organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1749-o1750

Ammonium O,O′-di­ethyl di­thio­phosphate

aDepartment of Inorganic Chemistry, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
*Correspondence e-mail: barbara.becker@pg.gda.pl

(Received 10 June 2011; accepted 13 June 2011; online 18 June 2011)

In the title compound, NH4+·(C2H5O)2PS2, the ammonium cation is connected by four charge-assisted N—H⋯S hydrogen bonds to four tetra­hedral O,O′-diethyl dithio­phosphate anions, forming layers parallel to (100). The polar and non-polar constituents of the layers are stacked alternately along [100]. Inter­lacing of the external ethyl groups through van der Waals inter­actions combines these layers into a three-dimensional structure.

Related literature

For related structures, see: Chekhlov et al. (1991[Chekhlov, A. N., Zabirov, N. G. & Cherkasov, R. A. (1991). Russ. Chem. Bull. 40, 172-174.]); Chekhlov (2000[Chekhlov, A. N. (2000). J. Struct. Chem. 41, 1080-1083.]). For applications of O,O′-diethyl dithio­phosphate in coordination chemistry, see: Cotero-Villegas et al. (2011[Cotero-Villegas, A. M., García y García, P., Höpfl, H., Pérez-Redondo, M. C., Martínez-Salas, P., López-Cardoso, M. & Cea Olivares, R. (2011). J. Organomet. Chem. 696, 2071-2078.]). For the determination of various ions in analytical chemistry using O,O′-diethyl dithio­phosphates, see: Carletto et al. (2009[Carletto, J. S., Luciano, R. M., Bedendo, G. C. & Carasek, E. (2009). Anal. Chim. Acta, 638, 45-50.]); Maltez et al. (2008[Maltez, H. F., Borges, D. L. G., Carasek, E., Welz, B. & Curtius, A. J. (2008). Talanta, 74, 800-805.]); Pozebon et al. (1998[Pozebon, D., Dressler, V. L., Gomes Neto, J. A. & Curtius, A. J. (1998). Talanta, 45, 1167-1175.]); Wu et al. (2006[Wu, H., Jin, Y., Han, W., Miao, Q. & Bi, Sh. (2006). Spectrochim. Acta Part B, 61, 831-840.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C4H10O2PS2

  • Mr = 203.25

  • Monoclinic, P 21 /c

  • a = 12.0274 (7) Å

  • b = 7.2006 (3) Å

  • c = 12.5690 (7) Å

  • β = 110.305 (6)°

  • V = 1020.89 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 120 K

  • 0.30 × 0.16 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.856, Tmax = 0.969

  • 3955 measured reflections

  • 2004 independent reflections

  • 1579 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.01

  • 2004 reflections

  • 109 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.89 (1) 2.43 (1) 3.310 (2) 178 (3)
N1—H4N⋯S1ii 0.88 (1) 2.50 (1) 3.377 (2) 177 (2)
N1—H3N⋯S2iii 0.89 (1) 2.54 (1) 3.409 (2) 169 (2)
N1—H2N⋯S2 0.88 (1) 2.39 (1) 3.2633 (19) 171 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ammonium O,O'-diethyl dithiophosphate is frequently used as a source of the (C2H5O)2PS2- ligand in coordination chemistry (Cotero-Villegas et al., 2011) and in analytical chemistry for determination of various ions, eg. As (Pozebon et al., 1998), Pb (Maltez et al., 2008), Cd (Carletto et al., 2009), Hg (Wu et al., 2006).

There are at least 340 structures deposited in the Cambridge Structural Database (v5.32; Allen, 2008) containing the O,O'-diethyl dithiophosphate moiety, but there are no crystal structure of simple ammonium, sodium or potassium salts reported. Among these structures one can find 328 complexes (including 204 of row 6 family metals, mainly molybdenum compounds), five compounds with complex cations, five simple organic or inorganic compounds and finally two salts of 1,10-diaza-18-crown-6 (Chekhlov, 2000; Chekhlov et al., 1991).

In the crystal structure of the title compound, the asymmetric unit consists of one ammonium cation and one tetrahedral O,O'-diethyl dithiophosphate anion (Fig. 1). The P—S distances are 1.9720 (8) Å and 1.9753 (8) Å. These values are slightly lower than the mean value of 1.9872 (25) Å calculated for the 340 compounds deposited in the CSD. Each ammonium cation is connected by four N—H···S hydrogen bonds to four O,O'-diethyl dithiophosphate anions. This way three structural ring motifs are formed: two of them are centrosymmetric – R24(8), R44(12), and one is not – R34(10) (Fig. 2.) Hydrogen bonding interactions are summarized in Tab. 1.

The connected ions form layers parallel to the (100) plane. Each layer has an hydrophilic interior, where heteroatoms and hydrogen bonds can be found, and an hydrophobic exterior formed by the ethyl groups (Fig. 3). These layers interact with each other by van der Waals forces forming a three-dimensional crystal structure.

Related literature top

For related structures, see: Chekhlov et al. (1991); Chekhlov (2000). For applications of O,O'-diethyl dithiophosphate in coordination chemistry, see: Cotero-Villegas et al. (2011). For determination of various ions in analytical chemistry using O,O'-diethyl dithiophosphates, see: Carletto et al. (2009); Maltez et al. (2008); Pozebon et al. (1998); Wu et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

1 g of commercially available ammonium O,O'-diethyl dithiophosphate was dissolved in 5 ml of acetone and left to evaporate slowly. After one week colourless crystals suitable for single-crystal X-ray diffraction analysis were collected.

Refinement top

Hydrogen atoms were placed at the calculated positions (dCH = 0.98–0.99 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C). The N—H distances were restrained to 0.88 (1) Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of NH4+.(C2H5O)2PS2-, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bond pattern found in the structure of NH4+.(C2H5O)2PS2-, with R24(8), R44(12) and R34(10) structural motifs depicted. Hydrogen bonds are marked with dashed lines.
[Figure 3] Fig. 3. Layers of NH4+.(C2H5O)2PS2- projected down [001] (a)) and [010] (b)). Hydrogen bonds are marked with dashed lines, with hydrogen atoms omitted for clarity.
Ammonium O,O'-diethyl dithiophosphate top
Crystal data top
NH4+·C4H10O2PS2F(000) = 432
Mr = 203.25Dx = 1.322 Mg m3
Monoclinic, P21/cMelting point: 438(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.0274 (7) ÅCell parameters from 2402 reflections
b = 7.2006 (3) Åθ = 2.8–28.4°
c = 12.5690 (7) ŵ = 0.63 mm1
β = 110.305 (6)°T = 120 K
V = 1020.89 (9) Å3Plate, colourless
Z = 40.30 × 0.16 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2004 independent reflections
Graphite monochromator1579 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.023
ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010) using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
h = 1412
Tmin = 0.856, Tmax = 0.969k = 88
3955 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
2004 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.46 e Å3
4 restraintsΔρmin = 0.21 e Å3
Crystal data top
NH4+·C4H10O2PS2V = 1020.89 (9) Å3
Mr = 203.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0274 (7) ŵ = 0.63 mm1
b = 7.2006 (3) ÅT = 120 K
c = 12.5690 (7) Å0.30 × 0.16 × 0.05 mm
β = 110.305 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2004 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010) using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
1579 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.969Rint = 0.023
3955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0354 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.46 e Å3
2004 reflectionsΔρmin = 0.21 e Å3
109 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3199 (2)0.5211 (3)0.2964 (2)0.0326 (5)
H1A0.29820.49060.36350.039*
H1B0.2650.61790.25170.039*
C20.4451 (2)0.5890 (4)0.3330 (3)0.0511 (7)
H2A0.49840.4930.37830.077*
H2B0.45290.70180.37880.077*
H2C0.4660.61690.2660.077*
C30.3169 (2)0.0606 (4)0.3984 (2)0.0392 (6)
H3A0.3690.15810.44570.047*
H3B0.360.00220.35430.047*
C40.2849 (3)0.0763 (4)0.4717 (2)0.0425 (7)
H4A0.24260.01290.51520.064*
H4B0.35720.13340.5240.064*
H4C0.2340.17270.42420.064*
O10.31244 (13)0.35602 (19)0.22740 (13)0.0281 (4)
O20.20831 (13)0.1435 (2)0.32198 (12)0.0278 (4)
P10.20257 (5)0.21895 (8)0.20040 (5)0.02272 (16)
S10.23286 (5)0.02043 (8)0.10585 (5)0.03012 (17)
S20.04716 (5)0.34439 (8)0.13990 (4)0.02542 (16)
N10.0076 (2)0.3099 (3)0.38320 (17)0.0284 (4)
H1N0.0563 (17)0.369 (4)0.385 (2)0.053 (8)*
H2N0.020 (2)0.333 (4)0.3191 (14)0.047 (8)*
H3N0.010 (3)0.1909 (16)0.385 (2)0.052 (9)*
H4N0.0644 (18)0.357 (3)0.4414 (15)0.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0318 (13)0.0262 (11)0.0376 (13)0.0028 (10)0.0093 (10)0.0092 (10)
C20.0360 (15)0.0437 (15)0.0672 (19)0.0085 (13)0.0101 (14)0.0231 (15)
C30.0281 (13)0.0406 (14)0.0387 (14)0.0043 (12)0.0015 (11)0.0107 (12)
C40.0528 (17)0.0459 (15)0.0302 (13)0.0196 (14)0.0162 (12)0.0099 (12)
O10.0263 (8)0.0254 (8)0.0348 (8)0.0061 (7)0.0133 (7)0.0074 (7)
O20.0250 (8)0.0333 (8)0.0231 (7)0.0047 (7)0.0061 (6)0.0067 (7)
P10.0227 (3)0.0229 (3)0.0233 (3)0.0008 (2)0.0088 (2)0.0015 (2)
S10.0256 (3)0.0295 (3)0.0370 (3)0.0010 (2)0.0131 (3)0.0097 (3)
S20.0263 (3)0.0297 (3)0.0202 (3)0.0051 (2)0.0080 (2)0.0011 (2)
N10.0328 (12)0.0313 (12)0.0244 (10)0.0047 (10)0.0141 (9)0.0026 (9)
Geometric parameters (Å, º) top
C1—O11.456 (3)C4—H4A0.98
C1—C21.495 (3)C4—H4B0.98
C1—H1A0.99C4—H4C0.98
C1—H1B0.99O1—P11.5888 (15)
C2—H2A0.98O2—P11.6005 (14)
C2—H2B0.98P1—S11.9720 (8)
C2—H2C0.98P1—S21.9753 (8)
C3—O21.454 (3)N1—H1N0.886 (10)
C3—C41.489 (3)N1—H2N0.884 (10)
C3—H3A0.99N1—H3N0.885 (10)
C3—H3B0.99N1—H4N0.879 (10)
O1—C1—C2107.3 (2)C3—C4—H4B109.5
O1—C1—H1A110.2H4A—C4—H4B109.5
C2—C1—H1A110.2C3—C4—H4C109.5
O1—C1—H1B110.2H4A—C4—H4C109.5
C2—C1—H1B110.2H4B—C4—H4C109.5
H1A—C1—H1B108.5C1—O1—P1120.63 (14)
C1—C2—H2A109.5C3—O2—P1120.07 (15)
C1—C2—H2B109.5O1—P1—O2104.47 (8)
H2A—C2—H2B109.5O1—P1—S1105.37 (6)
C1—C2—H2C109.5O2—P1—S1111.94 (6)
H2A—C2—H2C109.5O1—P1—S2113.83 (6)
H2B—C2—H2C109.5O2—P1—S2104.14 (6)
O2—C3—C4108.3 (2)S1—P1—S2116.59 (4)
O2—C3—H3A110H1N—N1—H2N111 (2)
C4—C3—H3A110H1N—N1—H3N104 (3)
O2—C3—H3B110H2N—N1—H3N109 (2)
C4—C3—H3B110H1N—N1—H4N103 (2)
H3A—C3—H3B108.4H2N—N1—H4N111 (3)
C3—C4—H4A109.5H3N—N1—H4N118 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.89 (1)2.43 (1)3.310 (2)178 (3)
N1—H4N···S1ii0.88 (1)2.50 (1)3.377 (2)177 (2)
N1—H3N···S2iii0.89 (1)2.54 (1)3.409 (2)169 (2)
N1—H2N···S20.88 (1)2.39 (1)3.2633 (19)171 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaNH4+·C4H10O2PS2
Mr203.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.0274 (7), 7.2006 (3), 12.5690 (7)
β (°) 110.305 (6)
V3)1020.89 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.30 × 0.16 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2010) using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.856, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
3955, 2004, 1579
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.01
No. of reflections2004
No. of parameters109
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.886 (10)2.425 (10)3.310 (2)178 (3)
N1—H4N···S1ii0.879 (10)2.499 (10)3.377 (2)177 (2)
N1—H3N···S2iii0.885 (10)2.536 (11)3.409 (2)169 (2)
N1—H2N···S20.884 (10)2.387 (11)3.2633 (19)171 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

Financial support from the Polish Ministry of Science and Higher Education (project No. N N204 543339) is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCarletto, J. S., Luciano, R. M., Bedendo, G. C. & Carasek, E. (2009). Anal. Chim. Acta, 638, 45–50.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChekhlov, A. N. (2000). J. Struct. Chem. 41, 1080–1083.  CAS Google Scholar
First citationChekhlov, A. N., Zabirov, N. G. & Cherkasov, R. A. (1991). Russ. Chem. Bull. 40, 172–174.  CrossRef Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCotero-Villegas, A. M., García y García, P., Höpfl, H., Pérez-Redondo, M. C., Martínez-Salas, P., López-Cardoso, M. & Cea Olivares, R. (2011). J. Organomet. Chem. 696, 2071–2078.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaltez, H. F., Borges, D. L. G., Carasek, E., Welz, B. & Curtius, A. J. (2008). Talanta, 74, 800–805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPozebon, D., Dressler, V. L., Gomes Neto, J. A. & Curtius, A. J. (1998). Talanta, 45, 1167–1175.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Jin, Y., Han, W., Miao, Q. & Bi, Sh. (2006). Spectrochim. Acta Part B, 61, 831–840.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1749-o1750
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds