metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­[5,5′-dicarb­­oxy-2,2′-(propane-1,3-di­yl)bis­­(1H-imidazole-4-carboxyl­ato)]nickel(II) dihydrate

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and bPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: lxf_52@yeah.net

(Received 2 June 2011; accepted 21 June 2011; online 25 June 2011)

In the title complex, [Ni(C13H10N4O8)(H2O)2]·2H2O, the Ni2+ cation is six-coordinated by two N atoms and two O atoms from the tetra­dentate anion in equatorial positions and by two water O atoms in axial positions, leading to a distorted octa­hedral environment. The central C atom of the propanediyl unit is disordered over two sites in a 0.531 (6):0.469 (6) ratio. In the crystal, adjacent mol­ecules are linked through O—H⋯O and N—H⋯O hydrogen-bonding inter­actions into a three-dimensional network.

Related literature

For background to complexes based on 1H-imidazole-4,5-dicarb­oxy­lic acid, see: Baures et al. (2002[Baures, P.-W., Rush, J.-R., Wiznycia, A.-V., Desper, J., Helfrich, B.-A. & Beatty, A.-M. (2002). Cryst. Growth Des. 6, 653-664.]); Sun & Yang (2007[Sun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771-3781.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H10N4O8)(H2O)2]·2H2O

  • Mr = 481.02

  • Triclinic, [P \overline 1]

  • a = 8.9852 (18) Å

  • b = 9.4392 (19) Å

  • c = 12.538 (3) Å

  • α = 108.81 (3)°

  • β = 92.34 (3)°

  • γ = 116.18 (3)°

  • V = 882.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.15 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.790, Tmax = 0.843

  • 9532 measured reflections

  • 3451 independent reflections

  • 3037 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.02

  • 3451 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O5 2.0514 (18)
Ni1—N1 2.060 (2)
Ni1—N3 2.072 (2)
Ni1—O10 2.078 (2)
Ni1—O9 2.093 (2)
Ni1—O1 2.128 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.89 1.60 2.485 (3) 176
O7—H7⋯O6 0.89 1.62 2.501 (3) 171
O12—H12B⋯O4 0.85 2.57 3.279 (3) 142
N2—H2⋯O12i 0.86 1.95 2.802 (3) 171
N4—H4⋯O11ii 0.86 1.87 2.721 (3) 170
O10—H10A⋯O3ii 0.85 2.01 2.853 (3) 171
O9—H9A⋯O8iii 0.85 1.93 2.781 (3) 176
O9—H9A⋯O7iii 0.85 2.64 3.157 (3) 121
O11—H11B⋯O8iii 0.85 2.37 2.884 (3) 120
O9—H9B⋯O6iv 0.85 1.91 2.762 (3) 175
O10—H10B⋯O4v 0.85 1.84 2.667 (3) 165
O12—H12A⋯O1v 0.85 2.26 3.063 (4) 159
O12—H12B⋯O10v 0.85 2.62 3.198 (4) 126
O11—H11A⋯O5vi 0.85 1.96 2.762 (3) 157
O11—H11B⋯O9vii 0.85 2.34 3.100 (3) 148
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-1, y, z; (iii) x+1, y, z; (iv) -x-1, -y+2, -z+1; (v) -x, -y+2, -z+2; (vi) x, y-1, z; (vii) -x-1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Numerous compounds with metal-organic framework structures constructed from 1H-imidazole-4,5-dicarboxylic acid or its derivatives have been synthesized (Baures et al., 2002; Sun & Yang, 2007). To further explore frameworks with new structures, we used 2,2'-(1,3-propanediyl)bis-1H-imidazole-4,5-dicarboxylic acid (H6pbidc) which has both N-donor and O-donor sites for self-assembly with various metal cations. As a metal source we have used NiCl2 and have obtained the title complex [Ni(H4pbidc)(H2O)2].2H2O (H6pbidc = 2,2'-(1,3-propanediyl)bis-1H-imidazole-4,5-dicarboxylic acid), or [Ni(C13H10N4O8)(H2O)2].2H2O.

As shown in Figure 1, the Ni2+ cation is in a distorted octahedral coordination environment defined by atoms N1, N3, O1, O5 from the tetradentate H4pbidc2- anion in equatorial positions and by atoms O9, O10 from water molecules in axial positions. The two imidazole rings are nearly co-planar, with a dihedral angle between the two least-square planes N1, C5, N2, C3, C2 and N3, C12, C10, N4, C9 of 6.8 (2) °. Intramolecular O—H···O hydrogen bonds between the carboxyl/carboxylate groups stabilize the molecular configuration. O—H···O and N—H···O hydrogen bonds between the water molecules and carboxylate O atoms and between imidazole groups and carboxylate O atoms of adjacent molecules consolidate the crystal packing.

Related literature top

For background to complexes based on 1H-imidazole-4,5-dicarboxylic acid, see: Baures et al. (2002); Sun & Yang (2007).

Experimental top

A mixture of NiCl2 (0.05 mmol), 2,2'-(1,3-propanediyl)bis-1H-imidazole-4,5-dicarboxylic (0.05 mmol), methanol (2 ml) and water (2 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 393 K for 48 h, then cooled to room temperature. Light-green crystals were obtained from the filtrate and dried in air.

Refinement top

The disordered central C atom C7 of the propanediyl unit has been modelled by splitting it into two combined parts (C7 and C7A; ratio 0.531 (6):0.469 (6)). Hydrogen atoms except for those associated with O12 were positioned geometrically and refined as riding atoms, with C–H = 0.97 Å, N–H = 0.86 Å and O–H = 0.85 (H2O) and 0.89 (–COOH) Å, and with Uiso(H) = 1.2 Ueq(C,N,O). Although water H atoms associated with O12 were located in the difference Fourier map (modelled with an O–H distance constrained to 0.85 Å, and with Uiso(H) = 1.2 Ueq(O)), it appears likely, both from the hydrogen bonding scheme and the symmetry-relation of adjacent O12 water molecules via inversion centres, that the H atoms of this water molecule are disordered. Nevertheless, the finally obtained model is plausible and we eventually kept these H atoms for refinement.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labelling of the atoms. Displacement ellipsoids are displayed at the 30% probability level. H atoms are omitted for clarity; only one part of the central C atom of the propanediyl unit is shown.
[Figure 2] Fig. 2. View of the crystal packing of the title comples, showing the three-dimensional structure stabilized by hydrogen bonds (dashed lines).
Diaqua[5,5'-dicarboxy-2,2'-(propane-1,3-diyl)bis(1H-imidazole-4- carboxylato)]nickel(II) dihydrate top
Crystal data top
[Ni(C13H10N4O8)(H2O)2]·2H2OZ = 2
Mr = 481.02F(000) = 496
Triclinic, P1Dx = 1.811 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9852 (18) ÅCell parameters from 2450 reflections
b = 9.4392 (19) Åθ = 2.6–27.9°
c = 12.538 (3) ŵ = 1.18 mm1
α = 108.81 (3)°T = 293 K
β = 92.34 (3)°Prism, green
γ = 116.18 (3)°0.21 × 0.18 × 0.15 mm
V = 882.1 (5) Å3
Data collection top
Rigaku Saturn
diffractometer
3451 independent reflections
Radiation source: fine-focus sealed tube3037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1111
Tmin = 0.790, Tmax = 0.843l = 1515
9532 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.056P)2 + 0.3821P]
where P = (Fo2 + 2Fc2)/3
3451 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni(C13H10N4O8)(H2O)2]·2H2Oγ = 116.18 (3)°
Mr = 481.02V = 882.1 (5) Å3
Triclinic, P1Z = 2
a = 8.9852 (18) ÅMo Kα radiation
b = 9.4392 (19) ŵ = 1.18 mm1
c = 12.538 (3) ÅT = 293 K
α = 108.81 (3)°0.21 × 0.18 × 0.15 mm
β = 92.34 (3)°
Data collection top
Rigaku Saturn
diffractometer
3451 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
3037 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.843Rint = 0.025
9532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.79 e Å3
3451 reflectionsΔρmin = 0.49 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.42402 (4)0.90838 (4)0.72525 (3)0.02527 (13)
N10.3010 (3)0.8092 (3)0.79563 (19)0.0263 (5)
N20.1769 (3)0.6933 (3)0.8643 (2)0.0316 (5)
H20.16390.62200.88720.038*
N30.6835 (3)0.7484 (3)0.69036 (17)0.0230 (5)
N40.9581 (3)0.5817 (3)0.65436 (18)0.0251 (5)
H41.05420.49860.65090.030*
O10.1678 (2)1.1022 (3)0.75887 (18)0.0361 (5)
O20.0976 (2)1.1730 (3)0.8274 (2)0.0443 (5)
O30.2406 (2)1.0420 (3)0.90408 (18)0.0382 (5)
H30.19341.09390.87890.046*
O40.1688 (3)0.8133 (3)0.94778 (18)0.0394 (5)
O50.5025 (2)1.0349 (2)0.65068 (17)0.0319 (4)
O60.7326 (2)1.0223 (3)0.56576 (19)0.0371 (5)
O71.0474 (2)0.8392 (3)0.5275 (2)0.0451 (6)
H70.93730.90870.53640.054*
O81.2265 (2)0.6084 (2)0.55412 (17)0.0356 (5)
O90.4159 (2)0.7760 (2)0.55768 (16)0.0303 (4)
H9A0.36290.72020.55670.036*
H9B0.36710.84300.52350.036*
O100.4382 (2)1.0567 (3)0.88393 (17)0.0436 (5)
H10A0.52821.06180.89680.052*
H10B0.36531.09510.94530.052*
O110.2803 (3)0.3396 (3)0.6349 (2)0.0513 (6)
H11A0.32820.23750.63190.062*
H11B0.33680.34860.58390.062*
O120.1580 (4)0.5672 (3)1.0849 (3)0.0723 (8)
H12A0.17730.65681.14160.087*
H12B0.20330.62251.04290.087*
C10.0641 (3)1.0721 (4)0.8012 (2)0.0301 (6)
C20.1280 (3)0.9137 (3)0.8225 (2)0.0247 (5)
C30.0494 (3)0.8432 (3)0.8655 (2)0.0260 (6)
C40.1325 (3)0.9006 (3)0.9095 (2)0.0279 (6)
C50.3264 (3)0.6761 (4)0.8214 (3)0.0331 (6)
C60.4936 (4)0.5266 (5)0.8043 (4)0.0640 (10)
H6BC0.47080.43230.79440.077*0.531 (6)
H6BD0.52800.55110.87750.077*0.531 (6)
H6AA0.47840.46410.84800.077*0.469 (6)
H6AB0.53090.45190.72340.077*0.469 (6)
C70.6258 (7)0.5718 (7)0.8422 (5)0.0250 (14)0.469 (6)
H7A0.57500.69520.87180.030*0.469 (6)
H7B0.65680.53670.90630.030*0.469 (6)
C80.7859 (4)0.5000 (4)0.7560 (3)0.0435 (8)
H8BC0.89070.39270.73140.052*0.531 (6)
H8BD0.76510.55530.83910.052*0.531 (6)
H8AA0.88170.46000.79180.052*0.469 (6)
H8AB0.79410.40060.69500.052*0.469 (6)
C90.8044 (3)0.6107 (3)0.7005 (2)0.0241 (5)
C100.9358 (3)0.7068 (3)0.6140 (2)0.0242 (5)
C111.0812 (3)0.7141 (3)0.5620 (2)0.0284 (6)
C120.7641 (3)0.8093 (3)0.6366 (2)0.0234 (5)
C130.6606 (3)0.9664 (3)0.6158 (2)0.0274 (6)
C7A0.6330 (8)0.4635 (9)0.7229 (8)0.0640 (10)0.531 (6)
H7AA0.67910.34060.68930.077*0.531 (6)
H7AB0.59610.50560.66250.077*0.531 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01820 (19)0.0280 (2)0.0328 (2)0.01094 (15)0.00339 (14)0.01571 (15)
N10.0189 (11)0.0294 (12)0.0302 (12)0.0123 (10)0.0013 (9)0.0103 (9)
N20.0277 (12)0.0314 (12)0.0435 (14)0.0188 (11)0.0040 (10)0.0174 (11)
N30.0191 (11)0.0269 (11)0.0259 (11)0.0117 (9)0.0059 (9)0.0126 (9)
N40.0183 (11)0.0232 (11)0.0323 (12)0.0076 (9)0.0048 (9)0.0121 (9)
O10.0262 (10)0.0364 (11)0.0517 (13)0.0140 (9)0.0055 (9)0.0255 (10)
O20.0227 (11)0.0410 (12)0.0694 (15)0.0095 (10)0.0035 (10)0.0302 (11)
O30.0232 (10)0.0449 (12)0.0467 (12)0.0179 (10)0.0009 (9)0.0159 (10)
O40.0331 (11)0.0454 (12)0.0407 (12)0.0250 (10)0.0046 (9)0.0101 (10)
O50.0209 (10)0.0324 (10)0.0471 (12)0.0105 (8)0.0052 (8)0.0241 (9)
O60.0275 (10)0.0453 (12)0.0551 (13)0.0196 (10)0.0099 (9)0.0358 (10)
O70.0218 (10)0.0520 (13)0.0728 (16)0.0158 (10)0.0044 (10)0.0407 (12)
O80.0208 (10)0.0348 (11)0.0493 (13)0.0116 (9)0.0028 (9)0.0168 (9)
O90.0265 (10)0.0386 (11)0.0373 (11)0.0191 (9)0.0108 (8)0.0226 (9)
O100.0279 (11)0.0621 (14)0.0340 (11)0.0262 (11)0.0004 (9)0.0040 (10)
O110.0313 (12)0.0441 (13)0.0710 (16)0.0043 (10)0.0005 (11)0.0341 (12)
O120.090 (2)0.0575 (16)0.081 (2)0.0379 (16)0.0068 (16)0.0390 (15)
C10.0230 (14)0.0337 (15)0.0339 (15)0.0145 (12)0.0059 (11)0.0118 (12)
C20.0190 (13)0.0310 (14)0.0239 (13)0.0137 (11)0.0032 (10)0.0079 (11)
C30.0234 (14)0.0290 (14)0.0260 (13)0.0149 (12)0.0040 (10)0.0075 (11)
C40.0246 (14)0.0332 (15)0.0230 (13)0.0167 (13)0.0023 (10)0.0034 (11)
C50.0249 (14)0.0325 (15)0.0454 (17)0.0158 (13)0.0070 (12)0.0159 (13)
C60.0307 (16)0.0442 (18)0.118 (3)0.0155 (15)0.0163 (18)0.036 (2)
C70.023 (3)0.029 (3)0.030 (3)0.013 (2)0.006 (2)0.019 (2)
C80.0361 (18)0.0466 (19)0.061 (2)0.0205 (15)0.0116 (15)0.0347 (17)
C90.0217 (13)0.0252 (13)0.0263 (13)0.0117 (11)0.0074 (10)0.0101 (11)
C100.0195 (13)0.0275 (13)0.0244 (12)0.0112 (11)0.0037 (10)0.0087 (10)
C110.0232 (14)0.0309 (14)0.0310 (14)0.0141 (12)0.0028 (11)0.0103 (11)
C120.0218 (13)0.0256 (13)0.0273 (13)0.0145 (11)0.0062 (10)0.0108 (10)
C130.0206 (13)0.0312 (14)0.0328 (14)0.0131 (12)0.0049 (11)0.0142 (12)
C7A0.0307 (16)0.0442 (18)0.118 (3)0.0155 (15)0.0163 (18)0.036 (2)
Geometric parameters (Å, º) top
Ni1—O52.0514 (18)O11—H11A0.8504
Ni1—N12.060 (2)O11—H11B0.8499
Ni1—N32.072 (2)O12—H12A0.8500
Ni1—O102.078 (2)O12—H12B0.8499
Ni1—O92.093 (2)C1—C21.466 (4)
Ni1—O12.128 (2)C2—C31.358 (4)
N1—C51.323 (4)C3—C41.491 (4)
N1—C21.376 (3)C5—C61.484 (4)
N2—C51.346 (3)C6—C7A1.346 (8)
N2—C31.368 (4)C6—C71.477 (6)
N2—H20.8600C6—H6BC0.9700
N3—C91.325 (3)C6—H6BD0.9700
N3—C121.374 (3)C6—H6AA0.9702
N4—C91.348 (3)C6—H6AB0.9698
N4—C101.369 (3)C7—C81.496 (6)
N4—H40.8600C7—H7A0.9700
O1—C11.234 (3)C7—H7B0.9700
O2—C11.290 (3)C8—C91.489 (4)
O3—C41.284 (4)C8—C7A1.596 (7)
O3—H30.8899C8—H8BC0.9700
O4—C41.222 (3)C8—H8BD0.9700
O5—C131.258 (3)C8—H8AA0.9699
O6—C131.254 (3)C8—H8AB0.9702
O7—C111.303 (3)C10—C121.366 (4)
O7—H70.8901C10—C111.475 (3)
O8—C111.219 (3)C12—C131.478 (4)
O9—H9A0.8499C7A—H6AB0.9711
O9—H9B0.8499C7A—H8AB1.2792
O10—H10A0.8497C7A—H7AA0.9700
O10—H10B0.8499C7A—H7AB0.9700
O5—Ni1—N1169.24 (8)C5—C6—H6BD105.7
O5—Ni1—N381.61 (8)H6BC—C6—H6BD106.1
N1—Ni1—N3108.79 (9)C7A—C6—H6AA123.7
O5—Ni1—O1088.48 (9)C7—C6—H6AA108.3
N1—Ni1—O1094.21 (9)C5—C6—H6AA108.1
N3—Ni1—O1089.72 (9)C7—C6—H6AB109.8
O5—Ni1—O985.09 (8)C5—C6—H6AB108.8
N1—Ni1—O992.00 (8)H6BD—C6—H6AB144.7
N3—Ni1—O989.98 (9)H6AA—C6—H6AB107.7
O10—Ni1—O9173.54 (8)C6—C7—C8118.4 (4)
O5—Ni1—O189.84 (8)C6—C7—H7A107.7
N1—Ni1—O179.91 (8)C8—C7—H7A107.7
N3—Ni1—O1170.90 (8)C6—C7—H7B107.7
O10—Ni1—O186.91 (9)C8—C7—H7B107.7
O9—Ni1—O192.42 (9)H7A—C7—H7B107.1
C5—N1—C2106.1 (2)C9—C8—C7118.5 (3)
C5—N1—Ni1143.02 (19)C9—C8—C7A111.2 (4)
C2—N1—Ni1110.77 (17)C7—C8—C7A57.7 (4)
C5—N2—C3108.5 (2)C9—C8—H8BC109.4
C5—N2—H2125.8C7—C8—H8BC131.9
C3—N2—H2125.8C7A—C8—H8BC109.4
C9—N3—C12106.5 (2)C9—C8—H8BD109.4
C9—N3—Ni1145.05 (18)C7A—C8—H8BD109.4
C12—N3—Ni1108.42 (16)H8BC—C8—H8BD108.0
C9—N4—C10108.6 (2)C9—C8—H8AA108.2
C9—N4—H4125.7C7—C8—H8AA108.8
C10—N4—H4125.7C7A—C8—H8AA139.8
C1—O1—Ni1113.46 (18)C9—C8—H8AB107.3
C4—O3—H3113.8C7—C8—H8AB106.4
C13—O5—Ni1115.03 (17)H8BC—C8—H8AB60.8
C11—O7—H7114.9H8BD—C8—H8AB143.2
Ni1—O9—H9A112.4H8AA—C8—H8AB107.1
Ni1—O9—H9B111.7N3—C9—N4110.0 (2)
H9A—O9—H9B107.0N3—C9—C8128.3 (2)
Ni1—O10—H10A122.8N4—C9—C8121.7 (2)
Ni1—O10—H10B122.2C12—C10—N4105.5 (2)
H10A—O10—H10B113.1C12—C10—C11132.8 (2)
H11A—O11—H11B110.1N4—C10—C11121.7 (2)
H12A—O12—H12B93.0O8—C11—O7121.9 (2)
O1—C1—O2123.1 (3)O8—C11—C10120.8 (2)
O1—C1—C2118.3 (2)O7—C11—C10117.3 (2)
O2—C1—C2118.6 (2)C10—C12—N3109.5 (2)
C3—C2—N1109.7 (2)C10—C12—C13131.6 (2)
C3—C2—C1132.8 (2)N3—C12—C13118.9 (2)
N1—C2—C1117.5 (2)O6—C13—O5124.5 (2)
C2—C3—N2105.5 (2)O6—C13—C12119.5 (2)
C2—C3—C4132.7 (3)O5—C13—C12116.0 (2)
N2—C3—C4121.7 (2)C6—C7A—C8120.2 (6)
O4—C4—O3124.9 (3)C8—C7A—H6AB165.8
O4—C4—C3119.3 (3)C6—C7A—H8AB149.0
O3—C4—C3115.8 (2)H6AB—C7A—H8AB151.6
N1—C5—N2110.2 (2)C6—C7A—H7AA107.3
N1—C5—C6125.8 (3)C8—C7A—H7AA107.3
N2—C5—C6124.0 (3)H6AB—C7A—H7AA77.9
C7A—C6—C763.7 (4)H8AB—C7A—H7AA73.9
C7A—C6—C5126.5 (5)C6—C7A—H7AB107.3
C7—C6—C5113.9 (3)C8—C7A—H7AB107.3
C7A—C6—H6BC105.7H6AB—C7A—H7AB83.1
C7—C6—H6BC136.7H8AB—C7A—H7AB101.6
C5—C6—H6BC105.7H7AA—C7A—H7AB106.9
C7A—C6—H6BD105.7
N3—Ni1—N1—C55.0 (3)Ni1—N1—C5—N2177.0 (2)
O10—Ni1—N1—C596.1 (3)C2—N1—C5—C6178.3 (3)
O9—Ni1—N1—C585.7 (3)Ni1—N1—C5—C61.9 (6)
O1—Ni1—N1—C5177.8 (3)C3—N2—C5—N10.5 (3)
O5—Ni1—N1—C216.6 (5)C3—N2—C5—C6178.4 (3)
N3—Ni1—N1—C2178.70 (16)N1—C5—C6—C7A29.0 (7)
O10—Ni1—N1—C287.56 (18)N2—C5—C6—C7A149.8 (5)
O9—Ni1—N1—C290.65 (18)N1—C5—C6—C745.1 (6)
O1—Ni1—N1—C21.46 (16)N2—C5—C6—C7136.1 (4)
O5—Ni1—N3—C9177.6 (3)C7A—C6—C7—C82.0 (5)
N1—Ni1—N3—C95.2 (3)C5—C6—C7—C8122.5 (4)
O10—Ni1—N3—C989.1 (3)C6—C7—C8—C9100.1 (5)
O9—Ni1—N3—C997.3 (3)C6—C7—C8—C7A1.8 (4)
O5—Ni1—N3—C121.02 (16)C12—N3—C9—N40.5 (3)
N1—Ni1—N3—C12176.13 (15)Ni1—N3—C9—N4179.1 (2)
O10—Ni1—N3—C1289.52 (17)C12—N3—C9—C8177.8 (3)
O9—Ni1—N3—C1284.02 (16)Ni1—N3—C9—C80.9 (5)
O5—Ni1—O1—C1175.7 (2)C10—N4—C9—N30.7 (3)
N1—Ni1—O1—C11.0 (2)C10—N4—C9—C8177.7 (2)
O10—Ni1—O1—C195.8 (2)C7—C8—C9—N321.0 (5)
O9—Ni1—O1—C190.7 (2)C7A—C8—C9—N342.8 (5)
N1—Ni1—O5—C13163.9 (4)C7—C8—C9—N4157.1 (3)
N3—Ni1—O5—C131.47 (19)C7A—C8—C9—N4139.1 (4)
O10—Ni1—O5—C1391.4 (2)C9—N4—C10—C120.6 (3)
O9—Ni1—O5—C1389.2 (2)C9—N4—C10—C11177.8 (2)
O1—Ni1—O5—C13178.32 (19)C12—C10—C11—O8177.5 (3)
Ni1—O1—C1—O2179.6 (2)N4—C10—C11—O80.3 (4)
Ni1—O1—C1—C20.2 (3)C12—C10—C11—O71.2 (4)
C5—N1—C2—C30.4 (3)N4—C10—C11—O7179.0 (2)
Ni1—N1—C2—C3178.14 (17)N4—C10—C12—N30.3 (3)
C5—N1—C2—C1179.5 (2)C11—C10—C12—N3177.8 (3)
Ni1—N1—C2—C11.8 (3)N4—C10—C12—C13178.8 (3)
O1—C1—C2—C3178.9 (3)C11—C10—C12—C130.7 (5)
O2—C1—C2—C31.0 (5)C9—N3—C12—C100.1 (3)
O1—C1—C2—N11.1 (4)Ni1—N3—C12—C10179.28 (17)
O2—C1—C2—N1179.0 (2)C9—N3—C12—C13178.6 (2)
N1—C2—C3—N20.1 (3)Ni1—N3—C12—C130.6 (3)
C1—C2—C3—N2179.9 (3)Ni1—O5—C13—O6178.4 (2)
N1—C2—C3—C4178.8 (3)Ni1—O5—C13—C121.5 (3)
C1—C2—C3—C41.2 (5)C10—C12—C13—O62.3 (4)
C5—N2—C3—C20.2 (3)N3—C12—C13—O6179.3 (2)
C5—N2—C3—C4179.3 (2)C10—C12—C13—O5177.7 (3)
C2—C3—C4—O4177.4 (3)N3—C12—C13—O50.6 (4)
N2—C3—C4—O41.4 (4)C7—C6—C7A—C81.9 (5)
C2—C3—C4—O32.4 (4)C5—C6—C7A—C8103.3 (6)
N2—C3—C4—O3178.7 (2)C9—C8—C7A—C6113.1 (6)
C2—N1—C5—N20.6 (3)C7—C8—C7A—C62.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.891.602.485 (3)176
O7—H7···O60.891.622.501 (3)171
O12—H12B···O40.852.573.279 (3)142
N2—H2···O12i0.861.952.802 (3)171
N4—H4···O11ii0.861.872.721 (3)170
O10—H10A···O3ii0.852.012.853 (3)171
O9—H9A···O8iii0.851.932.781 (3)176
O9—H9A···O7iii0.852.643.157 (3)121
O11—H11B···O8iii0.852.372.884 (3)120
O9—H9B···O6iv0.851.912.762 (3)175
O10—H10B···O4v0.851.842.667 (3)165
O12—H12A···O1v0.852.263.063 (4)159
O12—H12B···O10v0.852.623.198 (4)126
O11—H11A···O5vi0.851.962.762 (3)157
O11—H11B···O9vii0.852.343.100 (3)148
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y+2, z+1; (v) x, y+2, z+2; (vi) x, y1, z; (vii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C13H10N4O8)(H2O)2]·2H2O
Mr481.02
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9852 (18), 9.4392 (19), 12.538 (3)
α, β, γ (°)108.81 (3), 92.34 (3), 116.18 (3)
V3)882.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.21 × 0.18 × 0.15
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.790, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
9532, 3451, 3037
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.02
No. of reflections3451
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.49

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O52.0514 (18)Ni1—O102.078 (2)
Ni1—N12.060 (2)Ni1—O92.093 (2)
Ni1—N32.072 (2)Ni1—O12.128 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.891.602.485 (3)176
O7—H7···O60.891.622.501 (3)171
O12—H12B···O40.852.573.279 (3)142
N2—H2···O12i0.861.952.802 (3)171
N4—H4···O11ii0.861.872.721 (3)170
O10—H10A···O3ii0.852.012.853 (3)171
O9—H9A···O8iii0.851.932.781 (3)176
O9—H9A···O7iii0.852.643.157 (3)121
O11—H11B···O8iii0.852.372.884 (3)120
O9—H9B···O6iv0.851.912.762 (3)175
O10—H10B···O4v0.851.842.667 (3)165
O12—H12A···O1v0.852.263.063 (4)159
O12—H12B···O10v0.852.623.198 (4)126
O11—H11A···O5vi0.851.962.762 (3)157
O11—H11B···O9vii0.852.343.100 (3)148
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y+2, z+1; (v) x, y+2, z+2; (vi) x, y1, z; (vii) x1, y+1, z+1.
 

References

First citationBaures, P.-W., Rush, J.-R., Wiznycia, A.-V., Desper, J., Helfrich, B.-A. & Beatty, A.-M. (2002). Cryst. Growth Des. 6, 653–664.  CrossRef Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771–3781.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds