kuske, 1991). The steric congestion within the amidine portion of I is illustrated by the nonplanarity of this portion of the molecule as exemplified by the following torsion angles: B2—N1—C2—C3 8.4 (3)°, H11D—N1—C2—N4 5(2)°, N1—C2—N4—C5 7.3 (3)°, and C3—C2—N4—C6 14.8 (3)°.

Related literature top

For related structures of 2-substituted decaborate compounds, see: Dou et al. (1994); Siriwardane et al. (1989). For related structures of amidine-substituted polyhedral boranes, see: Froehner et al. (2006). For related structures involving DMSO as solvate, see: Geremia et al. (2000); Hulme & Tocher (2004). For structural parameters involving amidinium cations, see: Häfelinger & Kuske (1991). For related synthetic work, see: Froehner et al. (2006).

Experimental top

The title compound was prepared by the reaction of [2-B10H9NCCH3]- with N,N,N'-trimethyl-1,3-propanediamine (see special details section). The title compound spontaneously crystallized from DMSO solution after sitting undisturbed for a period of one week. High resolution TOF MS ES+ for 12C81H3014N311B10+: calcd, 278.3370, found, 278.3379.

Refinement top

H atoms were placed at calculated positions, with C—H = 0.97 Å (ethyl) or 0.97 Å (methyl) and refined using a riding model with Uiso(H) constrained to be 1.2 Ueq(C) for ethyl groups and 1.5 Ueq(C) for the methyl groups. The H atoms bonded to the N atoms were constrained and refined to 0.79 (3) and 0.84 (3) Å for N1—H11D and N9—H91A respectively. One DMSO molecule is disordered over two sites with a 0.739 (3):0.261 (3) ratio.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. POV-RAY rendered drawing of an ORTEP-3 (Farrugia, 1997) illustration of the molecules constituting the asymmetric unit. The thermal ellipsoids are drawn at 50% probability and the H atoms are drawn as spheres of arbritary radii. Only the major orientation of the disordered DMSO molecule is shown.
[Figure 2] Fig. 2. POV-RAY rendered drawing of a Mercury (Macrae et al., 2006) illustration of the H-bonded arrangement. The thermal ellipsoids are drawn at 50% probability and the H atoms are drawn as spheres of arbitrary radii. Hydrogen bonds and close contacts are shown as dashed lines and the minor orientation of the DMSO molecule is not shown. Labelled atoms are at x,y,z except for atoms S2 and O211 which were generated by symmetry code 1.5 - x,1/2 + y,1/2 - z.
2-[(1-{[3-(dimethylazaniumyl)propyl]methylamino}ethylidene)azaniumyl]nonahydro- closo-decaborate dimethyl sulfoxide disolvate top
Crystal data top
C8H29B10N3·2C2H6OSF(000) = 928
Mr = 431.7Dx = 1.14 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.503 (2) Åθ = 10–15°
b = 15.123 (5) ŵ = 0.23 mm1
c = 18.032 (5) ÅT = 564 K
β = 103.94 (2)°Prism, colourless
V = 2515.1 (12) Å30.54 × 0.42 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
3208 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
non–profiled ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 117
Tmin = 0.989, Tmax = 1.000l = 2120
5016 measured reflections3 standard reflections every 166 min
4412 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.069P)2 + 1.0018P]
where P = (Fo2 + 2Fc2)/3
4412 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
C8H29B10N3·2C2H6OSV = 2515.1 (12) Å3
Mr = 431.7Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.503 (2) ŵ = 0.23 mm1
b = 15.123 (5) ÅT = 564 K
c = 18.032 (5) Å0.54 × 0.42 × 0.25 mm
β = 103.94 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
3208 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.989, Tmax = 1.0003 standard reflections every 166 min
5016 measured reflections intensity decay: 1%
4412 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
4412 reflectionsΔρmin = 0.32 e Å3
316 parameters
Special details top

Experimental. Synthesis: N,N,N'-trimethyl-1,3-propanediamnine, 0.337 g, 2.90 mmol, was added to a solution of NEt3H[2-B10H9NCCH3], 0.760 g, 2.92 mmol, in 15 ml of acetonitrile. The light yellow solution was stirred for 30 minutes, then taken to dryness on a rotary evaporator. The resulting solid was dissolved in 10 ml of 1.0 M sodium hydroxide. The basic solution was extracted with pentane, to remove the generated triethylamine. The resulting aqueous solution was acidified with 1.0 M HCl until a precipitate formed. The white precipitate was vacuum filtered and dried overnight at 50°C under dynamic vacuum. Yield of the title compound was 0.632 g, 79%. Characterization: Hi-Res TOF MS ES+: calcd, 278.3370, found, 278.3379, NMR spectroscopic assignments are made using the numbering in figure 1. 11B NMR in p.p.m.: -0.482 (B10), -3.81 (B1), -13.66 (B2), -24.86 (B4,7,8), -28.22 (B3,5,6,9). 1H NMR in p.p.m.: 9.24 (s,H91A), 5.85 (s, H11D), 3.35 (t, H8A,B), 3.00 (t, H6A,B), 2.96 (s, H3A,B,C), 2.75 (s, H10A,B,C,H11A,B,C), 2.38 (s, H5A,B,C), 1.83 (q, H7A,B). Protons attached to boron not resolved. 13C NMR in p.p.m.: 164.35 (C2), 53.85, 47.52, 42.23, 35.83, 21.89, 15.44 (remaining aliphatic carbons). MP: 193–195°C decomposition.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B10.1680 (3)0.0714 (2)0.23061 (16)0.0550 (8)
H10.22480.04040.19090.066*
B20.2214 (3)0.08614 (16)0.32607 (14)0.0360 (5)
B30.0548 (3)0.02616 (18)0.28008 (16)0.0473 (7)
H30.03140.0450.27370.057*
B40.0015 (3)0.1179 (2)0.21324 (16)0.0512 (7)
H40.06460.11890.15410.061*
B50.1694 (3)0.1780 (2)0.25976 (17)0.0482 (7)
H50.23540.22620.23740.058*
B60.0692 (3)0.07928 (17)0.37162 (15)0.0397 (6)
H60.07710.0390.42320.048*
B70.0838 (3)0.10342 (18)0.29181 (17)0.0461 (7)
H70.19770.08220.28040.055*
B80.0033 (3)0.21016 (17)0.27737 (16)0.0436 (6)
H80.05270.27340.25460.052*
B90.1497 (3)0.18587 (16)0.35776 (15)0.0387 (6)
H90.22110.22970.3990.046*
B100.0246 (3)0.17579 (19)0.36349 (16)0.0442 (6)
H100.08230.20710.40260.053*
N10.3759 (2)0.06191 (13)0.37114 (11)0.0379 (4)
H11D0.422 (3)0.1011 (18)0.3941 (15)0.057*
C20.4476 (2)0.01325 (14)0.37510 (12)0.0349 (5)
C30.3696 (3)0.09380 (16)0.33963 (15)0.0509 (6)
H3A0.42420.12180.30780.076*
H3B0.35870.13410.3790.076*
H3C0.27570.07750.30920.076*
N40.58795 (18)0.01902 (11)0.41023 (11)0.0382 (4)
C50.6728 (3)0.05969 (16)0.43804 (16)0.0521 (6)
H5A0.77380.04460.45230.078*
H5B0.65660.10360.39850.078*
H5C0.64370.08270.48170.078*
C60.6612 (2)0.10402 (15)0.43152 (13)0.0413 (5)
H6A0.71040.10230.48530.05*
H6B0.58860.15030.42470.05*
C70.7710 (2)0.12761 (14)0.38569 (13)0.0395 (5)
H7A0.8520.08670.39720.047*
H7B0.72630.12460.33140.047*
C80.8226 (2)0.22097 (15)0.40810 (15)0.0442 (6)
H8A0.74170.26120.39110.053*
H8B0.85190.22440.46340.053*
N90.9463 (2)0.25199 (13)0.37648 (12)0.0446 (5)
H91A0.957 (3)0.3051 (19)0.3909 (16)0.067*
C100.9142 (3)0.2499 (2)0.29185 (16)0.0624 (7)
H10A0.99090.27870.27490.094*
H10B0.82430.280.27110.094*
H10C0.90650.18960.27470.094*
C111.0845 (3)0.20572 (19)0.41085 (18)0.0605 (7)
H11A1.10380.20910.46550.091*
H11B1.16230.23330.39390.091*
H11C1.0770.14480.39530.091*
S10.51507 (7)0.32140 (4)0.52668 (4)0.0539 (2)
O1110.4605 (2)0.23024 (12)0.51022 (13)0.0745 (6)
C1110.5090 (4)0.3423 (3)0.62190 (17)0.0923 (12)
H1120.5830.30850.65580.138*
H1130.41570.32560.62910.138*
H1140.52490.40410.63280.138*
C1210.3700 (4)0.3916 (2)0.48091 (19)0.0803 (10)
H1220.35930.38940.42660.12*
H1230.39060.45120.49850.12*
H1240.28190.37210.49280.12*
S20.51955 (11)0.00035 (6)0.14776 (7)0.0572 (4)0.739 (3)
O2110.5077 (9)0.0774 (4)0.0934 (3)0.0675 (15)0.739 (3)
C2110.3870 (7)0.0760 (4)0.1009 (4)0.0696 (17)0.739 (3)
H2120.29210.05240.09830.104*0.739 (3)
H2130.39820.08650.05010.104*0.739 (3)
H2140.39850.13060.12880.104*0.739 (3)
C2210.6739 (5)0.0601 (3)0.1376 (3)0.0789 (15)0.739 (3)
H2220.75970.02560.15710.118*0.739 (3)
H2230.680.11440.16570.118*0.739 (3)
H2240.66540.07290.08460.118*0.739 (3)
S210.5500 (3)0.01848 (17)0.08259 (17)0.0560 (11)0.261 (3)
O2120.500 (3)0.0766 (10)0.0621 (7)0.057 (4)0.261 (3)
C2230.591 (2)0.0268 (12)0.1855 (12)0.142 (10)0.261 (3)
H2250.68730.00580.20670.213*0.261 (3)
H2260.52290.00830.20450.213*0.261 (3)
H2270.58330.08740.19990.213*0.261 (3)
C2240.389 (2)0.0806 (13)0.0630 (8)0.059 (4)0.261 (3)
H2280.34830.08230.00880.089*0.261 (3)
H2290.40920.13980.08190.089*0.261 (3)
H2300.32050.05370.08770.089*0.261 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0530 (17)0.070 (2)0.0389 (15)0.0207 (15)0.0048 (13)0.0014 (14)
B20.0328 (13)0.0324 (13)0.0408 (14)0.0062 (10)0.0051 (10)0.0027 (11)
B30.0460 (15)0.0344 (14)0.0517 (16)0.0045 (12)0.0073 (13)0.0062 (12)
B40.0498 (16)0.0574 (18)0.0398 (15)0.0130 (14)0.0023 (12)0.0038 (13)
B50.0375 (14)0.0510 (17)0.0570 (17)0.0090 (12)0.0131 (12)0.0212 (14)
B60.0360 (13)0.0382 (14)0.0420 (14)0.0033 (11)0.0037 (11)0.0047 (11)
B70.0315 (13)0.0424 (15)0.0584 (17)0.0011 (11)0.0011 (12)0.0048 (13)
B80.0319 (13)0.0352 (13)0.0599 (17)0.0058 (11)0.0036 (12)0.0117 (12)
B90.0342 (13)0.0286 (13)0.0510 (15)0.0013 (10)0.0057 (11)0.0006 (11)
B100.0329 (13)0.0478 (16)0.0519 (16)0.0039 (12)0.0101 (11)0.0005 (13)
N10.0338 (10)0.0338 (10)0.0433 (11)0.0057 (8)0.0038 (8)0.0024 (8)
C20.0345 (11)0.0347 (12)0.0362 (11)0.0052 (9)0.0100 (9)0.0008 (9)
C30.0403 (13)0.0402 (13)0.0673 (16)0.0060 (11)0.0030 (11)0.0072 (12)
N40.0308 (10)0.0323 (10)0.0494 (11)0.0070 (8)0.0057 (8)0.0013 (8)
C50.0371 (13)0.0416 (13)0.0727 (17)0.0021 (10)0.0035 (12)0.0093 (12)
C60.0336 (11)0.0398 (13)0.0492 (13)0.0098 (10)0.0076 (10)0.0075 (10)
C70.0374 (12)0.0306 (11)0.0503 (13)0.0045 (9)0.0103 (10)0.0019 (10)
C80.0361 (12)0.0332 (12)0.0656 (15)0.0026 (10)0.0163 (11)0.0038 (11)
N90.0352 (10)0.0281 (10)0.0702 (14)0.0050 (8)0.0120 (9)0.0012 (9)
C100.0569 (16)0.0615 (17)0.0705 (19)0.0039 (13)0.0187 (14)0.0140 (14)
C110.0324 (13)0.0577 (16)0.087 (2)0.0005 (12)0.0047 (13)0.0022 (15)
S10.0505 (4)0.0492 (4)0.0594 (4)0.0044 (3)0.0084 (3)0.0005 (3)
O1110.0801 (14)0.0471 (11)0.0977 (16)0.0085 (10)0.0241 (12)0.0160 (11)
C1110.104 (3)0.107 (3)0.0568 (19)0.036 (2)0.0018 (18)0.0131 (18)
C1210.078 (2)0.073 (2)0.080 (2)0.0112 (17)0.0002 (17)0.0143 (17)
S20.0522 (6)0.0373 (5)0.0858 (9)0.0033 (4)0.0238 (5)0.0100 (5)
O2110.077 (3)0.0317 (17)0.094 (4)0.0092 (16)0.020 (4)0.003 (2)
C2110.056 (3)0.037 (2)0.111 (5)0.0094 (19)0.010 (4)0.001 (4)
C2210.052 (2)0.069 (3)0.118 (4)0.008 (2)0.023 (3)0.016 (3)
S210.0507 (16)0.0411 (15)0.076 (2)0.0038 (11)0.0158 (13)0.0055 (12)
O2120.074 (6)0.032 (5)0.054 (7)0.012 (4)0.003 (8)0.007 (5)
C2230.138 (18)0.089 (13)0.144 (17)0.039 (12)0.076 (15)0.056 (12)
C2240.079 (9)0.040 (7)0.054 (8)0.024 (6)0.006 (8)0.004 (7)
Geometric parameters (Å, º) top
B1—B21.688 (4)C6—C71.521 (3)
B1—B41.690 (4)C6—H6A0.97
B1—B51.694 (4)C6—H6B0.97
B1—B31.698 (5)C7—C81.517 (3)
B1—H11.1C7—H7A0.97
B2—N11.541 (3)C7—H7B0.97
B2—B91.804 (3)C8—N91.499 (3)
B2—B51.822 (4)C8—H8A0.97
B2—B61.830 (4)C8—H8B0.97
B2—B31.840 (4)N9—C101.483 (3)
B3—B71.810 (4)N9—C111.486 (3)
B3—B61.811 (4)N9—H91A0.84 (3)
B3—B41.827 (4)C10—H10A0.96
B3—H31.1C10—H10B0.96
B4—B71.807 (4)C10—H10C0.96
B4—B81.820 (4)C11—H11A0.96
B4—B51.852 (4)C11—H11B0.96
B4—H41.1C11—H11C0.96
B5—B81.812 (4)S1—O1111.478 (2)
B5—B91.825 (4)S1—C1111.761 (3)
B5—H51.1S1—C1211.777 (3)
B6—B101.698 (4)C111—H1120.96
B6—B71.819 (4)C111—H1130.96
B6—B91.827 (4)C111—H1140.96
B6—H61.1C121—H1220.96
B7—B101.684 (4)C121—H1230.96
B7—B81.832 (4)C121—H1240.96
B7—H71.1S2—O2111.509 (5)
B8—B101.695 (4)S2—C2111.767 (6)
B8—B91.826 (4)S2—C2211.774 (4)
B8—H81.1C211—H2120.96
B9—B101.691 (3)C211—H2130.96
B9—H91.1C211—H2140.96
B10—H101.1C221—H2220.96
N1—C21.318 (3)C221—H2230.96
N1—H11D0.79 (3)C221—H2240.96
C2—N41.335 (3)S21—O2121.530 (14)
C2—C31.488 (3)S21—C2241.760 (19)
C3—H3A0.96S21—C2231.81 (2)
C3—H3B0.96C223—H2250.96
C3—H3C0.96C223—H2260.96
N4—C51.457 (3)C223—H2270.96
N4—C61.468 (3)C224—H2280.96
C5—H5A0.96C224—H2290.96
C5—H5B0.96C224—H2300.96
C5—H5C0.96
B2—B1—B499.9 (2)B10—B9—B2113.22 (19)
B2—B1—B565.17 (17)B10—B9—B5112.57 (19)
B4—B1—B566.37 (18)B2—B9—B560.26 (14)
B2—B1—B365.83 (17)B10—B9—B857.48 (15)
B4—B1—B365.28 (18)B2—B9—B8101.90 (17)
B5—B1—B3100.3 (2)B5—B9—B859.50 (15)
B2—B1—H1130.2B10—B9—B657.56 (15)
B4—B1—H1129.9B2—B9—B660.54 (14)
B5—B1—H1129.7B5—B9—B6102.63 (18)
B3—B1—H1129.9B8—B9—B690.37 (16)
N1—B2—B1121.4 (2)B10—B9—H9117.8
N1—B2—B9114.61 (18)B2—B9—H9120
B1—B2—B9112.92 (18)B5—B9—H9120.3
N1—B2—B5126.94 (19)B8—B9—H9131.3
B1—B2—B557.57 (17)B6—B9—H9130.5
B9—B2—B560.45 (15)B7—B10—B999.36 (19)
N1—B2—B6120.34 (18)B7—B10—B865.64 (17)
B1—B2—B6111.95 (19)B9—B10—B865.26 (16)
B9—B2—B660.37 (14)B7—B10—B665.10 (16)
B5—B2—B6102.65 (16)B9—B10—B665.24 (15)
N1—B2—B3136.68 (19)B8—B10—B699.59 (19)
B1—B2—B357.34 (17)B7—B10—H10130.3
B9—B2—B3101.84 (16)B9—B10—H10130.4
B5—B2—B390.69 (17)B8—B10—H10130.1
B6—B2—B359.13 (14)B6—B10—H10130.3
B1—B3—B7111.8 (2)C2—N1—B2130.38 (19)
B1—B3—B6112.4 (2)C2—N1—H11D114 (2)
B7—B3—B660.32 (15)B2—N1—H11D116 (2)
B1—B3—B457.13 (17)N1—C2—N4121.8 (2)
B7—B3—B459.57 (15)N1—C2—C3119.04 (19)
B6—B3—B4102.27 (18)N4—C2—C3119.19 (19)
B1—B3—B256.82 (15)C2—C3—H3A109.5
B7—B3—B2101.56 (17)C2—C3—H3B109.5
B6—B3—B260.16 (14)H3A—C3—H3B109.5
B4—B3—B289.69 (18)C2—C3—H3C109.5
B1—B3—H3118.5H3A—C3—H3C109.5
B7—B3—H3120.7H3B—C3—H3C109.5
B6—B3—H3119.9C2—N4—C5121.11 (18)
B4—B3—H3131.1C2—N4—C6122.56 (18)
B2—B3—H3131.3C5—N4—C6115.92 (17)
B1—B4—B7112.4 (2)N4—C5—H5A109.5
B1—B4—B8111.5 (2)N4—C5—H5B109.5
B7—B4—B860.66 (16)H5A—C5—H5B109.5
B1—B4—B357.58 (17)N4—C5—H5C109.5
B7—B4—B359.75 (16)H5A—C5—H5C109.5
B8—B4—B3102.03 (19)H5B—C5—H5C109.5
B1—B4—B556.93 (17)N4—C6—C7114.05 (18)
B7—B4—B5101.81 (19)N4—C6—H6A108.7
B8—B4—B559.12 (15)C7—C6—H6A108.7
B3—B4—B590.13 (17)N4—C6—H6B108.7
B1—B4—H4118.4C7—C6—H6B108.7
B7—B4—H4120.2H6A—C6—H6B107.6
B8—B4—H4120.6C8—C7—C6107.10 (18)
B3—B4—H4130.8C8—C7—H7A110.3
B5—B4—H4131.4C6—C7—H7A110.3
B1—B5—B8111.7 (2)C8—C7—H7B110.3
B1—B5—B257.26 (15)C6—C7—H7B110.3
B8—B5—B2101.76 (18)H7A—C7—H7B108.6
B1—B5—B9111.57 (19)N9—C8—C7115.02 (19)
B8—B5—B960.28 (15)N9—C8—H8A108.5
B2—B5—B959.29 (14)C7—C8—H8A108.5
B1—B5—B456.70 (16)N9—C8—H8B108.5
B8—B5—B459.55 (15)C7—C8—H8B108.5
B2—B5—B489.49 (17)H8A—C8—H8B107.5
B9—B5—B4101.10 (18)C10—N9—C11111.2 (2)
B1—B5—H5118.7C10—N9—C8113.50 (19)
B8—B5—H5120.4C11—N9—C8112.9 (2)
B2—B5—H5131.2C10—N9—H91A109 (2)
B9—B5—H5120.8C11—N9—H91A107 (2)
B4—B5—H5131.6C8—N9—H91A103 (2)
B10—B6—B3112.32 (19)N9—C10—H10A109.5
B10—B6—B757.07 (15)N9—C10—H10B109.5
B3—B6—B759.83 (15)H10A—C10—H10B109.5
B10—B6—B957.20 (14)N9—C10—H10C109.5
B3—B6—B9102.06 (18)H10A—C10—H10C109.5
B7—B6—B989.77 (17)H10B—C10—H10C109.5
B10—B6—B2111.58 (18)N9—C11—H11A109.5
B3—B6—B260.71 (15)N9—C11—H11B109.5
B7—B6—B2101.60 (18)H11A—C11—H11B109.5
B9—B6—B259.10 (13)N9—C11—H11C109.5
B10—B6—H6118.5H11A—C11—H11C109.5
B3—B6—H6120H11B—C11—H11C109.5
B7—B6—H6131.2O111—S1—C111105.73 (18)
B9—B6—H6131.3O111—S1—C121105.57 (15)
B2—B6—H6120.7C111—S1—C12198.14 (17)
B10—B7—B4113.1 (2)S1—C111—H112109.5
B10—B7—B3113.03 (19)S1—C111—H113109.5
B4—B7—B360.68 (16)H112—C111—H113109.5
B10—B7—B657.83 (15)S1—C111—H114109.5
B4—B7—B6102.73 (18)H112—C111—H114109.5
B3—B7—B659.85 (14)H113—C111—H114109.5
B10—B7—B857.48 (16)S1—C121—H122109.5
B4—B7—B860.01 (16)S1—C121—H123109.5
B3—B7—B8102.22 (19)H122—C121—H123109.5
B6—B7—B890.44 (16)S1—C121—H124109.5
B10—B7—H7117.7H122—C121—H124109.5
B4—B7—H7119.8H123—C121—H124109.5
B3—B7—H7120.1O211—S2—C211105.1 (4)
B6—B7—H7130.7O211—S2—C221105.4 (4)
B8—B7—H7131C211—S2—C22197.2 (3)
B10—B8—B5113.03 (18)O212—S21—C224104.5 (12)
B10—B8—B4111.9 (2)O212—S21—C223106.9 (9)
B5—B8—B461.33 (16)C224—S21—C22397.4 (7)
B10—B8—B957.26 (14)S21—C223—H225109.5
B5—B8—B960.22 (14)S21—C223—H226109.5
B4—B8—B9102.30 (17)H225—C223—H226109.5
B10—B8—B756.87 (16)S21—C223—H227109.5
B5—B8—B7102.42 (18)H225—C223—H227109.5
B4—B8—B759.32 (16)H226—C223—H227109.5
B9—B8—B789.42 (16)S21—C224—H228109.5
B10—B8—H8118.3S21—C224—H229109.5
B5—B8—H8119.4H228—C224—H229109.5
B4—B8—H8120.2S21—C224—H230109.5
B9—B8—H8131.1H228—C224—H230109.5
B7—B8—H8131.6H229—C224—H230109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H91A···O211i0.84 (3)1.82 (3)2.651 (6)169 (3)
N9—H91A···O212i0.84 (3)1.98 (3)2.817 (15)172 (3)
N1—H11D···O111ii0.79 (3)2.67 (3)3.446 (3)168 (3)
C5—H5C···O111ii0.962.463.114 (3)125
C6—H6B···O1110.972.53.256 (3)135
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H29B10N3·2C2H6OS
Mr431.7
Crystal system, space groupMonoclinic, P21/n
Temperature (K)564
a, b, c (Å)9.503 (2), 15.123 (5), 18.032 (5)
β (°) 103.94 (2)
V3)2515.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.54 × 0.42 × 0.25
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.989, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5016, 4412, 3208
Rint0.016
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.03
No. of reflections4412
No. of parameters316
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H91A···O211i0.84 (3)1.82 (3)2.651 (6)169 (3)
N9—H91A···O212i0.84 (3)1.98 (3)2.817 (15)172 (3)
N1—H11D···O111ii0.79 (3)2.67 (3)3.446 (3)168 (3)
C5—H5C···O111ii0.962.463.114 (3)125
C6—H6B···O1110.972.53.256 (3)135
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

Acknowledgement is made to the Faculty Research Grant Program at Northern Michigan University for support of this work. We thank the Michigan State University Mass Spectrometry Facility for collection of the mass spectra.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDou, D., Mavunkal, I. J., Krause Bauer, J. A., Knobler, C. B., Hawthorne, M. F. & Shore, S. G. (1994). Inorg. Chem. 33, 6432–6434.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFroehner, G., Challis, K., Gagnon, K., Getman, T. D. & Luck, R. L. (2006). Synth. React. Inorg. Met. Org. Nano-Mat. Chem. 36, 777–785.  CrossRef CAS Google Scholar
First citationGeremia, S., Calligaris, M., Kukushkin, Y. N., Zinchenko, A. V. & Kukushkin, V. Yu. (2000). J. Mol. Struct. 516, 49–56.  Web of Science CrossRef CAS Google Scholar
First citationHäfelinger, G. & Kuske, F. K. H. (1991). The Chemistry of Amidines and Imidates Vol. 2, edited by S. Patai, Z. Rappoport, pp. 19–26. New York: John Wiley and Sons.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHulme, A. T. & Tocher, D. A. (2004). Acta Cryst. E60, o1786–o1787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiriwardane, U., Chu, S. S. C., Hosmane, N. S., Zhang, G., Zhu, W. & Zhu, H. (1989). Acta Cryst. C45, 294–297.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1682-o1683
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds