metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m860-m861

Redetermination of μ-oxido-bis­­[bis­­(N,N-di­ethyl­hydroxyl­aminato)­oxido­vanadium(V)]

aDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China
*Correspondence e-mail: qyzhang@chem.ecnu.edu.cn

(Received 19 May 2011; accepted 29 May 2011; online 4 June 2011)

In comparison with the previous determination [Saussine, Mimoun, Mitschler & Fisher (1980[Saussine, L., Mimoun, H., Mitschler, A. & Fisher, J. (1980). Nouv. J. Chim. 4, 235-237.]). Nouv. J. Chim. 4, 235–237] of the title compound, [V2(C4H10NO)4O3], the current study reports an improved precision of the derived geometric parameters, along with the deposition of all coordinates and displacement parameters. The two VV atoms are each surrounded by two deprotonated N,O-bidentate diethyl­hydroxy­laminate groups, and a terminal and a bridging oxide ligand, in a distorted octa­hedral coordination geometry. The crystal packing is accomplished by van der Waals inter­actions.

Related literature

For the previous determination, see: Saussine et al. (1980[Saussine, L., Mimoun, H., Mitschler, A. & Fisher, J. (1980). Nouv. J. Chim. 4, 235-237.]). For the pharmacological activities of vanadium complexes, see: Posner et al. (1994[Posner, B. I., Faure, R., Burgess, J. W., Bevan, A. P., Lachance, D., Zhang-Sun, G., Fantus, I. G., Ng, J. B., Hall, D. A. & Lum, B. S. (1994). J. Biol. Chem. 269, 4596-4604.]); Zhou et al. (2000[Zhou, X. W., Chen, Z., Chen, Q. X., Ye, J. L., Huang, P. Q. & Wu, Q. Y. (2000). Acta Biochem. Biophys. Sin. (Shanghai), 32, 133—138.]); Huyer et al. (1997[Huyer, G., Liu, S., Kelly, J., Moffat, J., Payette, P., Kennedy, B., Tsaprailis, G., Gresser, M. J. & Ramachandran, C. (1997). J. Biol. Chem. 272, 843-851.]); Nxumalo et al. (1998[Nxumalo, F., Glover, N. R. & Tracey, A. S. (1998). J. Biol. Inorg. Chem. 3, 534-542.]). For related hydroxyl­amide complexes, see: Zhang et al. (2009[Zhang, Q.-Y., Zhang, H.-Q., Kong, A.-G., Yang, Q. & Shan, Y.-K. (2009). Acta Cryst. C65, m401-m403.], 2010[Zhang, Q. Y., Zhang, H. Q., Kong, A. G., Yang, Q. & Shan, Y. K. (2010). Z. Naturforsch. Teil B, 65, 157—162.]); Paul et al. (1997[Paul, P. C., Angus-Dunne, S. J., Batchelor, R. J., Einstein, F. W. B. & Tracey, A. S. (1997). Can. J. Chem. 75, 429-440.]); Wieghardt et al. (1981[Wieghardt, K., Holzbach, W. & Weiss, J. (1981). Inorg. Chem. 20, 3436-3439.]). For van der Waals radii, see: Bondi (1964[Bondi, A. J. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • [V2(C4H10NO)4O3]

  • Mr = 502.40

  • Monoclinic, P 21 /c

  • a = 14.6106 (3) Å

  • b = 10.2624 (2) Å

  • c = 19.4547 (3) Å

  • β = 120.744 (1)°

  • V = 2507.07 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 28459 measured reflections

  • 4419 independent reflections

  • 3767 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.090

  • S = 1.05

  • 4418 reflections

  • 270 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Comparison of bond lengths (Å) and angles (°) between the previous determination (Saussine et al., 1980[Saussine, L., Mimoun, H., Mitschler, A. & Fisher, J. (1980). Nouv. J. Chim. 4, 235-237.]) and the current study

Bond lengths Reported This work Bond angles Reported This work
V1—N1 2.079 (4) 2.0906 (16) O1—V1—N1 41.1 (1) 41.01 (6)
V1—N2 2.061 (4) 2.0797 (16) O1—V1—O2 83.4 (1) 83.41 (6)
V1—O1 1.851 (3) 1.8726 (14) O3—V2—O4 83.3 (1) 83.15 (6)
V1—O2 1.873 (3) 1.8790 (14) O5—V1—O7 117.5 (1) 118.13 (7)
V1—O5 1.805 (3) 1.8139 (11) N1—V1—N2 165.5 (1) 165.33 (7)
V1—O7 1.599 (3) 1.6012 (15) V1—O5—V2 154.3 (1) 154.12 (8)
O1—N1 1.398 (5) 1.403 (2) O5—V2—O6 117.6 (1) 117.86 (7)
O2—N2 1.400 (5) 1.413 (2) O2—V1—N2 41.3 (1) 41.43 (6)
O3—N3 1.409 (5) 1.408 (2) O3—V2—N3 41.2 (1) 41.37 (6)
O4—N4 1.402 (5) 1.408 (2) O4—V2—N4 41.2 (1) 41.02 (6)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of the title compound, [(VO(C4H10NO)2)2O], was first reported by Saussine et al. (1980). However, because atomic coordinates and displacement parameters have not been deposited (or are available) with the previous study, it is of interest to the public domain that this structure has been re-determined and to have access to the fully reported data.

Peroxidovanadium complexes are good insulin-mimetic compounds (Posner et al., 1994; Zhou et al., 2000). Studies suggest that the insulin-mimetic properties of peroxidovanadates are related to its oxidation at an active-site cysteine of the phosphatase (PTPs) that negatively regulate insulin receptor activation and signaling (Huyer et al., 1997). Hydroxylamine is related to hydrogen peroxide and it forms some complexes with vanadium that are structurally similar to those formed with hydrogen peroxide. It is also reported that the vanadium-hydroxylamine complex, bis(N,N-dimethylhydroxamido)hydroxooxovanadate (DMHAV), is a potent inhibitor of the protein tyrosine phosphatase-1B (PTP1B), and that this inhibition does not involve an oxidative process. Molecular modelling studies suggest that the main stabilizing interaction of DMHAV in PTP1B are a cyclic H-bonded structure involving the conserved active site aspartate and hydrophobic stabilization interactions with the methyl groups of DMHAV (Nxumalo et al., 1998). To gain further insight into the insulin mimetic actions of hydroxylamine complex, we have synthesized a group of vanadium-hydroxylamine complexes, including vanadium-aminoacids and vanadium-carboxylic acid hydroxylamido complexes (Zhang et al., 2009; 2010)2. Here we report the synthesis and the redetermination of the structure of the title compound, [(VO(C4H10NO)2)2O]. The title compound was synthesized from ammonium metavanadate, DL-valine and sodium hydroxide. Compared to reported synthetic steps, the use of an aqueous reaction system and the vanadium source all simplifies the synthesis procedure; DL-valine may play a buffer role.

The molecular structure is shown in Fig. 1. In the crystal, no intermolecular separations significantly less than the sums of the appropriate van der Waals radii (Bondi, 1964) are found. The two vanadium atoms are six-coordinate within a considerably distorted octahedral coordination geometry defined by two deprotonated N,O-bidentate diethylhydroxylamine groups, an terminal and a bridging oxide ligand. In order to compare the difference of the previous determination and our work, some important bond length and bond angles are listed in Table 1.

A structurally similar dimethylhydroxamidovanadium(V) complex was previously prepared in a nonaqueous solvent system (Paul et al., 1997; Wieghardt et al., 1981).

Related literature top

For the previous determination, see: Saussine et al. (1980). For the pharmacological activities of vanadium complexes, see: Posner et al. (1994); Zhou et al. (2000); Huyer et al. (1997); Nxumalo et al. (1998). For related hydroxylamide complexes, see: Zhang et al. (2009, 2010); Paul et al. (1997); Wieghardt et al. (1981). For van der Waals radii, see: Bondi (1964).

Experimental top

To a solution of sodium hydroxide (0.2390 g,5.975 mmol) in H2O (10 ml), ammonium metavanadate (0.2142 g,1.831 mmol) and DL-valine were added under stirring. The resulting colorless solution was stirred for approximately two minutes in an ice bath. 2 ml of N,N-diethylhydroxylamine (25.9 mmol) were added dropwise. The mixture was stirred for approximately five minutes, and after filtration of the solution, yellow crystals were obtained by slow evaporation of a mixture of the filtrate and ethanol at 277 K over a period of a few days.

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 Å for phenyl, 0.96 Å for methyl and 0.97 Å for methylene H atoms, and refined as riding, with Uiso(H) = 1.2Ueq(C) for phenyl and methylene H, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement parameters shown at the 30% probability level.
µ-oxido-bis[bis(N,N-diethylhydroxylaminato)oxidovanadium(V)] top
Crystal data top
[V2(C4H10NO)4O3]F(000) = 1064.0
Mr = 502.40Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2y b cCell parameters from 9966 reflections
a = 14.6106 (3) Åθ = 2.3–27.3°
b = 10.2624 (2) ŵ = 0.78 mm1
c = 19.4547 (3) ÅT = 296 K
β = 120.744 (1)°Block, yellow
V = 2507.07 (8) Å30.32 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3767 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ϕ and ω scansh = 1717
28459 measured reflectionsk = 1212
4419 independent reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3492P]
where P = (Fo2 + 2Fc2)/3
4418 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
[V2(C4H10NO)4O3]V = 2507.07 (8) Å3
Mr = 502.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6106 (3) ŵ = 0.78 mm1
b = 10.2624 (2) ÅT = 296 K
c = 19.4547 (3) Å0.32 × 0.28 × 0.26 mm
β = 120.744 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3767 reflections with I > 2σ(I)
28459 measured reflectionsRint = 0.028
4419 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
4418 reflectionsΔρmin = 0.15 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26506 (19)1.1932 (2)0.82864 (15)0.0639 (6)
H1A0.23451.14260.85410.077*
H1B0.23631.28080.82060.077*
C20.3832 (2)1.1991 (3)0.88316 (17)0.0826 (8)
H2A0.41091.11230.89830.124*
H2B0.39971.24820.93010.124*
H2C0.41481.24040.85600.124*
C30.27143 (18)1.2033 (2)0.70312 (14)0.0545 (5)
H3A0.24481.15910.65230.065*
H3B0.34861.19850.73180.065*
C40.2383 (2)1.3452 (2)0.68728 (18)0.0807 (8)
H4A0.16321.35210.66700.121*
H4B0.25411.37970.64860.121*
H4C0.27651.39380.73620.121*
C50.02455 (18)0.7146 (2)0.70800 (15)0.0607 (6)
H5A0.05060.69640.67270.073*
H5B0.03200.76600.75240.073*
C60.0836 (2)0.5883 (3)0.7393 (2)0.0896 (9)
H6A0.06910.53260.69530.134*
H6B0.06060.54630.77200.134*
H6C0.15860.60530.77070.134*
C70.05033 (17)0.7317 (2)0.59107 (14)0.0570 (5)
H7A0.09350.65350.60530.068*
H7B0.07720.79190.56710.068*
C80.0630 (2)0.6967 (3)0.52945 (18)0.0905 (9)
H8A0.08940.63360.55150.136*
H8B0.06510.66070.48310.136*
H8C0.10660.77350.51450.136*
C90.45814 (17)0.8816 (2)0.84272 (13)0.0573 (5)
H9A0.41810.86330.86890.069*
H9B0.42950.96090.81190.069*
C100.5730 (2)0.9054 (3)0.90619 (16)0.0805 (8)
H10A0.60160.82880.93870.121*
H10B0.57710.97740.93910.121*
H10C0.61340.92500.88110.121*
C110.47814 (17)0.6443 (2)0.82376 (13)0.0568 (5)
H11A0.55430.64770.86110.068*
H11B0.46520.58190.78230.068*
C120.4235 (2)0.5990 (3)0.86699 (16)0.0735 (7)
H12A0.44520.65250.91330.110*
H12B0.44260.51000.88330.110*
H12C0.34780.60540.83210.110*
C130.24236 (19)0.7368 (2)0.48238 (14)0.0595 (6)
H13A0.28770.66200.50830.071*
H13B0.25880.76940.44310.071*
C140.1285 (2)0.6940 (3)0.44040 (17)0.0908 (10)
H14A0.11170.66130.47890.136*
H14B0.11760.62650.40280.136*
H14C0.08320.76670.41260.136*
C150.21781 (18)0.9668 (2)0.51072 (13)0.0513 (5)
H15A0.22981.02260.55480.062*
H15B0.14150.95500.47670.062*
C160.2593 (2)1.0349 (2)0.46331 (15)0.0652 (6)
H16A0.33551.04030.49490.098*
H16B0.22981.12110.44960.098*
H16C0.23890.98660.41530.098*
N10.23255 (12)1.13458 (16)0.74962 (10)0.0459 (4)
N20.06387 (12)0.79060 (15)0.66428 (10)0.0449 (4)
N30.44108 (12)0.77385 (16)0.78718 (10)0.0457 (4)
N40.26690 (12)0.83933 (16)0.54295 (9)0.0428 (4)
O10.12126 (11)1.12294 (14)0.70484 (10)0.0552 (4)
O20.01895 (10)0.91675 (14)0.64920 (9)0.0531 (4)
O30.48410 (11)0.80520 (15)0.73892 (9)0.0549 (4)
O40.37801 (10)0.85159 (14)0.59304 (8)0.0507 (3)
O50.24996 (9)0.90343 (12)0.67831 (7)0.0382 (3)
O60.30604 (12)0.64364 (13)0.64972 (9)0.0542 (4)
O70.20071 (12)0.90576 (16)0.80668 (9)0.0600 (4)
V10.16510 (2)0.94873 (3)0.717301 (19)0.03928 (11)
V20.33748 (2)0.79430 (3)0.665006 (18)0.03807 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0742 (15)0.0660 (15)0.0695 (16)0.0132 (12)0.0496 (13)0.0276 (12)
C20.0823 (18)0.095 (2)0.0673 (17)0.0157 (15)0.0358 (15)0.0339 (15)
C30.0642 (13)0.0473 (12)0.0655 (14)0.0118 (10)0.0430 (12)0.0099 (10)
C40.101 (2)0.0492 (14)0.089 (2)0.0061 (13)0.0461 (17)0.0059 (13)
C50.0549 (12)0.0666 (15)0.0749 (16)0.0152 (11)0.0434 (12)0.0038 (12)
C60.0785 (18)0.088 (2)0.111 (2)0.0012 (15)0.0552 (18)0.0345 (18)
C70.0551 (12)0.0623 (14)0.0582 (14)0.0086 (10)0.0322 (11)0.0148 (11)
C80.0680 (17)0.107 (2)0.0767 (19)0.0148 (15)0.0226 (14)0.0346 (17)
C90.0568 (13)0.0577 (13)0.0517 (13)0.0029 (10)0.0236 (10)0.0025 (10)
C100.0683 (16)0.093 (2)0.0618 (16)0.0159 (14)0.0202 (13)0.0006 (14)
C110.0548 (12)0.0564 (13)0.0530 (13)0.0133 (10)0.0232 (10)0.0145 (10)
C120.0768 (16)0.0700 (16)0.0752 (18)0.0056 (13)0.0400 (14)0.0153 (13)
C130.0819 (16)0.0566 (13)0.0534 (13)0.0070 (11)0.0443 (12)0.0048 (10)
C140.104 (2)0.110 (2)0.0738 (19)0.0393 (18)0.0572 (18)0.0425 (17)
C150.0622 (13)0.0507 (12)0.0485 (12)0.0118 (10)0.0336 (10)0.0089 (9)
C160.0760 (15)0.0692 (16)0.0545 (14)0.0012 (12)0.0363 (12)0.0151 (11)
N10.0460 (9)0.0460 (9)0.0570 (10)0.0054 (7)0.0344 (8)0.0132 (8)
N20.0414 (8)0.0466 (9)0.0529 (10)0.0041 (7)0.0287 (8)0.0039 (7)
N30.0451 (9)0.0504 (10)0.0449 (9)0.0065 (7)0.0254 (8)0.0084 (7)
N40.0476 (9)0.0447 (9)0.0434 (9)0.0063 (7)0.0286 (8)0.0018 (7)
O10.0436 (7)0.0495 (8)0.0786 (10)0.0023 (6)0.0356 (7)0.0141 (7)
O20.0402 (7)0.0527 (8)0.0661 (9)0.0004 (6)0.0268 (7)0.0056 (7)
O30.0411 (7)0.0745 (10)0.0535 (9)0.0083 (7)0.0273 (7)0.0160 (7)
O40.0454 (7)0.0667 (9)0.0497 (8)0.0079 (6)0.0314 (7)0.0085 (7)
O50.0402 (6)0.0380 (7)0.0443 (7)0.0035 (5)0.0272 (6)0.0019 (5)
O60.0693 (9)0.0384 (8)0.0581 (9)0.0081 (7)0.0349 (8)0.0032 (6)
O70.0642 (9)0.0797 (11)0.0483 (9)0.0177 (8)0.0375 (8)0.0059 (7)
V10.03825 (18)0.0450 (2)0.0438 (2)0.00289 (13)0.02761 (16)0.00409 (14)
V20.03993 (18)0.03744 (19)0.0434 (2)0.00687 (12)0.02607 (15)0.00462 (13)
Geometric parameters (Å, º) top
C1—N11.485 (3)C11—C121.499 (3)
C1—C21.495 (3)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9700
C1—H1B0.9700C12—H12A0.9600
C2—H2A0.9600C12—H12B0.9600
C2—H2B0.9600C12—H12C0.9600
C2—H2C0.9600C13—N41.481 (3)
C3—N11.471 (3)C13—C141.496 (3)
C3—C41.516 (3)C13—H13A0.9700
C3—H3A0.9700C13—H13B0.9700
C3—H3B0.9700C14—H14A0.9600
C4—H4A0.9600C14—H14B0.9600
C4—H4B0.9600C14—H14C0.9600
C4—H4C0.9600C15—N41.470 (2)
C5—N21.470 (3)C15—C161.509 (3)
C5—C61.503 (4)C15—H15A0.9700
C5—H5A0.9700C15—H15B0.9700
C5—H5B0.9700C16—H16A0.9600
C6—H6A0.9600C16—H16B0.9600
C6—H6B0.9600C16—H16C0.9600
C6—H6C0.9600N1—O11.403 (2)
C7—N21.464 (3)N1—V12.0906 (16)
C7—C81.509 (3)N2—O21.413 (2)
C7—H7A0.9700N2—V12.0797 (16)
C7—H7B0.9700N3—O31.408 (2)
C8—H8A0.9600N3—V22.0751 (17)
C8—H8B0.9600N4—O41.408 (2)
C8—H8C0.9600N4—V22.1004 (16)
C9—N31.476 (3)O1—V11.8726 (14)
C9—C101.511 (3)O2—V11.8790 (14)
C9—H9A0.9700O3—V21.8761 (14)
C9—H9B0.9700O4—V21.8719 (13)
C10—H10A0.9600O5—V11.8139 (11)
C10—H10B0.9600O5—V21.8151 (12)
C10—H10C0.9600O6—V21.5970 (14)
C11—N31.474 (3)O7—V11.6012 (15)
N1—C1—C2113.14 (18)C13—C14—H14A109.5
N1—C1—H1A109.0C13—C14—H14B109.5
C2—C1—H1A109.0H14A—C14—H14B109.5
N1—C1—H1B109.0C13—C14—H14C109.5
C2—C1—H1B109.0H14A—C14—H14C109.5
H1A—C1—H1B107.8H14B—C14—H14C109.5
C1—C2—H2A109.5N4—C15—C16114.32 (17)
C1—C2—H2B109.5N4—C15—H15A108.7
H2A—C2—H2B109.5C16—C15—H15A108.7
C1—C2—H2C109.5N4—C15—H15B108.7
H2A—C2—H2C109.5C16—C15—H15B108.7
H2B—C2—H2C109.5H15A—C15—H15B107.6
N1—C3—C4113.69 (19)C15—C16—H16A109.5
N1—C3—H3A108.8C15—C16—H16B109.5
C4—C3—H3A108.8H16A—C16—H16B109.5
N1—C3—H3B108.8C15—C16—H16C109.5
C4—C3—H3B108.8H16A—C16—H16C109.5
H3A—C3—H3B107.7H16B—C16—H16C109.5
C3—C4—H4A109.5O1—N1—C3110.38 (16)
C3—C4—H4B109.5O1—N1—C1109.45 (14)
H4A—C4—H4B109.5C3—N1—C1115.00 (16)
C3—C4—H4C109.5O1—N1—V161.13 (8)
H4A—C4—H4C109.5C3—N1—V1121.56 (12)
H4B—C4—H4C109.5C1—N1—V1122.23 (13)
N2—C5—C6112.29 (19)O2—N2—C7111.01 (16)
N2—C5—H5A109.1O2—N2—C5109.19 (15)
C6—C5—H5A109.1C7—N2—C5116.45 (17)
N2—C5—H5B109.1O2—N2—V161.65 (8)
C6—C5—H5B109.1C7—N2—V1120.83 (12)
H5A—C5—H5B107.9C5—N2—V1121.08 (14)
C5—C6—H6A109.5O3—N3—C11110.43 (15)
C5—C6—H6B109.5O3—N3—C9110.55 (16)
H6A—C6—H6B109.5C11—N3—C9116.07 (17)
C5—C6—H6C109.5O3—N3—V261.72 (8)
H6A—C6—H6C109.5C11—N3—V2121.14 (14)
H6B—C6—H6C109.5C9—N3—V2120.94 (13)
N2—C7—C8114.75 (19)O4—N4—C15110.75 (15)
N2—C7—H7A108.6O4—N4—C13109.80 (14)
C8—C7—H7A108.6C15—N4—C13115.23 (17)
N2—C7—H7B108.6O4—N4—V260.75 (8)
C8—C7—H7B108.6C15—N4—V2121.92 (12)
H7A—C7—H7B107.6C13—N4—V2121.50 (14)
C7—C8—H8A109.5N1—O1—V177.86 (9)
C7—C8—H8B109.5N2—O2—V176.92 (9)
H8A—C8—H8B109.5N3—O3—V276.91 (9)
C7—C8—H8C109.5N4—O4—V278.23 (8)
H8A—C8—H8C109.5V1—O5—V2154.12 (8)
H8B—C8—H8C109.5O7—V1—O5118.13 (7)
N3—C9—C10114.9 (2)O7—V1—O1107.65 (8)
N3—C9—H9A108.5O5—V1—O1116.89 (6)
C10—C9—H9A108.5O7—V1—O2109.80 (7)
N3—C9—H9B108.6O5—V1—O2115.71 (6)
C10—C9—H9B108.5O1—V1—O283.41 (6)
H9A—C9—H9B107.5O7—V1—N294.45 (7)
C9—C10—H10A109.5O5—V1—N293.29 (6)
C9—C10—H10B109.5O1—V1—N2124.84 (6)
H10A—C10—H10B109.5O2—V1—N241.43 (6)
C9—C10—H10C109.5O7—V1—N194.77 (8)
H10A—C10—H10C109.5O5—V1—N192.39 (6)
H10B—C10—H10C109.5O1—V1—N141.01 (6)
N3—C11—C12112.42 (18)O2—V1—N1124.23 (6)
N3—C11—H11A109.1N2—V1—N1165.33 (7)
C12—C11—H11A109.1O6—V2—O5117.86 (7)
N3—C11—H11B109.1O6—V2—O4109.61 (7)
C12—C11—H11B109.1O5—V2—O4115.35 (6)
H11A—C11—H11B107.9O6—V2—O3107.91 (7)
C11—C12—H12A109.5O5—V2—O3117.74 (6)
C11—C12—H12B109.5O4—V2—O383.15 (6)
H12A—C12—H12B109.5O6—V2—N395.01 (7)
C11—C12—H12C109.5O5—V2—N393.08 (6)
H12A—C12—H12C109.5O4—V2—N3124.33 (6)
H12B—C12—H12C109.5O3—V2—N341.37 (6)
N4—C13—C14113.11 (18)O6—V2—N494.26 (7)
N4—C13—H13A109.0O5—V2—N492.92 (6)
C14—C13—H13A109.0O4—V2—N441.02 (6)
N4—C13—H13B109.0O3—V2—N4124.18 (6)
C14—C13—H13B109.0N3—V2—N4165.06 (6)
H13A—C13—H13B107.8

Experimental details

Crystal data
Chemical formula[V2(C4H10NO)4O3]
Mr502.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.6106 (3), 10.2624 (2), 19.4547 (3)
β (°) 120.744 (1)
V3)2507.07 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28459, 4419, 3767
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.090, 1.05
No. of reflections4418
No. of parameters270
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.15

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), XP in SHELXTL (Sheldrick, 2008).

Comparison of bond lengths (Å) and angles (°) between the previous determination (Saussine et al., 1980) and the current study top
Bond lengthsReportedThis workBond anglesReportedThis work
V1—N12.079 (4)2.0906 (16)O1—V1—N141.1 (1)41.01 (6)
V1—N22.061 (4)2.0797 (16)O1—V1—O283.4 (1)83.41 (6)
V1—O11.851 (3)1.8726 (14)O3—V2—O483.3 (1)83.15 (6)
V1—O21.873 (3)1.8790 (14)O5—V1—O7117.5 (1)118.13 (7)
V1—O51.805 (3)1.8139 (11)N1—V1—N2165.5 (1)165.33 (7)
V1—O71.599 (3)1.6012 (15)V1—O5—V2154.3 (1)154.12 (8)
O1—N11.398 (5)1.403 (2)O5—V2—O6117.6 (1)117.86 (7)
O2—N21.400 (5)1.413 (2)O2—V1—N241.3 (1)41.43 (6)
O3—N31.409 (5)1.408 (2)O3—V2—N341.2 (1)41.37 (6)
O4—N41.402 (5)1.408 (2)O4—V2—N441.2 (1)41.02 (6)
 

Acknowledgements

The authors gratefully acknowledge financial support from the East China Normal University Course `Comprehensive Chemistry Experiment Construction and Reform' (2008–2010) (project No. 521 J1265) and from the Scientific Research Foundation of the Education Department of Heilongjiang Province (grant No. 11544005).

References

First citationBondi, A. J. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuyer, G., Liu, S., Kelly, J., Moffat, J., Payette, P., Kennedy, B., Tsaprailis, G., Gresser, M. J. & Ramachandran, C. (1997). J. Biol. Chem. 272, 843–851.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNxumalo, F., Glover, N. R. & Tracey, A. S. (1998). J. Biol. Inorg. Chem. 3, 534–542.  CrossRef CAS Google Scholar
First citationPaul, P. C., Angus-Dunne, S. J., Batchelor, R. J., Einstein, F. W. B. & Tracey, A. S. (1997). Can. J. Chem. 75, 429–440.  CrossRef CAS Google Scholar
First citationPosner, B. I., Faure, R., Burgess, J. W., Bevan, A. P., Lachance, D., Zhang-Sun, G., Fantus, I. G., Ng, J. B., Hall, D. A. & Lum, B. S. (1994). J. Biol. Chem. 269, 4596–4604.  CAS PubMed Web of Science Google Scholar
First citationSaussine, L., Mimoun, H., Mitschler, A. & Fisher, J. (1980). Nouv. J. Chim. 4, 235–237.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieghardt, K., Holzbach, W. & Weiss, J. (1981). Inorg. Chem. 20, 3436–3439.  CrossRef CAS Google Scholar
First citationZhang, Q.-Y., Zhang, H.-Q., Kong, A.-G., Yang, Q. & Shan, Y.-K. (2009). Acta Cryst. C65, m401–m403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Q. Y., Zhang, H. Q., Kong, A. G., Yang, Q. & Shan, Y. K. (2010). Z. Naturforsch. Teil B, 65, 157—162.  Google Scholar
First citationZhou, X. W., Chen, Z., Chen, Q. X., Ye, J. L., Huang, P. Q. & Wu, Q. Y. (2000). Acta Biochem. Biophys. Sin. (Shanghai), 32, 133—138.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m860-m861
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds