metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ2-pyrimidine-κ2N:N′)bis­­(seleno­cyanato-κN)zinc]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24098 Kiel, Germany
*Correspondence e-mail: jboeckmann@ac.uni-kiel.de

(Received 10 June 2011; accepted 14 June 2011; online 18 June 2011)

The asymmetric unit of the title compound, [Zn(NCSe)2(C4H4N2)2]n, consists of one Zn2+ cation located on a special position with site symmetry 2/m, one seleno­cyanate anion on a mirror plane and one pyrimidine ligand on a twofold rotation axis. The zinc cation is coordinated by six N atoms of four pyrimidine ligands and two N-bonded seleno­cyanate anions in mutually trans orientations within a slightly distorted octa­hedral coordination environment. The Zn atoms are μ-1,3-bridged via the pyrimidine ligands into a polymeric layer extending parallel to (100).

Related literature

For isotypic structures with different divalent transition metals and thio­cyanate ligands, see: Bhosekar et al. (2010[Bhosekar, G., Boeckmann, J., Jess, I. & Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 2595-2601.]); Lloret et al. (1998[Lloret, F., De Munno, G., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. 37, 135-138.], 1999[Lloret, F., Julve, M., Cano, J. & De Munno, G. (1999). Mol. Cryst. Liq. Cryst. 334, 569-585.]); Wriedt et al. (2009[Wriedt, M., Sellmer, S. & Näther, C. (2009). Inorg. Chem. 48, 6896-6903.]); Wriedt & Näther (2010[Wriedt, M. & Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 569-575.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCSe)2(C4H4N2)2]

  • Mr = 435.51

  • Orthorhombic, C m c a

  • a = 9.4025 (9) Å

  • b = 16.7146 (10) Å

  • c = 8.7886 (5) Å

  • V = 1381.21 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.04 mm−1

  • T = 200 K

  • 0.28 × 0.22 × 0.16 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.165, Tmax = 0.321

  • 4502 measured reflections

  • 657 independent reflections

  • 638 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.15

  • 657 reflections

  • 51 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.033 (3)
Zn1—N11 2.287 (2)
N1—C1—Se1 178.6 (3)

Data collection: X-AREA (Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; data reduction: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure determination of the title compound was performed as part of a project on the synthesis of new coordination polymers based on transition metal thiocyanates and the investigations of their thermal degradation products (Bhosekar et al., 2010; Wriedt et al., 2009; Wriedt & Näther, 2010)). Within this project we have reacted zinc(II) nitrate with potassium selenocyanate and pyrimidine in water, which leads to a single phase formation of the title compound, poly[bis(selenocyanato-κN)-bis(µ2-pyrimidine-N,N')zinc].

The title compound is isotypic with its zinc, manganese(II), iron(II), cobalt(II) and nickel(II) thiocyanato coordination polymer analogues (Bhosekar et al., 2010; Lloret et al., 1998; Lloret et al., 1999; Wriedt et al., 2009; Wriedt & Näther, 2010). In the crystal structure the zinc atoms are surrounded by six N-atoms of four pyrimidine ligands and two N-bonded selenocyanato anions in mutually trans orientations in a slightly distorted octahedral geometry (Fig. 1). The pyrimidine ligands bridge the metal cations forming layers which extend along the ac plane (Fig. 2). These layers are stacked in the direction of the crystallographic b axis. The Zn—Zn intralayer separation amounts to 6.4352 (4) Å, whereas the shortest Zn—Zn interlayer separation is 9.4422 (5) Å.

Related literature top

For isotypic structures with different divalent transition metals and thiocyanate ligands, see: Bhosekar et al. (2010); Lloret et al. (1998, 1999); Wriedt et al. (2009); Wriedt & Näther (2010).

Experimental top

The title compound was prepared by the reaction of 74.35 mg Zn(NO3)2 (0.25 mmol), 64.8 mg KSeCN (0.45 mmol) and 78.8 µL pyrimidine (0.50 mmol) in 1.00 ml water at RT in a closed 3 ml snap cap vial. After one week colourless needles of the title compound were obtained.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropically with Ueq(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.95 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Part of the crystal structure of the title compund, showing the coordination around Zn2+, with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: i = -x, -y + 1, -z + 1; ii = -x, y, z; iii = x, -y + 1, -z + 1; iv = -x + 1/2, y, -z + 3/2.]
[Figure 2] Fig. 2. : Packing diagram of the title compound with view along the crystallographic b axis onto the polymeric layer (aqua = zinc; orange = selenium; blue = nitrogen; grey = carbon; light-grey = hydrogen).
Poly[bis(µ2-pyrimidine-κ2N:N')bis(selenocyanato- κN)zinc] top
Crystal data top
[Zn(NCSe)2(C4H4N2)2]Z = 4
Mr = 435.51F(000) = 832
Orthorhombic, CmcaDx = 2.094 Mg m3
Hall symbol: -C 2bc 2Mo Kα radiation, λ = 0.71073 Å
a = 9.4025 (9) ŵ = 7.04 mm1
b = 16.7146 (10) ÅT = 200 K
c = 8.7886 (5) ÅNeedle, colourless
V = 1381.21 (17) Å30.28 × 0.22 × 0.16 mm
Data collection top
Stoe IPDS-1
diffractometer
657 independent reflections
Radiation source: fine-focus sealed tube638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ scansθmax = 25.5°, θmin = 3.4°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1111
Tmin = 0.165, Tmax = 0.321k = 1917
4502 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0424P)2 + 2.801P]
where P = (Fo2 + 2Fc2)/3
657 reflections(Δ/σ)max = 0.001
51 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Zn(NCSe)2(C4H4N2)2]V = 1381.21 (17) Å3
Mr = 435.51Z = 4
Orthorhombic, CmcaMo Kα radiation
a = 9.4025 (9) ŵ = 7.04 mm1
b = 16.7146 (10) ÅT = 200 K
c = 8.7886 (5) Å0.28 × 0.22 × 0.16 mm
Data collection top
Stoe IPDS-1
diffractometer
657 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
638 reflections with I > 2σ(I)
Tmin = 0.165, Tmax = 0.321Rint = 0.055
4502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.15Δρmax = 0.40 e Å3
657 reflectionsΔρmin = 0.81 e Å3
51 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.50000.50000.0172 (2)
N10.00000.40527 (19)0.6452 (4)0.0220 (7)
C10.00000.3787 (2)0.7666 (4)0.0164 (7)
Se10.00000.34051 (3)0.95337 (5)0.0329 (2)
N110.1681 (2)0.56159 (13)0.6471 (2)0.0191 (5)
C110.25000.5254 (2)0.75000.0190 (7)
H110.25000.46850.75000.023*
C120.1740 (3)0.64196 (17)0.6445 (3)0.0216 (6)
H120.12400.66990.56710.026*
C130.25000.6849 (2)0.75000.0227 (8)
H130.25000.74170.75000.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0157 (3)0.0225 (4)0.0133 (4)0.0000.0000.0033 (2)
N10.0240 (16)0.0238 (17)0.0182 (16)0.0000.0000.0017 (13)
C10.0123 (15)0.0190 (17)0.0178 (18)0.0000.0000.0030 (14)
Se10.0494 (4)0.0337 (3)0.0156 (3)0.0000.0000.00690 (16)
N110.0147 (11)0.0240 (12)0.0186 (11)0.0001 (8)0.0012 (9)0.0001 (8)
C110.0113 (15)0.0247 (19)0.0210 (18)0.0000.0013 (14)0.000
C120.0186 (13)0.0262 (14)0.0198 (13)0.0001 (11)0.0012 (11)0.0026 (10)
C130.0192 (19)0.0212 (19)0.028 (2)0.0000.0011 (16)0.000
Geometric parameters (Å, º) top
Zn1—N1i2.033 (3)N11—C111.333 (3)
Zn1—N12.033 (3)N11—C121.345 (4)
Zn1—N112.287 (2)C11—N11iv1.333 (3)
Zn1—N11i2.287 (2)C11—H110.9500
Zn1—N11ii2.287 (2)C12—C131.373 (3)
Zn1—N11iii2.287 (2)C12—H120.9500
N1—C11.156 (5)C13—C12iv1.373 (3)
C1—Se11.761 (4)C13—H130.9500
N1i—Zn1—N1180.00 (11)C1—N1—Zn1151.5 (3)
N1i—Zn1—N1190.23 (9)N1—C1—Se1178.6 (3)
N1—Zn1—N1189.77 (9)C11—N11—C12116.2 (2)
N1i—Zn1—N11i89.77 (9)C11—N11—Zn1125.3 (2)
N1—Zn1—N11i90.23 (9)C12—N11—Zn1117.95 (17)
N11—Zn1—N11i180.0N11iv—C11—N11126.0 (4)
N1i—Zn1—N11ii90.23 (9)N11iv—C11—H11117.0
N1—Zn1—N11ii89.77 (9)N11—C11—H11117.0
N11—Zn1—N11ii87.46 (11)N11—C12—C13122.2 (3)
N11i—Zn1—N11ii92.54 (11)N11—C12—H12118.9
N1i—Zn1—N11iii89.77 (9)C13—C12—H12118.9
N1—Zn1—N11iii90.23 (9)C12—C13—C12iv117.0 (4)
N11—Zn1—N11iii92.54 (11)C12—C13—H13121.5
N11i—Zn1—N11iii87.45 (11)C12iv—C13—H13121.5
N11ii—Zn1—N11iii180.0
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z; (iii) x, y+1, z+1; (iv) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(NCSe)2(C4H4N2)2]
Mr435.51
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)200
a, b, c (Å)9.4025 (9), 16.7146 (10), 8.7886 (5)
V3)1381.21 (17)
Z4
Radiation typeMo Kα
µ (mm1)7.04
Crystal size (mm)0.28 × 0.22 × 0.16
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.165, 0.321
No. of measured, independent and
observed [I > 2σ(I)] reflections
4502, 657, 638
Rint0.055
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.15
No. of reflections657
No. of parameters51
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.81

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011).

Selected geometric parameters (Å, º) top
Zn1—N12.033 (3)Zn1—N112.287 (2)
N1—C1—Se1178.6 (3)
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project number NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facilities. Special thanks go to Inke Jess for her support of the single-crystal measurements.

References

First citationBhosekar, G., Boeckmann, J., Jess, I. & Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 2595–2601.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLloret, F., De Munno, G., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. 37, 135–138.  CrossRef CAS Google Scholar
First citationLloret, F., Julve, M., Cano, J. & De Munno, G. (1999). Mol. Cryst. Liq. Cryst. 334, 569–585.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M. & Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 569–575.  CSD CrossRef CAS Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009). Inorg. Chem. 48, 6896–6903.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds