metal-organic compounds
Redetermination of μ-oxido-bis[bis(N,N-diethylhydroxylaminato)oxidovanadium(V)]
aDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China
*Correspondence e-mail: qyzhang@chem.ecnu.edu.cn
In comparison with the previous determination [Saussine, Mimoun, Mitschler & Fisher (1980). Nouv. J. Chim. 4, 235–237] of the title compound, [V2(C4H10NO)4O3], the current study reports an improved precision of the derived geometric parameters, along with the deposition of all coordinates and displacement parameters. The two VV atoms are each surrounded by two deprotonated N,O-bidentate diethylhydroxylaminate groups, and a terminal and a bridging oxide ligand, in a distorted octahedral coordination geometry. The crystal packing is accomplished by van der Waals interactions.
Related literature
For the previous determination, see: Saussine et al. (1980). For the pharmacological activities of vanadium complexes, see: Posner et al. (1994); Zhou et al. (2000); Huyer et al. (1997); Nxumalo et al. (1998). For related hydroxylamide complexes, see: Zhang et al. (2009, 2010); Paul et al. (1997); Wieghardt et al. (1981). For van der Waals radii, see: Bondi (1964).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811020551/wm2493sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020551/wm2493Isup2.hkl
To a solution of sodium hydroxide (0.2390 g,5.975 mmol) in H2O (10 ml), ammonium metavanadate (0.2142 g,1.831 mmol) and DL-valine were added under stirring. The resulting colorless solution was stirred for approximately two minutes in an ice bath. 2 ml of N,N-diethylhydroxylamine (25.9 mmol) were added dropwise. The mixture was stirred for approximately five minutes, and after filtration of the solution, yellow crystals were obtained by slow evaporation of a mixture of the filtrate and ethanol at 277 K over a period of a few days.
H atoms were placed in calculated positions, with C—H = 0.93 Å for phenyl, 0.96 Å for methyl and 0.97 Å for methylene H atoms, and refined as riding, with Uiso(H) = 1.2Ueq(C) for phenyl and methylene H, and 1.5Ueq(C) for methyl H atoms.
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with displacement parameters shown at the 30% probability level. |
[V2(C4H10NO)4O3] | F(000) = 1064.0 |
Mr = 502.40 | Dx = 1.331 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2y b c | Cell parameters from 9966 reflections |
a = 14.6106 (3) Å | θ = 2.3–27.3° |
b = 10.2624 (2) Å | µ = 0.78 mm−1 |
c = 19.4547 (3) Å | T = 296 K |
β = 120.744 (1)° | Block, yellow |
V = 2507.07 (8) Å3 | 0.32 × 0.28 × 0.26 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3767 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 25.0°, θmin = 1.6° |
ϕ and ω scans | h = −17→17 |
28459 measured reflections | k = −12→12 |
4419 independent reflections | l = −23→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3492P] where P = (Fo2 + 2Fc2)/3 |
4418 reflections | (Δ/σ)max = 0.001 |
270 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
[V2(C4H10NO)4O3] | V = 2507.07 (8) Å3 |
Mr = 502.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.6106 (3) Å | µ = 0.78 mm−1 |
b = 10.2624 (2) Å | T = 296 K |
c = 19.4547 (3) Å | 0.32 × 0.28 × 0.26 mm |
β = 120.744 (1)° |
Bruker APEXII CCD diffractometer | 3767 reflections with I > 2σ(I) |
28459 measured reflections | Rint = 0.028 |
4419 independent reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.28 e Å−3 |
4418 reflections | Δρmin = −0.15 e Å−3 |
270 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.26506 (19) | 1.1932 (2) | 0.82864 (15) | 0.0639 (6) | |
H1A | 0.2345 | 1.1426 | 0.8541 | 0.077* | |
H1B | 0.2363 | 1.2808 | 0.8206 | 0.077* | |
C2 | 0.3832 (2) | 1.1991 (3) | 0.88316 (17) | 0.0826 (8) | |
H2A | 0.4109 | 1.1123 | 0.8983 | 0.124* | |
H2B | 0.3997 | 1.2482 | 0.9301 | 0.124* | |
H2C | 0.4148 | 1.2404 | 0.8560 | 0.124* | |
C3 | 0.27143 (18) | 1.2033 (2) | 0.70312 (14) | 0.0545 (5) | |
H3A | 0.2448 | 1.1591 | 0.6523 | 0.065* | |
H3B | 0.3486 | 1.1985 | 0.7318 | 0.065* | |
C4 | 0.2383 (2) | 1.3452 (2) | 0.68728 (18) | 0.0807 (8) | |
H4A | 0.1632 | 1.3521 | 0.6670 | 0.121* | |
H4B | 0.2541 | 1.3797 | 0.6486 | 0.121* | |
H4C | 0.2765 | 1.3938 | 0.7362 | 0.121* | |
C5 | 0.02455 (18) | 0.7146 (2) | 0.70800 (15) | 0.0607 (6) | |
H5A | −0.0506 | 0.6964 | 0.6727 | 0.073* | |
H5B | 0.0320 | 0.7660 | 0.7524 | 0.073* | |
C6 | 0.0836 (2) | 0.5883 (3) | 0.7393 (2) | 0.0896 (9) | |
H6A | 0.0691 | 0.5326 | 0.6953 | 0.134* | |
H6B | 0.0606 | 0.5463 | 0.7720 | 0.134* | |
H6C | 0.1586 | 0.6053 | 0.7707 | 0.134* | |
C7 | 0.05033 (17) | 0.7317 (2) | 0.59107 (14) | 0.0570 (5) | |
H7A | 0.0935 | 0.6535 | 0.6053 | 0.068* | |
H7B | 0.0772 | 0.7919 | 0.5671 | 0.068* | |
C8 | −0.0630 (2) | 0.6967 (3) | 0.52945 (18) | 0.0905 (9) | |
H8A | −0.0894 | 0.6336 | 0.5515 | 0.136* | |
H8B | −0.0651 | 0.6607 | 0.4831 | 0.136* | |
H8C | −0.1066 | 0.7735 | 0.5145 | 0.136* | |
C9 | 0.45814 (17) | 0.8816 (2) | 0.84272 (13) | 0.0573 (5) | |
H9A | 0.4181 | 0.8633 | 0.8689 | 0.069* | |
H9B | 0.4295 | 0.9609 | 0.8119 | 0.069* | |
C10 | 0.5730 (2) | 0.9054 (3) | 0.90619 (16) | 0.0805 (8) | |
H10A | 0.6016 | 0.8288 | 0.9387 | 0.121* | |
H10B | 0.5771 | 0.9774 | 0.9391 | 0.121* | |
H10C | 0.6134 | 0.9250 | 0.8811 | 0.121* | |
C11 | 0.47814 (17) | 0.6443 (2) | 0.82376 (13) | 0.0568 (5) | |
H11A | 0.5543 | 0.6477 | 0.8611 | 0.068* | |
H11B | 0.4652 | 0.5819 | 0.7823 | 0.068* | |
C12 | 0.4235 (2) | 0.5990 (3) | 0.86699 (16) | 0.0735 (7) | |
H12A | 0.4452 | 0.6525 | 0.9133 | 0.110* | |
H12B | 0.4426 | 0.5100 | 0.8833 | 0.110* | |
H12C | 0.3478 | 0.6054 | 0.8321 | 0.110* | |
C13 | 0.24236 (19) | 0.7368 (2) | 0.48238 (14) | 0.0595 (6) | |
H13A | 0.2877 | 0.6620 | 0.5083 | 0.071* | |
H13B | 0.2588 | 0.7694 | 0.4431 | 0.071* | |
C14 | 0.1285 (2) | 0.6940 (3) | 0.44040 (17) | 0.0908 (10) | |
H14A | 0.1117 | 0.6613 | 0.4789 | 0.136* | |
H14B | 0.1176 | 0.6265 | 0.4028 | 0.136* | |
H14C | 0.0832 | 0.7667 | 0.4126 | 0.136* | |
C15 | 0.21781 (18) | 0.9668 (2) | 0.51072 (13) | 0.0513 (5) | |
H15A | 0.2298 | 1.0226 | 0.5548 | 0.062* | |
H15B | 0.1415 | 0.9550 | 0.4767 | 0.062* | |
C16 | 0.2593 (2) | 1.0349 (2) | 0.46331 (15) | 0.0652 (6) | |
H16A | 0.3355 | 1.0403 | 0.4949 | 0.098* | |
H16B | 0.2298 | 1.1211 | 0.4496 | 0.098* | |
H16C | 0.2389 | 0.9866 | 0.4153 | 0.098* | |
N1 | 0.23255 (12) | 1.13458 (16) | 0.74962 (10) | 0.0459 (4) | |
N2 | 0.06387 (12) | 0.79060 (15) | 0.66428 (10) | 0.0449 (4) | |
N3 | 0.44108 (12) | 0.77385 (16) | 0.78718 (10) | 0.0457 (4) | |
N4 | 0.26690 (12) | 0.83933 (16) | 0.54295 (9) | 0.0428 (4) | |
O1 | 0.12126 (11) | 1.12294 (14) | 0.70484 (10) | 0.0552 (4) | |
O2 | 0.01895 (10) | 0.91675 (14) | 0.64920 (9) | 0.0531 (4) | |
O3 | 0.48410 (11) | 0.80520 (15) | 0.73892 (9) | 0.0549 (4) | |
O4 | 0.37801 (10) | 0.85159 (14) | 0.59304 (8) | 0.0507 (3) | |
O5 | 0.24996 (9) | 0.90343 (12) | 0.67831 (7) | 0.0382 (3) | |
O6 | 0.30604 (12) | 0.64364 (13) | 0.64972 (9) | 0.0542 (4) | |
O7 | 0.20071 (12) | 0.90576 (16) | 0.80668 (9) | 0.0600 (4) | |
V1 | 0.16510 (2) | 0.94873 (3) | 0.717301 (19) | 0.03928 (11) | |
V2 | 0.33748 (2) | 0.79430 (3) | 0.665006 (18) | 0.03807 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0742 (15) | 0.0660 (15) | 0.0695 (16) | −0.0132 (12) | 0.0496 (13) | −0.0276 (12) |
C2 | 0.0823 (18) | 0.095 (2) | 0.0673 (17) | −0.0157 (15) | 0.0358 (15) | −0.0339 (15) |
C3 | 0.0642 (13) | 0.0473 (12) | 0.0655 (14) | −0.0118 (10) | 0.0430 (12) | −0.0099 (10) |
C4 | 0.101 (2) | 0.0492 (14) | 0.089 (2) | −0.0061 (13) | 0.0461 (17) | −0.0059 (13) |
C5 | 0.0549 (12) | 0.0666 (15) | 0.0749 (16) | −0.0152 (11) | 0.0434 (12) | −0.0038 (12) |
C6 | 0.0785 (18) | 0.088 (2) | 0.111 (2) | 0.0012 (15) | 0.0552 (18) | 0.0345 (18) |
C7 | 0.0551 (12) | 0.0623 (14) | 0.0582 (14) | −0.0086 (10) | 0.0322 (11) | −0.0148 (11) |
C8 | 0.0680 (17) | 0.107 (2) | 0.0767 (19) | −0.0148 (15) | 0.0226 (14) | −0.0346 (17) |
C9 | 0.0568 (13) | 0.0577 (13) | 0.0517 (13) | −0.0029 (10) | 0.0236 (10) | −0.0025 (10) |
C10 | 0.0683 (16) | 0.093 (2) | 0.0618 (16) | −0.0159 (14) | 0.0202 (13) | −0.0006 (14) |
C11 | 0.0548 (12) | 0.0564 (13) | 0.0530 (13) | 0.0133 (10) | 0.0232 (10) | 0.0145 (10) |
C12 | 0.0768 (16) | 0.0700 (16) | 0.0752 (18) | −0.0056 (13) | 0.0400 (14) | 0.0153 (13) |
C13 | 0.0819 (16) | 0.0566 (13) | 0.0534 (13) | 0.0070 (11) | 0.0443 (12) | −0.0048 (10) |
C14 | 0.104 (2) | 0.110 (2) | 0.0738 (19) | −0.0393 (18) | 0.0572 (18) | −0.0425 (17) |
C15 | 0.0622 (13) | 0.0507 (12) | 0.0485 (12) | 0.0118 (10) | 0.0336 (10) | 0.0089 (9) |
C16 | 0.0760 (15) | 0.0692 (16) | 0.0545 (14) | 0.0012 (12) | 0.0363 (12) | 0.0151 (11) |
N1 | 0.0460 (9) | 0.0460 (9) | 0.0570 (10) | −0.0054 (7) | 0.0344 (8) | −0.0132 (8) |
N2 | 0.0414 (8) | 0.0466 (9) | 0.0529 (10) | −0.0041 (7) | 0.0287 (8) | −0.0039 (7) |
N3 | 0.0451 (9) | 0.0504 (10) | 0.0449 (9) | 0.0065 (7) | 0.0254 (8) | 0.0084 (7) |
N4 | 0.0476 (9) | 0.0447 (9) | 0.0434 (9) | 0.0063 (7) | 0.0286 (8) | 0.0018 (7) |
O1 | 0.0436 (7) | 0.0495 (8) | 0.0786 (10) | −0.0023 (6) | 0.0356 (7) | −0.0141 (7) |
O2 | 0.0402 (7) | 0.0527 (8) | 0.0661 (9) | −0.0004 (6) | 0.0268 (7) | −0.0056 (7) |
O3 | 0.0411 (7) | 0.0745 (10) | 0.0535 (9) | 0.0083 (7) | 0.0273 (7) | 0.0160 (7) |
O4 | 0.0454 (7) | 0.0667 (9) | 0.0497 (8) | 0.0079 (6) | 0.0314 (7) | 0.0085 (7) |
O5 | 0.0402 (6) | 0.0380 (7) | 0.0443 (7) | 0.0035 (5) | 0.0272 (6) | 0.0019 (5) |
O6 | 0.0693 (9) | 0.0384 (8) | 0.0581 (9) | 0.0081 (7) | 0.0349 (8) | 0.0032 (6) |
O7 | 0.0642 (9) | 0.0797 (11) | 0.0483 (9) | −0.0177 (8) | 0.0375 (8) | −0.0059 (7) |
V1 | 0.03825 (18) | 0.0450 (2) | 0.0438 (2) | −0.00289 (13) | 0.02761 (16) | −0.00409 (14) |
V2 | 0.03993 (18) | 0.03744 (19) | 0.0434 (2) | 0.00687 (12) | 0.02607 (15) | 0.00462 (13) |
C1—N1 | 1.485 (3) | C11—C12 | 1.499 (3) |
C1—C2 | 1.495 (3) | C11—H11A | 0.9700 |
C1—H1A | 0.9700 | C11—H11B | 0.9700 |
C1—H1B | 0.9700 | C12—H12A | 0.9600 |
C2—H2A | 0.9600 | C12—H12B | 0.9600 |
C2—H2B | 0.9600 | C12—H12C | 0.9600 |
C2—H2C | 0.9600 | C13—N4 | 1.481 (3) |
C3—N1 | 1.471 (3) | C13—C14 | 1.496 (3) |
C3—C4 | 1.516 (3) | C13—H13A | 0.9700 |
C3—H3A | 0.9700 | C13—H13B | 0.9700 |
C3—H3B | 0.9700 | C14—H14A | 0.9600 |
C4—H4A | 0.9600 | C14—H14B | 0.9600 |
C4—H4B | 0.9600 | C14—H14C | 0.9600 |
C4—H4C | 0.9600 | C15—N4 | 1.470 (2) |
C5—N2 | 1.470 (3) | C15—C16 | 1.509 (3) |
C5—C6 | 1.503 (4) | C15—H15A | 0.9700 |
C5—H5A | 0.9700 | C15—H15B | 0.9700 |
C5—H5B | 0.9700 | C16—H16A | 0.9600 |
C6—H6A | 0.9600 | C16—H16B | 0.9600 |
C6—H6B | 0.9600 | C16—H16C | 0.9600 |
C6—H6C | 0.9600 | N1—O1 | 1.403 (2) |
C7—N2 | 1.464 (3) | N1—V1 | 2.0906 (16) |
C7—C8 | 1.509 (3) | N2—O2 | 1.413 (2) |
C7—H7A | 0.9700 | N2—V1 | 2.0797 (16) |
C7—H7B | 0.9700 | N3—O3 | 1.408 (2) |
C8—H8A | 0.9600 | N3—V2 | 2.0751 (17) |
C8—H8B | 0.9600 | N4—O4 | 1.408 (2) |
C8—H8C | 0.9600 | N4—V2 | 2.1004 (16) |
C9—N3 | 1.476 (3) | O1—V1 | 1.8726 (14) |
C9—C10 | 1.511 (3) | O2—V1 | 1.8790 (14) |
C9—H9A | 0.9700 | O3—V2 | 1.8761 (14) |
C9—H9B | 0.9700 | O4—V2 | 1.8719 (13) |
C10—H10A | 0.9600 | O5—V1 | 1.8139 (11) |
C10—H10B | 0.9600 | O5—V2 | 1.8151 (12) |
C10—H10C | 0.9600 | O6—V2 | 1.5970 (14) |
C11—N3 | 1.474 (3) | O7—V1 | 1.6012 (15) |
N1—C1—C2 | 113.14 (18) | C13—C14—H14A | 109.5 |
N1—C1—H1A | 109.0 | C13—C14—H14B | 109.5 |
C2—C1—H1A | 109.0 | H14A—C14—H14B | 109.5 |
N1—C1—H1B | 109.0 | C13—C14—H14C | 109.5 |
C2—C1—H1B | 109.0 | H14A—C14—H14C | 109.5 |
H1A—C1—H1B | 107.8 | H14B—C14—H14C | 109.5 |
C1—C2—H2A | 109.5 | N4—C15—C16 | 114.32 (17) |
C1—C2—H2B | 109.5 | N4—C15—H15A | 108.7 |
H2A—C2—H2B | 109.5 | C16—C15—H15A | 108.7 |
C1—C2—H2C | 109.5 | N4—C15—H15B | 108.7 |
H2A—C2—H2C | 109.5 | C16—C15—H15B | 108.7 |
H2B—C2—H2C | 109.5 | H15A—C15—H15B | 107.6 |
N1—C3—C4 | 113.69 (19) | C15—C16—H16A | 109.5 |
N1—C3—H3A | 108.8 | C15—C16—H16B | 109.5 |
C4—C3—H3A | 108.8 | H16A—C16—H16B | 109.5 |
N1—C3—H3B | 108.8 | C15—C16—H16C | 109.5 |
C4—C3—H3B | 108.8 | H16A—C16—H16C | 109.5 |
H3A—C3—H3B | 107.7 | H16B—C16—H16C | 109.5 |
C3—C4—H4A | 109.5 | O1—N1—C3 | 110.38 (16) |
C3—C4—H4B | 109.5 | O1—N1—C1 | 109.45 (14) |
H4A—C4—H4B | 109.5 | C3—N1—C1 | 115.00 (16) |
C3—C4—H4C | 109.5 | O1—N1—V1 | 61.13 (8) |
H4A—C4—H4C | 109.5 | C3—N1—V1 | 121.56 (12) |
H4B—C4—H4C | 109.5 | C1—N1—V1 | 122.23 (13) |
N2—C5—C6 | 112.29 (19) | O2—N2—C7 | 111.01 (16) |
N2—C5—H5A | 109.1 | O2—N2—C5 | 109.19 (15) |
C6—C5—H5A | 109.1 | C7—N2—C5 | 116.45 (17) |
N2—C5—H5B | 109.1 | O2—N2—V1 | 61.65 (8) |
C6—C5—H5B | 109.1 | C7—N2—V1 | 120.83 (12) |
H5A—C5—H5B | 107.9 | C5—N2—V1 | 121.08 (14) |
C5—C6—H6A | 109.5 | O3—N3—C11 | 110.43 (15) |
C5—C6—H6B | 109.5 | O3—N3—C9 | 110.55 (16) |
H6A—C6—H6B | 109.5 | C11—N3—C9 | 116.07 (17) |
C5—C6—H6C | 109.5 | O3—N3—V2 | 61.72 (8) |
H6A—C6—H6C | 109.5 | C11—N3—V2 | 121.14 (14) |
H6B—C6—H6C | 109.5 | C9—N3—V2 | 120.94 (13) |
N2—C7—C8 | 114.75 (19) | O4—N4—C15 | 110.75 (15) |
N2—C7—H7A | 108.6 | O4—N4—C13 | 109.80 (14) |
C8—C7—H7A | 108.6 | C15—N4—C13 | 115.23 (17) |
N2—C7—H7B | 108.6 | O4—N4—V2 | 60.75 (8) |
C8—C7—H7B | 108.6 | C15—N4—V2 | 121.92 (12) |
H7A—C7—H7B | 107.6 | C13—N4—V2 | 121.50 (14) |
C7—C8—H8A | 109.5 | N1—O1—V1 | 77.86 (9) |
C7—C8—H8B | 109.5 | N2—O2—V1 | 76.92 (9) |
H8A—C8—H8B | 109.5 | N3—O3—V2 | 76.91 (9) |
C7—C8—H8C | 109.5 | N4—O4—V2 | 78.23 (8) |
H8A—C8—H8C | 109.5 | V1—O5—V2 | 154.12 (8) |
H8B—C8—H8C | 109.5 | O7—V1—O5 | 118.13 (7) |
N3—C9—C10 | 114.9 (2) | O7—V1—O1 | 107.65 (8) |
N3—C9—H9A | 108.5 | O5—V1—O1 | 116.89 (6) |
C10—C9—H9A | 108.5 | O7—V1—O2 | 109.80 (7) |
N3—C9—H9B | 108.6 | O5—V1—O2 | 115.71 (6) |
C10—C9—H9B | 108.5 | O1—V1—O2 | 83.41 (6) |
H9A—C9—H9B | 107.5 | O7—V1—N2 | 94.45 (7) |
C9—C10—H10A | 109.5 | O5—V1—N2 | 93.29 (6) |
C9—C10—H10B | 109.5 | O1—V1—N2 | 124.84 (6) |
H10A—C10—H10B | 109.5 | O2—V1—N2 | 41.43 (6) |
C9—C10—H10C | 109.5 | O7—V1—N1 | 94.77 (8) |
H10A—C10—H10C | 109.5 | O5—V1—N1 | 92.39 (6) |
H10B—C10—H10C | 109.5 | O1—V1—N1 | 41.01 (6) |
N3—C11—C12 | 112.42 (18) | O2—V1—N1 | 124.23 (6) |
N3—C11—H11A | 109.1 | N2—V1—N1 | 165.33 (7) |
C12—C11—H11A | 109.1 | O6—V2—O5 | 117.86 (7) |
N3—C11—H11B | 109.1 | O6—V2—O4 | 109.61 (7) |
C12—C11—H11B | 109.1 | O5—V2—O4 | 115.35 (6) |
H11A—C11—H11B | 107.9 | O6—V2—O3 | 107.91 (7) |
C11—C12—H12A | 109.5 | O5—V2—O3 | 117.74 (6) |
C11—C12—H12B | 109.5 | O4—V2—O3 | 83.15 (6) |
H12A—C12—H12B | 109.5 | O6—V2—N3 | 95.01 (7) |
C11—C12—H12C | 109.5 | O5—V2—N3 | 93.08 (6) |
H12A—C12—H12C | 109.5 | O4—V2—N3 | 124.33 (6) |
H12B—C12—H12C | 109.5 | O3—V2—N3 | 41.37 (6) |
N4—C13—C14 | 113.11 (18) | O6—V2—N4 | 94.26 (7) |
N4—C13—H13A | 109.0 | O5—V2—N4 | 92.92 (6) |
C14—C13—H13A | 109.0 | O4—V2—N4 | 41.02 (6) |
N4—C13—H13B | 109.0 | O3—V2—N4 | 124.18 (6) |
C14—C13—H13B | 109.0 | N3—V2—N4 | 165.06 (6) |
H13A—C13—H13B | 107.8 |
Experimental details
Crystal data | |
Chemical formula | [V2(C4H10NO)4O3] |
Mr | 502.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 14.6106 (3), 10.2624 (2), 19.4547 (3) |
β (°) | 120.744 (1) |
V (Å3) | 2507.07 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.78 |
Crystal size (mm) | 0.32 × 0.28 × 0.26 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28459, 4419, 3767 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.090, 1.05 |
No. of reflections | 4418 |
No. of parameters | 270 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.15 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), XP in SHELXTL (Sheldrick, 2008).
Bond lengths | Reported | This work | Bond angles | Reported | This work |
V1—N1 | 2.079 (4) | 2.0906 (16) | O1—V1—N1 | 41.1 (1) | 41.01 (6) |
V1—N2 | 2.061 (4) | 2.0797 (16) | O1—V1—O2 | 83.4 (1) | 83.41 (6) |
V1—O1 | 1.851 (3) | 1.8726 (14) | O3—V2—O4 | 83.3 (1) | 83.15 (6) |
V1—O2 | 1.873 (3) | 1.8790 (14) | O5—V1—O7 | 117.5 (1) | 118.13 (7) |
V1—O5 | 1.805 (3) | 1.8139 (11) | N1—V1—N2 | 165.5 (1) | 165.33 (7) |
V1—O7 | 1.599 (3) | 1.6012 (15) | V1—O5—V2 | 154.3 (1) | 154.12 (8) |
O1—N1 | 1.398 (5) | 1.403 (2) | O5—V2—O6 | 117.6 (1) | 117.86 (7) |
O2—N2 | 1.400 (5) | 1.413 (2) | O2—V1—N2 | 41.3 (1) | 41.43 (6) |
O3—N3 | 1.409 (5) | 1.408 (2) | O3—V2—N3 | 41.2 (1) | 41.37 (6) |
O4—N4 | 1.402 (5) | 1.408 (2) | O4—V2—N4 | 41.2 (1) | 41.02 (6) |
Acknowledgements
The authors gratefully acknowledge financial support from the East China Normal University Course `Comprehensive Chemistry Experiment Construction and Reform' (2008–2010) (project No. 521 J1265) and from the Scientific Research Foundation of the Education Department of Heilongjiang Province (grant No. 11544005).
References
Bondi, A. J. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Huyer, G., Liu, S., Kelly, J., Moffat, J., Payette, P., Kennedy, B., Tsaprailis, G., Gresser, M. J. & Ramachandran, C. (1997). J. Biol. Chem. 272, 843–851. CrossRef CAS PubMed Web of Science Google Scholar
Nxumalo, F., Glover, N. R. & Tracey, A. S. (1998). J. Biol. Inorg. Chem. 3, 534–542. CrossRef CAS Google Scholar
Paul, P. C., Angus-Dunne, S. J., Batchelor, R. J., Einstein, F. W. B. & Tracey, A. S. (1997). Can. J. Chem. 75, 429–440. CrossRef CAS Google Scholar
Posner, B. I., Faure, R., Burgess, J. W., Bevan, A. P., Lachance, D., Zhang-Sun, G., Fantus, I. G., Ng, J. B., Hall, D. A. & Lum, B. S. (1994). J. Biol. Chem. 269, 4596–4604. CAS PubMed Web of Science Google Scholar
Saussine, L., Mimoun, H., Mitschler, A. & Fisher, J. (1980). Nouv. J. Chim. 4, 235–237. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wieghardt, K., Holzbach, W. & Weiss, J. (1981). Inorg. Chem. 20, 3436–3439. CrossRef CAS Google Scholar
Zhang, Q.-Y., Zhang, H.-Q., Kong, A.-G., Yang, Q. & Shan, Y.-K. (2009). Acta Cryst. C65, m401–m403. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, Q. Y., Zhang, H. Q., Kong, A. G., Yang, Q. & Shan, Y. K. (2010). Z. Naturforsch. Teil B, 65, 157—162. Google Scholar
Zhou, X. W., Chen, Z., Chen, Q. X., Ye, J. L., Huang, P. Q. & Wu, Q. Y. (2000). Acta Biochem. Biophys. Sin. (Shanghai), 32, 133—138. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure of the title compound, [(VO(C4H10NO)2)2O], was first reported by Saussine et al. (1980). However, because atomic coordinates and displacement parameters have not been deposited (or are available) with the previous study, it is of interest to the public domain that this structure has been re-determined and to have access to the fully reported data.
Peroxidovanadium complexes are good insulin-mimetic compounds (Posner et al., 1994; Zhou et al., 2000). Studies suggest that the insulin-mimetic properties of peroxidovanadates are related to its oxidation at an active-site cysteine of the phosphatase (PTPs) that negatively regulate insulin receptor activation and signaling (Huyer et al., 1997). Hydroxylamine is related to hydrogen peroxide and it forms some complexes with vanadium that are structurally similar to those formed with hydrogen peroxide. It is also reported that the vanadium-hydroxylamine complex, bis(N,N-dimethylhydroxamido)hydroxooxovanadate (DMHAV), is a potent inhibitor of the protein tyrosine phosphatase-1B (PTP1B), and that this inhibition does not involve an oxidative process. Molecular modelling studies suggest that the main stabilizing interaction of DMHAV in PTP1B are a cyclic H-bonded structure involving the conserved active site aspartate and hydrophobic stabilization interactions with the methyl groups of DMHAV (Nxumalo et al., 1998). To gain further insight into the insulin mimetic actions of hydroxylamine complex, we have synthesized a group of vanadium-hydroxylamine complexes, including vanadium-aminoacids and vanadium-carboxylic acid hydroxylamido complexes (Zhang et al., 2009; 2010)2. Here we report the synthesis and the redetermination of the structure of the title compound, [(VO(C4H10NO)2)2O]. The title compound was synthesized from ammonium metavanadate, DL-valine and sodium hydroxide. Compared to reported synthetic steps, the use of an aqueous reaction system and the vanadium source all simplifies the synthesis procedure; DL-valine may play a buffer role.
The molecular structure is shown in Fig. 1. In the crystal, no intermolecular separations significantly less than the sums of the appropriate van der Waals radii (Bondi, 1964) are found. The two vanadium atoms are six-coordinate within a considerably distorted octahedral coordination geometry defined by two deprotonated N,O-bidentate diethylhydroxylamine groups, an terminal and a bridging oxide ligand. In order to compare the difference of the previous determination and our work, some important bond length and bond angles are listed in Table 1.
A structurally similar dimethylhydroxamidovanadium(V) complex was previously prepared in a nonaqueous solvent system (Paul et al., 1997; Wieghardt et al., 1981).