metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­{1-[(1H-1,2,3-benzotriazol-1-yl)meth­yl]-1H-imidazole}­sulfato­manganese(II) dihydrate

aDepartment of Geriatrics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, People's Republic of China, and bDepartment of Pharmacy, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: 13623712409@139.com

(Received 25 May 2011; accepted 8 June 2011; online 18 June 2011)

In the title complex, [Mn(SO4)(C10H9N5)(H2O)4]·2H2O, the Mn2+ cation is six-coordinated by one N atom from a 1-[(1H-1,2,3-benzotriazol-1-yl)meth­yl]-1H-imidazole ligand and five O atoms from one monodentate sulfate ligand and four water mol­ecules in a distorted octa­hedral geometry. In the crystal, adjacent mol­ecules are linked through O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional network.

Related literature

For background to complexes based on flexible organic ligands, see: Ma et al. (2011[Ma, L.-F., Li, X.-Q., Meng, Q.-L., Wang, L.-Y., Du, M. & Hou, H.-W. (2011). Cryst. Growth Des. 11, 175-184.]); Meng et al. (2009[Meng, X., Zhu, X., Qi, Y., Hou, H. & Fan, Y. (2009). J. Mol. Struct. 934, 28-36.]); Sanchez et al. (2002[Sanchez, V., Storr, A. & Thompson, R. C. (2002). Can. J. Chem. 80, 133-140.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(SO4)(C10H9N5)(H2O)4]·2H2O

  • Mr = 458.32

  • Triclinic, [P \overline 1]

  • a = 7.5824 (15) Å

  • b = 8.5237 (17) Å

  • c = 15.972 (3) Å

  • α = 98.33 (3)°

  • β = 91.11 (3)°

  • γ = 115.21 (3)°

  • V = 920.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.842, Tmax = 0.878

  • 11432 measured reflections

  • 4337 independent reflections

  • 3890 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.03

  • 4337 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O5 2.1543 (16)
Mn1—O8 2.1854 (15)
Mn1—O7 2.1860 (16)
Mn1—N1 2.2043 (17)
Mn1—O6 2.2142 (17)
Mn1—O1 2.2269 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯O10 0.85 1.79 2.634 (2) 173
O5—H2W⋯O3 0.85 1.92 2.729 (3) 159
O9—H9W⋯O4 0.85 2.02 2.843 (3) 163
O6—H3W⋯O9i 0.85 1.98 2.824 (2) 170
O8—H8W⋯O1i 0.85 2.04 2.885 (2) 176
O7—H6W⋯O4i 0.85 2.03 2.855 (3) 163
O6—H4W⋯O4ii 0.85 1.96 2.805 (2) 173
O7—H5W⋯O9ii 0.85 1.99 2.813 (2) 162
O8—H7W⋯O2iii 0.85 1.87 2.712 (2) 172
O10—H11W⋯O2iii 0.85 2.08 2.842 (3) 150
O10—H12W⋯N5iv 0.85 1.99 2.840 (3) 173
O9—H10W⋯O1v 0.85 2.24 3.083 (2) 173
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of metal-organic frameworks based on flexible organic ligands have been reported since they are good linkers and can influence the structural diversification of the products, including the formation of supramolecular isomers (Ma et al., 2011; Meng et al., 2009; Sanchez et al., 2002). In order to further explore complexes with novel structures, in this work, through the reaction of 1-[1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,3-imidazole (bmi) with manganese sulfate at room temperature, we obtained the title complex, [Mn(SO4)(C10H9N5)(H2O)4](H2O)2, which is reported here.

As shown in Figure 1, the Mn(II) ion features a distorted octahedral coordination geometry and is surrounded by five oxygen atoms from four water molecules and one monodentate sulfate ligand as well as one nitrogen atom from the bmi ligand. Atoms O1, O5, O6, O7 form the equatorial plane, whereas O8 and N1 atoms are located in the apical positions. The bond angle of O(8)—Mn(1)—N(1) is 176.71 (6) °. Intramolecular O—H···O hydrogen bonds stabilize the molecular configuration and O—H···O, O—H···N hydrogen bonds between adjacent molecules consolidate the crystal packing (Fig. 2).

Related literature top

For background to complexes based on flexible organic ligands, see: Ma et al. (2011); Meng et al. (2009); Sanchez et al. (2002).

Experimental top

The ligand 1-[1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,3-imidazole (0.1 mmol) in methanol (4 ml) was added dropwise to an aqueous solution (2 ml) of manganese sulfate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After four weeks colorless crystals with good quality were obtained from the filtrate and dried in air.

Refinement top

H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) and 0.97 (CH2) Å and O-H = 0.85 Å, and with Uiso(H) = 1.2 Ueq(C,O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labelling of the 30% probability ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing plot of the title complex, showing the hydrogen bonding (dashed lines)
Tetraaqua{1-[(1H-1,2,3-benzotriazol-1-yl)methyl]-1H- imidazole}sulfatomanganese(II) dihydrate top
Crystal data top
[Mn(SO4)(C10H9N5)(H2O)4]·2H2OZ = 2
Mr = 458.32F(000) = 474
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5824 (15) ÅCell parameters from 2952 reflections
b = 8.5237 (17) Åθ = 2.6–27.9°
c = 15.972 (3) ŵ = 0.89 mm1
α = 98.33 (3)°T = 293 K
β = 91.11 (3)°Prism, colourless
γ = 115.21 (3)°0.20 × 0.18 × 0.15 mm
V = 920.3 (3) Å3
Data collection top
Rigaku Saturn
diffractometer
4337 independent reflections
Radiation source: fine-focus sealed tube3890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 911
Tmin = 0.842, Tmax = 0.878l = 2020
11432 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.037P)2 + 0.6298P]
where P = (Fo2 + 2Fc2)/3
4337 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Mn(SO4)(C10H9N5)(H2O)4]·2H2Oγ = 115.21 (3)°
Mr = 458.32V = 920.3 (3) Å3
Triclinic, P1Z = 2
a = 7.5824 (15) ÅMo Kα radiation
b = 8.5237 (17) ŵ = 0.89 mm1
c = 15.972 (3) ÅT = 293 K
α = 98.33 (3)°0.20 × 0.18 × 0.15 mm
β = 91.11 (3)°
Data collection top
Rigaku Saturn
diffractometer
4337 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
3890 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.878Rint = 0.022
11432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.88 e Å3
4337 reflectionsΔρmin = 0.42 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.09479 (4)0.68072 (4)0.368939 (17)0.02329 (9)
N10.9825 (2)0.8445 (2)0.31175 (11)0.0291 (4)
N20.7818 (2)0.9044 (2)0.23568 (10)0.0286 (4)
N30.6756 (3)0.8884 (2)0.09051 (11)0.0335 (4)
N40.6786 (3)0.7462 (3)0.04108 (13)0.0463 (5)
N50.7294 (3)0.7876 (3)0.03268 (13)0.0502 (5)
O10.7941 (2)0.51495 (19)0.40066 (9)0.0329 (3)
O20.4595 (3)0.4090 (3)0.34648 (13)0.0563 (5)
O30.6674 (3)0.3117 (2)0.26847 (10)0.0474 (4)
O40.5682 (3)0.2154 (2)0.40145 (11)0.0477 (4)
O51.0451 (2)0.5238 (2)0.24469 (9)0.0369 (3)
H1W1.12900.49240.22310.044*
H2W0.93100.44000.24150.044*
O61.4025 (2)0.84945 (19)0.34976 (10)0.0354 (3)
H3W1.48700.83180.37760.042*
H4W1.44990.96100.36100.042*
O71.1386 (2)0.8208 (2)0.49917 (9)0.0391 (4)
H5W1.17080.93060.51000.047*
H6W1.20730.80240.53580.047*
O81.1938 (2)0.5052 (2)0.42073 (10)0.0380 (4)
H7W1.27670.47020.40120.046*
H8W1.19150.49430.47280.046*
O90.3306 (2)0.1900 (2)0.53910 (10)0.0399 (4)
H9W0.40330.21890.49880.048*
H10W0.30460.27470.55960.048*
O101.3276 (3)0.4486 (2)0.18654 (11)0.0510 (4)
H11W1.36630.40310.22250.061*
H12W1.31720.37530.14230.061*
S10.62136 (7)0.36114 (6)0.35346 (3)0.02383 (11)
C10.8275 (3)0.7791 (3)0.25673 (14)0.0323 (4)
H1A0.75790.65990.23500.039*
C21.0396 (3)1.0233 (3)0.32650 (14)0.0349 (5)
H2A1.14631.10550.36290.042*
C30.9168 (4)1.0606 (3)0.27995 (15)0.0392 (5)
H3A0.92301.17140.27830.047*
C40.6192 (3)0.8766 (3)0.17646 (13)0.0364 (5)
H4A0.51340.76150.17730.044*
H4B0.57140.96400.19450.044*
C50.7249 (3)1.0253 (3)0.04678 (12)0.0309 (4)
C60.7348 (3)1.1929 (3)0.06646 (15)0.0409 (5)
H6A0.70781.23560.11920.049*
C70.7875 (4)1.2921 (4)0.00210 (19)0.0544 (7)
H7A0.79781.40610.01200.065*
C80.8259 (4)1.2264 (5)0.07757 (19)0.0605 (8)
H8A0.86191.29850.11870.073*
C90.8125 (4)1.0620 (5)0.09655 (16)0.0546 (7)
H9A0.83691.01950.14990.065*
C100.7603 (3)0.9581 (3)0.03262 (13)0.0391 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02459 (15)0.02428 (16)0.02242 (15)0.01142 (12)0.00181 (11)0.00560 (11)
N10.0309 (9)0.0280 (9)0.0306 (9)0.0139 (7)0.0007 (7)0.0086 (7)
N20.0300 (9)0.0348 (9)0.0258 (8)0.0169 (7)0.0011 (7)0.0107 (7)
N30.0370 (10)0.0413 (10)0.0267 (9)0.0203 (8)0.0001 (7)0.0085 (8)
N40.0532 (13)0.0501 (12)0.0432 (11)0.0313 (11)0.0020 (10)0.0033 (10)
N50.0543 (13)0.0665 (15)0.0378 (11)0.0376 (12)0.0010 (10)0.0032 (10)
O10.0280 (7)0.0301 (8)0.0295 (7)0.0027 (6)0.0038 (6)0.0030 (6)
O20.0394 (10)0.0640 (12)0.0746 (13)0.0333 (9)0.0045 (9)0.0049 (10)
O30.0467 (10)0.0523 (10)0.0286 (8)0.0102 (8)0.0061 (7)0.0020 (7)
O40.0593 (11)0.0292 (8)0.0443 (9)0.0072 (8)0.0041 (8)0.0141 (7)
O50.0410 (9)0.0341 (8)0.0321 (8)0.0144 (7)0.0066 (6)0.0007 (6)
O60.0276 (7)0.0313 (8)0.0443 (9)0.0088 (6)0.0024 (6)0.0096 (7)
O70.0515 (10)0.0356 (8)0.0262 (7)0.0178 (7)0.0043 (7)0.0021 (6)
O80.0497 (9)0.0482 (9)0.0346 (8)0.0354 (8)0.0111 (7)0.0171 (7)
O90.0427 (9)0.0342 (8)0.0448 (9)0.0181 (7)0.0105 (7)0.0071 (7)
O100.0652 (12)0.0600 (11)0.0368 (9)0.0376 (10)0.0053 (8)0.0019 (8)
S10.0226 (2)0.0225 (2)0.0259 (2)0.00928 (18)0.00274 (17)0.00440 (18)
C10.0345 (11)0.0261 (10)0.0348 (11)0.0112 (8)0.0036 (9)0.0076 (8)
C20.0382 (11)0.0275 (10)0.0353 (11)0.0121 (9)0.0060 (9)0.0024 (9)
C30.0492 (14)0.0281 (11)0.0437 (13)0.0201 (10)0.0024 (10)0.0071 (9)
C40.0312 (11)0.0560 (14)0.0296 (10)0.0226 (10)0.0040 (8)0.0180 (10)
C50.0262 (10)0.0422 (12)0.0241 (9)0.0139 (9)0.0011 (7)0.0083 (8)
C60.0378 (12)0.0407 (13)0.0371 (12)0.0119 (10)0.0067 (10)0.0021 (10)
C70.0431 (14)0.0435 (14)0.0670 (18)0.0068 (11)0.0070 (13)0.0209 (13)
C80.0390 (14)0.085 (2)0.0531 (16)0.0126 (14)0.0050 (12)0.0427 (16)
C90.0408 (14)0.094 (2)0.0303 (12)0.0269 (14)0.0104 (10)0.0222 (13)
C100.0309 (11)0.0607 (15)0.0266 (10)0.0216 (10)0.0025 (8)0.0047 (10)
Geometric parameters (Å, º) top
Mn1—O52.1543 (16)O7—H5W0.8500
Mn1—O82.1854 (15)O7—H6W0.8499
Mn1—O72.1860 (16)O8—H7W0.8500
Mn1—N12.2043 (17)O8—H8W0.8500
Mn1—O62.2142 (17)O9—H9W0.8500
Mn1—O12.2269 (16)O9—H10W0.8501
N1—C11.313 (3)O10—H11W0.8499
N1—C21.377 (3)O10—H12W0.8500
N2—C11.338 (3)C1—H1A0.9300
N2—C31.363 (3)C2—C31.347 (3)
N2—C41.453 (3)C2—H2A0.9300
N3—N41.357 (3)C3—H3A0.9300
N3—C51.365 (3)C4—H4A0.9700
N3—C41.450 (3)C4—H4B0.9700
N4—N51.297 (3)C5—C61.387 (3)
N5—C101.369 (3)C5—C101.394 (3)
O1—S11.4885 (16)C6—C71.382 (4)
O2—S11.4560 (17)C6—H6A0.9300
O3—S11.4561 (16)C7—C81.402 (4)
O4—S11.4677 (17)C7—H7A0.9300
O5—H1W0.8501C8—C91.349 (4)
O5—H2W0.8500C8—H8A0.9300
O6—H3W0.8500C9—C101.401 (3)
O6—H4W0.8500C9—H9A0.9300
O5—Mn1—O889.65 (6)H11W—O10—H12W98.3
O5—Mn1—O7175.48 (6)O2—S1—O3108.94 (12)
O8—Mn1—O786.58 (6)O2—S1—O4109.81 (12)
O5—Mn1—N187.70 (7)O3—S1—O4110.79 (11)
O8—Mn1—N1176.71 (6)O2—S1—O1108.90 (11)
O7—Mn1—N195.98 (7)O3—S1—O1110.12 (10)
O5—Mn1—O692.32 (7)O4—S1—O1108.25 (10)
O8—Mn1—O688.81 (6)N1—C1—N2111.90 (19)
O7—Mn1—O690.10 (7)N1—C1—H1A124.1
N1—Mn1—O693.25 (7)N2—C1—H1A124.1
O5—Mn1—O192.08 (7)C3—C2—N1109.40 (19)
O8—Mn1—O188.47 (6)C3—C2—H2A125.3
O7—Mn1—O185.33 (7)N1—C2—H2A125.3
N1—Mn1—O189.68 (7)C2—C3—N2106.71 (19)
O6—Mn1—O1174.81 (6)C2—C3—H3A126.6
C1—N1—C2105.20 (17)N2—C3—H3A126.6
C1—N1—Mn1123.33 (14)N3—C4—N2111.86 (17)
C2—N1—Mn1131.33 (14)N3—C4—H4A109.2
C1—N2—C3106.80 (17)N2—C4—H4A109.2
C1—N2—C4125.85 (19)N3—C4—H4B109.2
C3—N2—C4127.36 (19)N2—C4—H4B109.2
N4—N3—C5110.75 (18)H4A—C4—H4B107.9
N4—N3—C4119.50 (19)N3—C5—C6133.4 (2)
C5—N3—C4129.72 (19)N3—C5—C10103.5 (2)
N5—N4—N3108.1 (2)C6—C5—C10123.0 (2)
N4—N5—C10109.1 (2)C7—C6—C5115.2 (2)
S1—O1—Mn1134.35 (9)C7—C6—H6A122.4
Mn1—O5—H1W123.1C5—C6—H6A122.4
Mn1—O5—H2W106.7C6—C7—C8122.1 (3)
H1W—O5—H2W113.6C6—C7—H7A119.0
Mn1—O6—H3W114.6C8—C7—H7A119.0
Mn1—O6—H4W121.6C9—C8—C7122.2 (2)
H3W—O6—H4W100.5C9—C8—H8A118.9
Mn1—O7—H5W121.8C7—C8—H8A118.9
Mn1—O7—H6W118.3C8—C9—C10117.3 (2)
H5W—O7—H6W105.2C8—C9—H9A121.4
Mn1—O8—H7W127.1C10—C9—H9A121.4
Mn1—O8—H8W123.0N5—C10—C5108.5 (2)
H7W—O8—H8W105.9N5—C10—C9131.3 (2)
H9W—O9—H10W109.6C5—C10—C9120.2 (2)
O5—Mn1—N1—C142.94 (17)N1—C2—C3—N20.0 (3)
O7—Mn1—N1—C1134.43 (17)C1—N2—C3—C20.1 (3)
O6—Mn1—N1—C1135.13 (17)C4—N2—C3—C2179.8 (2)
O1—Mn1—N1—C149.16 (17)N4—N3—C4—N282.7 (3)
O5—Mn1—N1—C2142.02 (19)C5—N3—C4—N299.3 (3)
O7—Mn1—N1—C240.6 (2)C1—N2—C4—N391.1 (3)
O6—Mn1—N1—C249.82 (19)C3—N2—C4—N388.5 (3)
O1—Mn1—N1—C2125.89 (19)N4—N3—C5—C6176.6 (2)
C5—N3—N4—N50.4 (3)C4—N3—C5—C61.5 (4)
C4—N3—N4—N5178.76 (19)N4—N3—C5—C100.6 (2)
N3—N4—N5—C100.0 (3)C4—N3—C5—C10178.7 (2)
O5—Mn1—O1—S12.77 (13)N3—C5—C6—C7178.3 (2)
O8—Mn1—O1—S192.36 (13)C10—C5—C6—C71.6 (3)
O7—Mn1—O1—S1179.05 (13)C5—C6—C7—C80.7 (4)
N1—Mn1—O1—S184.92 (13)C6—C7—C8—C90.5 (4)
Mn1—O1—S1—O2118.40 (14)C7—C8—C9—C100.8 (4)
Mn1—O1—S1—O30.99 (17)N4—N5—C10—C50.3 (3)
Mn1—O1—S1—O4122.26 (14)N4—N5—C10—C9178.4 (2)
C2—N1—C1—N20.2 (2)N3—C5—C10—N50.5 (2)
Mn1—N1—C1—N2175.94 (13)C6—C5—C10—N5177.0 (2)
C3—N2—C1—N10.2 (2)N3—C5—C10—C9178.9 (2)
C4—N2—C1—N1179.91 (18)C6—C5—C10—C91.4 (3)
C1—N1—C2—C30.1 (3)C8—C9—C10—N5177.8 (3)
Mn1—N1—C2—C3175.60 (16)C8—C9—C10—C50.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O100.851.792.634 (2)173
O5—H2W···O30.851.922.729 (3)159
O9—H9W···O40.852.022.843 (3)163
O6—H3W···O9i0.851.982.824 (2)170
O8—H8W···O1i0.852.042.885 (2)176
O7—H6W···O4i0.852.032.855 (3)163
O6—H4W···O4ii0.851.962.805 (2)173
O7—H5W···O9ii0.851.992.813 (2)162
O8—H7W···O2iii0.851.872.712 (2)172
O10—H11W···O2iii0.852.082.842 (3)150
O10—H12W···N5iv0.851.992.840 (3)173
O9—H10W···O1v0.852.243.083 (2)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(SO4)(C10H9N5)(H2O)4]·2H2O
Mr458.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5824 (15), 8.5237 (17), 15.972 (3)
α, β, γ (°)98.33 (3), 91.11 (3), 115.21 (3)
V3)920.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.842, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
11432, 4337, 3890
Rint0.022
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.03
No. of reflections4337
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O52.1543 (16)Mn1—N12.2043 (17)
Mn1—O82.1854 (15)Mn1—O62.2142 (17)
Mn1—O72.1860 (16)Mn1—O12.2269 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O100.851.792.634 (2)172.9
O5—H2W···O30.851.922.729 (3)158.6
O9—H9W···O40.852.022.843 (3)163.3
O6—H3W···O9i0.851.982.824 (2)169.6
O8—H8W···O1i0.852.042.885 (2)175.6
O7—H6W···O4i0.852.032.855 (3)163.0
O6—H4W···O4ii0.851.962.805 (2)172.8
O7—H5W···O9ii0.851.992.813 (2)161.7
O8—H7W···O2iii0.851.872.712 (2)172.4
O10—H11W···O2iii0.852.082.842 (3)149.8
O10—H12W···N5iv0.851.992.840 (3)173.2
O9—H10W···O1v0.852.243.083 (2)172.5
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z; (v) x+1, y+1, z+1.
 

References

First citationMa, L.-F., Li, X.-Q., Meng, Q.-L., Wang, L.-Y., Du, M. & Hou, H.-W. (2011). Cryst. Growth Des. 11, 175–184.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, X., Zhu, X., Qi, Y., Hou, H. & Fan, Y. (2009). J. Mol. Struct. 934, 28–36.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSanchez, V., Storr, A. & Thompson, R. C. (2002). Can. J. Chem. 80, 133–140.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds