organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Amino-1,3-di­methyl-5-[(E)-2-(methyl­sulfan­yl)benzyl­­idene­amino]­pyrimidine-2,4(1H,3H)-dione

aUniversity of Kwazulu-Natal, School of Chemistry, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 26 May 2011; accepted 31 May 2011; online 11 June 2011)

The title compound, C14H16N4O2S, is a Schiff base derivative of 2-(methyl­sulfan­yl)benzaldehyde. The configuration about the C=N double bond is E. The heterocyclic ring is essentially planar (τ = 3.1°) and makes a dihedral angle of 12.24 (7)° with the benzene ring. An intra­molecular N—H⋯S hydrogen bond is observed. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link mol­ecules into layers perpendicular to [101]. The closest distance between the centroids of two heterocyclic rings was found to be 3.5268 (8) Å.

Related literature

For background on chelating ligands, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1 Auflage. Weinheim: Wiley-VCH.]). For the crystal structures of other Schiff bases derived from ortho-(thio­meth­yl)benzaldehyde, see: Yan et al. (2007[Yan, G.-B., Zhang, C.-N. & Yang, M.-H. (2007). Acta Cryst. E63, o2663-o2664.]); Baidina et al. (1987[Baidina, I. A., Borisov, S. V. & Parigina, G. K. (1987). Zh. Strukt. Khim. 28, 172-175.]). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N4O2S

  • Mr = 304.37

  • Monoclinic, P 21 /c

  • a = 7.9740 (2) Å

  • b = 12.4630 (3) Å

  • c = 13.9870 (3) Å

  • β = 94.384 (1)°

  • V = 1385.96 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.45 × 0.25 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 13383 measured reflections

  • 3441 independent reflections

  • 2912 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.09

  • 3441 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H741⋯S1 0.88 (2) 2.63 (2) 3.5117 (14) 178.4 (17)
N4—H742⋯O2i 0.86 (2) 2.07 (2) 2.8463 (16) 150 (2)
C9—H9⋯O1ii 0.95 2.61 3.2807 (18) 128
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. To enable comparative studies with envisioned coordination compounds, we determined the crystal structure of the title compound. Other crystal structures of Schiff-bases derived from ortho-(thiomethyl)-benzaldehyde are reported in the literature (Yan et al., 2007; Baidina et al. 1987).

The molecule is a Schiff-base featuring an ortho-(thiomethyl)phenyl moiety and a 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione moiety. The double-bond is (E)-configured. A conformational analysis of the non-aromatic six-membered ring (Cremer & Pople, 1975) fails due to the low puckering amplitude. The molecule, excluding methyl hydrogen atoms is essentially planar, the least-squares planes defined by the respective atoms of both six-membered ring systems intersecting at an angle of only 12.24 (7)° (Fig. 1).

In the crystal structure, intra- as well as intermolecular hydrogen bonds can be observed, both supported by the amino group. While the intramolecular hydrogen bond is formed to the sulfur atom of the thiomethyl group, the intermolecular hydrogen bond uses one of the ketonic oxygen atoms as acceptor. Apart from these hydrogen bonds, C—H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating are apparent. These stem from the H atom bonded to the C atom in para-position to the Schiff-base functionality on the aromatic ring and have the second ketonic O atom as acceptor. A description of the hydrogen bonding system in terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) is possible with a DC11(6) descriptor on the unitary level, whereas the C—H···O contacts necessitate a C11(10) descriptor on the same level. In total, the molecules are linked in planes perpendicular to [1 0 1]. The shortest distance between the centroids of two heterocyclic rings was found to be 3.5268 (8) Å (Fig. 2). The packing of the title compound is shown in Fig. 3.

Related literature top

For background on chelating ligands, see: Gade (1998). For the crystal structures of other Schiff bases derived from ortho-(thiomethyl)benzaldehyde, see: Yan et al. (2007); Baidina et al. (1987). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For details of puckering analysis, see: Cremer & Pople (1975).

Experimental top

Equimolar amounts of ortho-(thiomethyl)-benzaldehyde (1.00 g, 6.57 mmol) and 5,6-diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (1.12 g) in 50 cm3 anhydrous methanol were refluxed for three hours. The reaction mixture was allowed to cool to room temperature. A yellow precipitate was isolated which was recrystallized from anhydrous acetonitrile to give yellow crystals, which were suitable for X-ray analysis.

Refinement top

H atoms bonded to Csp2 atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C) and C—H = 0.98 Å. Both nitrogen-bound H atoms were located in a difference Fourier map and refined freely [N—H = 0.86 (2) Å and 0.88 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).
[Figure 2] Fig. 2. Intra- and intermolecular contacts, viewed along [-1 0 0]. Green dashed lines indicate N—H···S hydrogen bonds, blue dashed lines N—H···O hydrogen bonds and purple dashed lines C—H···O contacts. Symmetry operators: i -x, y - 1/2, -z + 1/2; ii -x, y + 1/2, -z + 1/2; iii -x + 1, y - 1/2, -z - 1/2; iv -x + 1, y + 1/2, -z - 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
6-Amino-1,3-dimethyl-5-[(E)-2- (methylsulfanyl)benzylideneamino]pyrimidine-2,4(1H,3H)-dione top
Crystal data top
C14H16N4O2SF(000) = 640
Mr = 304.37Dx = 1.459 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 6560 reflections
a = 7.9740 (2) Åθ = 2.6–28.3°
b = 12.4630 (3) ŵ = 0.24 mm1
c = 13.9870 (3) ÅT = 100 K
β = 94.384 (1)°Rod, yellow
V = 1385.96 (6) Å30.45 × 0.25 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2912 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 1010
13383 measured reflectionsk = 1616
3441 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.042P)2 + 0.7103P]
where P = (Fo2 + 2Fc2)/3
3441 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H16N4O2SV = 1385.96 (6) Å3
Mr = 304.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9740 (2) ŵ = 0.24 mm1
b = 12.4630 (3) ÅT = 100 K
c = 13.9870 (3) Å0.45 × 0.25 × 0.13 mm
β = 94.384 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2912 reflections with I > 2σ(I)
13383 measured reflectionsRint = 0.025
3441 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.43 e Å3
3441 reflectionsΔρmin = 0.26 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24479 (5)0.11449 (3)0.01927 (3)0.01828 (10)
O10.20013 (13)0.57346 (8)0.04281 (7)0.0182 (2)
O20.45091 (14)0.64532 (9)0.23229 (8)0.0219 (2)
N10.32410 (15)0.60885 (9)0.09573 (8)0.0145 (2)
N20.45428 (15)0.47261 (10)0.17925 (8)0.0151 (2)
N30.26375 (15)0.34072 (10)0.01660 (8)0.0141 (2)
N40.43846 (16)0.29401 (11)0.13145 (9)0.0179 (3)
H7410.392 (3)0.2487 (17)0.0927 (14)0.027 (5)*
H7420.480 (3)0.2713 (18)0.1826 (16)0.039 (6)*
C10.31118 (17)0.42673 (11)0.03962 (9)0.0133 (3)
C20.27303 (17)0.53685 (11)0.02460 (10)0.0131 (3)
C30.41138 (17)0.58028 (12)0.17251 (10)0.0155 (3)
C40.40082 (17)0.39688 (11)0.11738 (10)0.0142 (3)
C50.19312 (18)0.35231 (11)0.09502 (10)0.0164 (3)
H50.17280.42290.11710.020*
C60.14235 (18)0.26118 (12)0.15205 (10)0.0148 (3)
C70.15496 (18)0.15166 (12)0.12645 (10)0.0155 (3)
C80.09458 (18)0.07399 (12)0.18772 (11)0.0187 (3)
H80.10070.00030.17090.022*
C90.02593 (19)0.10237 (13)0.27252 (11)0.0203 (3)
H90.01450.04820.31260.024*
C100.01599 (19)0.20918 (13)0.29904 (11)0.0201 (3)
H100.03000.22840.35730.024*
C110.07393 (17)0.28749 (12)0.23952 (10)0.0151 (3)
H110.06760.36070.25790.018*
C120.2959 (2)0.72400 (11)0.08308 (11)0.0193 (3)
H1210.40430.76040.07080.029*
H1220.22750.73520.02860.029*
H1230.23700.75340.14130.029*
C130.55971 (19)0.44007 (13)0.25572 (10)0.0203 (3)
H1310.65490.39760.22820.030*
H1320.60170.50410.28690.030*
H1330.49290.39680.30320.030*
C140.2462 (2)0.03061 (12)0.02441 (12)0.0259 (3)
H1410.30750.05410.08420.039*
H1420.30160.05910.03040.039*
H1430.13030.05720.02220.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0251 (2)0.01325 (17)0.01737 (18)0.00195 (13)0.00745 (13)0.00143 (13)
O10.0237 (5)0.0156 (5)0.0163 (5)0.0005 (4)0.0081 (4)0.0011 (4)
O20.0257 (6)0.0225 (6)0.0184 (5)0.0023 (4)0.0070 (4)0.0074 (4)
N10.0171 (6)0.0121 (6)0.0145 (5)0.0006 (4)0.0034 (4)0.0017 (4)
N20.0155 (6)0.0186 (6)0.0120 (5)0.0005 (5)0.0056 (4)0.0005 (4)
N30.0153 (6)0.0126 (6)0.0147 (6)0.0011 (4)0.0016 (4)0.0001 (4)
N40.0217 (6)0.0167 (6)0.0161 (6)0.0006 (5)0.0079 (5)0.0031 (5)
C10.0154 (6)0.0117 (6)0.0130 (6)0.0011 (5)0.0027 (5)0.0003 (5)
C20.0142 (6)0.0128 (6)0.0125 (6)0.0016 (5)0.0018 (5)0.0005 (5)
C30.0145 (6)0.0186 (7)0.0134 (6)0.0017 (5)0.0016 (5)0.0018 (5)
C40.0141 (6)0.0149 (7)0.0135 (6)0.0015 (5)0.0007 (5)0.0013 (5)
C50.0194 (7)0.0130 (6)0.0174 (7)0.0008 (5)0.0046 (5)0.0000 (5)
C60.0144 (7)0.0160 (7)0.0143 (6)0.0002 (5)0.0034 (5)0.0007 (5)
C70.0148 (6)0.0166 (7)0.0151 (6)0.0012 (5)0.0025 (5)0.0012 (5)
C80.0196 (7)0.0159 (7)0.0207 (7)0.0034 (5)0.0029 (6)0.0032 (6)
C90.0187 (7)0.0234 (8)0.0192 (7)0.0042 (6)0.0039 (6)0.0072 (6)
C100.0184 (7)0.0262 (8)0.0162 (7)0.0009 (6)0.0052 (5)0.0031 (6)
C110.0161 (7)0.0162 (7)0.0136 (6)0.0006 (5)0.0058 (5)0.0016 (5)
C120.0239 (8)0.0114 (6)0.0228 (7)0.0009 (5)0.0030 (6)0.0028 (5)
C130.0209 (7)0.0253 (8)0.0160 (7)0.0004 (6)0.0103 (6)0.0009 (6)
C140.0373 (9)0.0130 (7)0.0284 (8)0.0009 (6)0.0095 (7)0.0030 (6)
Geometric parameters (Å, º) top
S1—C71.7719 (15)C6—C111.4157 (19)
S1—C141.8098 (16)C6—C71.417 (2)
O1—C21.2325 (17)C7—C81.402 (2)
O2—C31.2231 (17)C8—C91.390 (2)
N1—C31.3706 (18)C8—H80.9500
N1—C21.4223 (17)C9—C101.386 (2)
N1—C121.4655 (18)C9—H90.9500
N2—C41.3702 (18)C10—C111.385 (2)
N2—C31.3897 (19)C10—H100.9500
N2—C131.4672 (17)C11—H110.9500
N3—C51.2789 (18)C12—H1210.9800
N3—C11.3986 (18)C12—H1220.9800
N4—C41.3348 (19)C12—H1230.9800
N4—H7410.88 (2)C13—H1310.9800
N4—H7420.86 (2)C13—H1320.9800
C1—C41.3968 (19)C13—H1330.9800
C1—C21.4247 (19)C14—H1410.9800
C5—C61.463 (2)C14—H1420.9800
C5—H50.9500C14—H1430.9800
C7—S1—C14103.25 (7)C6—C7—S1120.46 (11)
C3—N1—C2125.02 (12)C9—C8—C7121.47 (14)
C3—N1—C12116.16 (12)C9—C8—H8119.3
C2—N1—C12118.59 (11)C7—C8—H8119.3
C4—N2—C3122.15 (12)C10—C9—C8120.49 (14)
C4—N2—C13119.56 (12)C10—C9—H9119.8
C3—N2—C13118.29 (12)C8—C9—H9119.8
C5—N3—C1123.47 (13)C11—C10—C9119.18 (14)
C4—N4—H741114.4 (13)C11—C10—H10120.4
C4—N4—H742123.0 (15)C9—C10—H10120.4
H741—N4—H742120 (2)C10—C11—C6121.64 (14)
C4—C1—N3114.22 (12)C10—C11—H11119.2
C4—C1—C2119.94 (12)C6—C11—H11119.2
N3—C1—C2125.83 (12)N1—C12—H121109.5
O1—C2—N1118.60 (12)N1—C12—H122109.5
O1—C2—C1126.01 (13)H121—C12—H122109.5
N1—C2—C1115.39 (12)N1—C12—H123109.5
O2—C3—N1122.42 (14)H121—C12—H123109.5
O2—C3—N2121.06 (13)H122—C12—H123109.5
N1—C3—N2116.51 (12)N2—C13—H131109.5
N4—C4—N2118.96 (13)N2—C13—H132109.5
N4—C4—C1120.31 (13)H131—C13—H132109.5
N2—C4—C1120.71 (13)N2—C13—H133109.5
N3—C5—C6122.58 (13)H131—C13—H133109.5
N3—C5—H5118.7H132—C13—H133109.5
C6—C5—H5118.7S1—C14—H141109.5
C11—C6—C7118.76 (13)S1—C14—H142109.5
C11—C6—C5115.63 (13)H141—C14—H142109.5
C7—C6—C5125.61 (13)S1—C14—H143109.5
C8—C7—C6118.44 (13)H141—C14—H143109.5
C8—C7—S1121.10 (12)H142—C14—H143109.5
C5—N3—C1—C4174.13 (13)C13—N2—C4—C1175.11 (13)
C5—N3—C1—C27.2 (2)N3—C1—C4—N41.84 (19)
C3—N1—C2—O1177.49 (13)C2—C1—C4—N4179.37 (13)
C12—N1—C2—O13.22 (19)N3—C1—C4—N2179.44 (12)
C3—N1—C2—C13.08 (19)C2—C1—C4—N20.6 (2)
C12—N1—C2—C1177.34 (12)C1—N3—C5—C6179.11 (13)
C4—C1—C2—O1177.39 (14)N3—C5—C6—C11176.78 (13)
N3—C1—C2—O14.0 (2)N3—C5—C6—C73.8 (2)
C4—C1—C2—N13.22 (19)C11—C6—C7—C81.8 (2)
N3—C1—C2—N1175.42 (12)C5—C6—C7—C8177.64 (14)
C2—N1—C3—O2179.26 (13)C11—C6—C7—S1178.33 (11)
C12—N1—C3—O26.3 (2)C5—C6—C7—S12.3 (2)
C2—N1—C3—N21.0 (2)C14—S1—C7—C84.30 (14)
C12—N1—C3—N2173.35 (12)C14—S1—C7—C6175.81 (12)
C4—N2—C3—O2175.03 (13)C6—C7—C8—C91.0 (2)
C13—N2—C3—O24.7 (2)S1—C7—C8—C9179.16 (11)
C4—N2—C3—N15.27 (19)C7—C8—C9—C100.3 (2)
C13—N2—C3—N1175.01 (12)C8—C9—C10—C110.6 (2)
C3—N2—C4—N4176.08 (13)C9—C10—C11—C60.3 (2)
C13—N2—C4—N43.6 (2)C7—C6—C11—C101.5 (2)
C3—N2—C4—C15.2 (2)C5—C6—C11—C10177.98 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H741···S10.88 (2)2.63 (2)3.5117 (14)178.4 (17)
N4—H742···O2i0.86 (2)2.07 (2)2.8463 (16)150 (2)
C9—H9···O1ii0.952.613.2807 (18)128
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H16N4O2S
Mr304.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.9740 (2), 12.4630 (3), 13.9870 (3)
β (°) 94.384 (1)
V3)1385.96 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.45 × 0.25 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13383, 3441, 2912
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.09
No. of reflections3441
No. of parameters201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H741···S10.88 (2)2.63 (2)3.5117 (14)178.4 (17)
N4—H742···O2i0.86 (2)2.07 (2)2.8463 (16)150 (2)
C9—H9···O1ii0.952.613.2807 (18)127.5
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank Mrs Isolda Williams for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaidina, I. A., Borisov, S. V. & Parigina, G. K. (1987). Zh. Strukt. Khim. 28, 172–175.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1 Auflage. Weinheim: Wiley-VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, G.-B., Zhang, C.-N. & Yang, M.-H. (2007). Acta Cryst. E63, o2663–o2664.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds