organic compounds
Ammonium O,O′-diethyl dithiophosphate
aDepartment of Inorganic Chemistry, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
*Correspondence e-mail: barbara.becker@pg.gda.pl
In the title compound, NH4+·(C2H5O)2PS2−, the ammonium cation is connected by four charge-assisted N—H⋯S hydrogen bonds to four tetrahedral O,O′-diethyl dithiophosphate anions, forming layers parallel to (100). The polar and non-polar constituents of the layers are stacked alternately along [100]. Interlacing of the external ethyl groups through van der Waals interactions combines these layers into a three-dimensional structure.
Related literature
For related structures, see: Chekhlov et al. (1991); Chekhlov (2000). For applications of O,O′-diethyl dithiophosphate in coordination chemistry, see: Cotero-Villegas et al. (2011). For the determination of various ions in analytical chemistry using O,O′-diethyl dithiophosphates, see: Carletto et al. (2009); Maltez et al. (2008); Pozebon et al. (1998); Wu et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811022811/wm2499sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811022811/wm2499Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811022811/wm2499Isup3.cml
1 g of commercially available ammonium O,O'-diethyl dithiophosphate was dissolved in 5 ml of acetone and left to evaporate slowly. After one week colourless crystals suitable for single-crystal X-ray
were collected.Hydrogen atoms were placed at the calculated positions (dCH = 0.98–0.99 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C). The N—H distances were restrained to 0.88 (1) Å.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).NH4+·C4H10O2PS2− | F(000) = 432 |
Mr = 203.25 | Dx = 1.322 Mg m−3 |
Monoclinic, P21/c | Melting point: 438(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0274 (7) Å | Cell parameters from 2402 reflections |
b = 7.2006 (3) Å | θ = 2.8–28.4° |
c = 12.5690 (7) Å | µ = 0.63 mm−1 |
β = 110.305 (6)° | T = 120 K |
V = 1020.89 (9) Å3 | Plate, colourless |
Z = 4 | 0.30 × 0.16 × 0.05 mm |
Oxford Diffraction Xcalibur diffractometer | 2004 independent reflections |
Graphite monochromator | 1579 reflections with I > 2σ(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.023 |
ω scans | θmax = 26.0°, θmin = 3.3° |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010) using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] | h = −14→12 |
Tmin = 0.856, Tmax = 0.969 | k = −8→8 |
3955 measured reflections | l = −15→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3 |
2004 reflections | (Δ/σ)max = 0.001 |
109 parameters | Δρmax = 0.46 e Å−3 |
4 restraints | Δρmin = −0.21 e Å−3 |
NH4+·C4H10O2PS2− | V = 1020.89 (9) Å3 |
Mr = 203.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.0274 (7) Å | µ = 0.63 mm−1 |
b = 7.2006 (3) Å | T = 120 K |
c = 12.5690 (7) Å | 0.30 × 0.16 × 0.05 mm |
β = 110.305 (6)° |
Oxford Diffraction Xcalibur diffractometer | 2004 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010) using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] | 1579 reflections with I > 2σ(I) |
Tmin = 0.856, Tmax = 0.969 | Rint = 0.023 |
3955 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 4 restraints |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.46 e Å−3 |
2004 reflections | Δρmin = −0.21 e Å−3 |
109 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3199 (2) | 0.5211 (3) | 0.2964 (2) | 0.0326 (5) | |
H1A | 0.2982 | 0.4906 | 0.3635 | 0.039* | |
H1B | 0.265 | 0.6179 | 0.2517 | 0.039* | |
C2 | 0.4451 (2) | 0.5890 (4) | 0.3330 (3) | 0.0511 (7) | |
H2A | 0.4984 | 0.493 | 0.3783 | 0.077* | |
H2B | 0.4529 | 0.7018 | 0.3788 | 0.077* | |
H2C | 0.466 | 0.6169 | 0.266 | 0.077* | |
C3 | 0.3169 (2) | 0.0606 (4) | 0.3984 (2) | 0.0392 (6) | |
H3A | 0.369 | 0.1581 | 0.4457 | 0.047* | |
H3B | 0.36 | −0.0022 | 0.3543 | 0.047* | |
C4 | 0.2849 (3) | −0.0763 (4) | 0.4717 (2) | 0.0425 (7) | |
H4A | 0.2426 | −0.0129 | 0.5152 | 0.064* | |
H4B | 0.3572 | −0.1334 | 0.524 | 0.064* | |
H4C | 0.234 | −0.1727 | 0.4242 | 0.064* | |
O1 | 0.31244 (13) | 0.35602 (19) | 0.22740 (13) | 0.0281 (4) | |
O2 | 0.20831 (13) | 0.1435 (2) | 0.32198 (12) | 0.0278 (4) | |
P1 | 0.20257 (5) | 0.21895 (8) | 0.20040 (5) | 0.02272 (16) | |
S1 | 0.23286 (5) | 0.02043 (8) | 0.10585 (5) | 0.03012 (17) | |
S2 | 0.04716 (5) | 0.34439 (8) | 0.13990 (4) | 0.02542 (16) | |
N1 | 0.0076 (2) | 0.3099 (3) | 0.38320 (17) | 0.0284 (4) | |
H1N | −0.0563 (17) | 0.369 (4) | 0.385 (2) | 0.053 (8)* | |
H2N | 0.020 (2) | 0.333 (4) | 0.3191 (14) | 0.047 (8)* | |
H3N | −0.010 (3) | 0.1909 (16) | 0.385 (2) | 0.052 (9)* | |
H4N | 0.0644 (18) | 0.357 (3) | 0.4414 (15) | 0.047 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0318 (13) | 0.0262 (11) | 0.0376 (13) | −0.0028 (10) | 0.0093 (10) | −0.0092 (10) |
C2 | 0.0360 (15) | 0.0437 (15) | 0.0672 (19) | −0.0085 (13) | 0.0101 (14) | −0.0231 (15) |
C3 | 0.0281 (13) | 0.0406 (14) | 0.0387 (14) | 0.0043 (12) | −0.0015 (11) | 0.0107 (12) |
C4 | 0.0528 (17) | 0.0459 (15) | 0.0302 (13) | 0.0196 (14) | 0.0162 (12) | 0.0099 (12) |
O1 | 0.0263 (8) | 0.0254 (8) | 0.0348 (8) | −0.0061 (7) | 0.0133 (7) | −0.0074 (7) |
O2 | 0.0250 (8) | 0.0333 (8) | 0.0231 (7) | 0.0047 (7) | 0.0061 (6) | 0.0067 (7) |
P1 | 0.0227 (3) | 0.0229 (3) | 0.0233 (3) | −0.0008 (2) | 0.0088 (2) | −0.0015 (2) |
S1 | 0.0256 (3) | 0.0295 (3) | 0.0370 (3) | −0.0010 (2) | 0.0131 (3) | −0.0097 (3) |
S2 | 0.0263 (3) | 0.0297 (3) | 0.0202 (3) | 0.0051 (2) | 0.0080 (2) | 0.0011 (2) |
N1 | 0.0328 (12) | 0.0313 (12) | 0.0244 (10) | 0.0047 (10) | 0.0141 (9) | 0.0026 (9) |
C1—O1 | 1.456 (3) | C4—H4A | 0.98 |
C1—C2 | 1.495 (3) | C4—H4B | 0.98 |
C1—H1A | 0.99 | C4—H4C | 0.98 |
C1—H1B | 0.99 | O1—P1 | 1.5888 (15) |
C2—H2A | 0.98 | O2—P1 | 1.6005 (14) |
C2—H2B | 0.98 | P1—S1 | 1.9720 (8) |
C2—H2C | 0.98 | P1—S2 | 1.9753 (8) |
C3—O2 | 1.454 (3) | N1—H1N | 0.886 (10) |
C3—C4 | 1.489 (3) | N1—H2N | 0.884 (10) |
C3—H3A | 0.99 | N1—H3N | 0.885 (10) |
C3—H3B | 0.99 | N1—H4N | 0.879 (10) |
O1—C1—C2 | 107.3 (2) | C3—C4—H4B | 109.5 |
O1—C1—H1A | 110.2 | H4A—C4—H4B | 109.5 |
C2—C1—H1A | 110.2 | C3—C4—H4C | 109.5 |
O1—C1—H1B | 110.2 | H4A—C4—H4C | 109.5 |
C2—C1—H1B | 110.2 | H4B—C4—H4C | 109.5 |
H1A—C1—H1B | 108.5 | C1—O1—P1 | 120.63 (14) |
C1—C2—H2A | 109.5 | C3—O2—P1 | 120.07 (15) |
C1—C2—H2B | 109.5 | O1—P1—O2 | 104.47 (8) |
H2A—C2—H2B | 109.5 | O1—P1—S1 | 105.37 (6) |
C1—C2—H2C | 109.5 | O2—P1—S1 | 111.94 (6) |
H2A—C2—H2C | 109.5 | O1—P1—S2 | 113.83 (6) |
H2B—C2—H2C | 109.5 | O2—P1—S2 | 104.14 (6) |
O2—C3—C4 | 108.3 (2) | S1—P1—S2 | 116.59 (4) |
O2—C3—H3A | 110 | H1N—N1—H2N | 111 (2) |
C4—C3—H3A | 110 | H1N—N1—H3N | 104 (3) |
O2—C3—H3B | 110 | H2N—N1—H3N | 109 (2) |
C4—C3—H3B | 110 | H1N—N1—H4N | 103 (2) |
H3A—C3—H3B | 108.4 | H2N—N1—H4N | 111 (3) |
C3—C4—H4A | 109.5 | H3N—N1—H4N | 118 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S1i | 0.89 (1) | 2.43 (1) | 3.310 (2) | 178 (3) |
N1—H4N···S1ii | 0.88 (1) | 2.50 (1) | 3.377 (2) | 177 (2) |
N1—H3N···S2iii | 0.89 (1) | 2.54 (1) | 3.409 (2) | 169 (2) |
N1—H2N···S2 | 0.88 (1) | 2.39 (1) | 3.2633 (19) | 171 (2) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | NH4+·C4H10O2PS2− |
Mr | 203.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 12.0274 (7), 7.2006 (3), 12.5690 (7) |
β (°) | 110.305 (6) |
V (Å3) | 1020.89 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.63 |
Crystal size (mm) | 0.30 × 0.16 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2010) using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.856, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3955, 2004, 1579 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.085, 1.01 |
No. of reflections | 2004 |
No. of parameters | 109 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.21 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S1i | 0.886 (10) | 2.425 (10) | 3.310 (2) | 178 (3) |
N1—H4N···S1ii | 0.879 (10) | 2.499 (10) | 3.377 (2) | 177 (2) |
N1—H3N···S2iii | 0.885 (10) | 2.536 (11) | 3.409 (2) | 169 (2) |
N1—H2N···S2 | 0.884 (10) | 2.387 (11) | 3.2633 (19) | 171 (2) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2. |
Acknowledgements
Financial support from the Polish Ministry of Science and Higher Education (project No. N N204 543339) is gratefully acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Carletto, J. S., Luciano, R. M., Bedendo, G. C. & Carasek, E. (2009). Anal. Chim. Acta, 638, 45–50. Web of Science CrossRef PubMed CAS Google Scholar
Chekhlov, A. N. (2000). J. Struct. Chem. 41, 1080–1083. CAS Google Scholar
Chekhlov, A. N., Zabirov, N. G. & Cherkasov, R. A. (1991). Russ. Chem. Bull. 40, 172–174. CrossRef Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cotero-Villegas, A. M., García y García, P., Höpfl, H., Pérez-Redondo, M. C., Martínez-Salas, P., López-Cardoso, M. & Cea Olivares, R. (2011). J. Organomet. Chem. 696, 2071–2078. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maltez, H. F., Borges, D. L. G., Carasek, E., Welz, B. & Curtius, A. J. (2008). Talanta, 74, 800–805. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Pozebon, D., Dressler, V. L., Gomes Neto, J. A. & Curtius, A. J. (1998). Talanta, 45, 1167–1175. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, H., Jin, Y., Han, W., Miao, Q. & Bi, Sh. (2006). Spectrochim. Acta Part B, 61, 831–840. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ammonium O,O'-diethyl dithiophosphate is frequently used as a source of the (C2H5O)2PS2- ligand in coordination chemistry (Cotero-Villegas et al., 2011) and in analytical chemistry for determination of various ions, eg. As (Pozebon et al., 1998), Pb (Maltez et al., 2008), Cd (Carletto et al., 2009), Hg (Wu et al., 2006).
There are at least 340 structures deposited in the Cambridge Structural Database (v5.32; Allen, 2008) containing the O,O'-diethyl dithiophosphate moiety, but there are no crystal structure of simple ammonium, sodium or potassium salts reported. Among these structures one can find 328 complexes (including 204 of row 6 family metals, mainly molybdenum compounds), five compounds with complex cations, five simple organic or inorganic compounds and finally two salts of 1,10-diaza-18-crown-6 (Chekhlov, 2000; Chekhlov et al., 1991).
In the crystal structure of the title compound, the asymmetric unit consists of one ammonium cation and one tetrahedral O,O'-diethyl dithiophosphate anion (Fig. 1). The P—S distances are 1.9720 (8) Å and 1.9753 (8) Å. These values are slightly lower than the mean value of 1.9872 (25) Å calculated for the 340 compounds deposited in the CSD. Each ammonium cation is connected by four N—H···S hydrogen bonds to four O,O'-diethyl dithiophosphate anions. This way three structural ring motifs are formed: two of them are centrosymmetric – R24(8), R44(12), and one is not – R34(10) (Fig. 2.) Hydrogen bonding interactions are summarized in Tab. 1.
The connected ions form layers parallel to the (100) plane. Each layer has an hydrophilic interior, where heteroatoms and hydrogen bonds can be found, and an hydrophobic exterior formed by the ethyl groups (Fig. 3). These layers interact with each other by van der Waals forces forming a three-dimensional crystal structure.