organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

25,26,27,28-Tetra­kis(3-bromo­benzyl­­oxy)calix[4]arene

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea, and bDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea
*Correspondence e-mail: shmun@eagle.kit.ac.kr, kmpark@gnu.ac.kr

(Received 11 June 2011; accepted 14 June 2011; online 18 June 2011)

In the title compound, C56H44Br4O4, the calix[4]arene unit displays the 1,2-alternate conformation with crystallograpically imposed inversion symmetry. The four phen­oxy rings of the calix[4]arene unit are twisted about the mean plane defined by the four methyl­ene C atoms bridging the benzene rings, with dihedral angles of 46.73 (6) and 66.11 (5)°. The dihedral angle between adjacent phen­oxy rings is 74.75 (7)°. The two pendant bromo­phenyl rings on the same side of the calix[4]arene unit are nearly perpendicular to each other, with a dihedral angle of 72.85 (10)° due to an intra­molecular C—H⋯π inter­action. In the crystal, a Br⋯Br contact of 3.6350 (5) Å, an inter­molecular C—H⋯Br hydrogen bond and an inter­molecular C—H⋯π inter­action are observed.

Related literature

For calix[4]arene chemistry and its applications, see: Gutsche (2008[Gutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddart. Cambridge: The Royal Society of Chemistry.]); Ikeda & Shinkai (1997[Ikeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713-1734.]). For the use of calixarenes in crystal engineering, see: Dalgrano et al. (2007[Dalgrano, S. J., Thallapally, P. K., Barbour, L. J. & Atwood, J. L. (2007). Chem. Soc. Rev. 36, 236-245.]). For the modification of calix[4]arenes, see: Asfari et al. (2001[Asfari, Z., Böhmer, V. & Harrowfield, J. (2001). Calixarenes 2001. Dordrecht: Kluwer Academic Publishers.]); Mandolini & Ungaro (2000[Mandolini, L. & Ungaro, R. (2000). Calixarenes in Action. London: Imperial College Press.]).

[Scheme 1]

Experimental

Crystal data
  • C56H44Br4O4

  • Mr = 1100.55

  • Monoclinic, P 21 /c

  • a = 13.4377 (8) Å

  • b = 10.4789 (7) Å

  • c = 17.1666 (12) Å

  • β = 103.822 (2)°

  • V = 2347.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.48 mm−1

  • T = 173 K

  • 0.21 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.529, Tmax = 0.624

  • 22506 measured reflections

  • 5813 independent reflections

  • 3929 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.02

  • 5813 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C23–C28 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯Br2i 0.99 2.91 3.652 (2) 132
C17—H17⋯Cg1 0.95 2.74 3.69 175
C5—H5⋯Cg2ii 0.95 2.68 3.54 151
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Calix[4]arenes are macrocycles employed widely in supramolecular chemistry (Gutsche, 2008; Ikeda & Shinkai, 1997) and crystal engineering (Dalgrano et al., 2007) because they can be easily modified by selective reactions involving the upper and/or the lower rim of the molecule (Asfari et al., 2001; Mandolini & Ungaro, 2000). Calix[4]arenes can adopt several conformations, of which the 1,2-alternate conformation is much less commonly found. For that reason, the title compound, adopting the 1,2-alternate conformation, was prepared for use as a starting material for the preparation of ligands for construction of metallo-supramolecular architectures via appropriate chemical modification at the bromine positions.

In the crystal structure of the title compound, as shown in Fig. 1, the calix[4] unit adopts an 1,2-alternate conformation, located on a crystallographic inversion centre. Therefore the asymmetric unit consists of one half-molecule. The four phenoxy rings of the calix[4]arene unit are twisted about the mean plane defined by the four methylene C atoms (C13, C14, C13i and C14i) bridging the benzene rings, with dihedral angles of 46.73 (6)° for the C1–C6 ring and 66.11 (5)° for the C7–C12 ring (symmetry code: (i) -x, -y + 2, -z + 1). The adjacent phenoxy rings make a dihedral angle of 74.75 (7)°. The two pendant bromophenyl rings on the same side of the calix[4]arene unit are nearly perpendicular to each other, with a dihedral angle of 72.85 (10)° due to the intramolecular C—H···π interaction; Cg1 is the centroid of the C23–C28 ring, H17··· Cg1 2.74 Å and C17—H17···Cg1 174.5 ° (Table 1, Fig. 1).

In the crystal structure, as shown in Fig. 2, a Br···Br contact of 3.6350 (5) Å, an intermolecular C—H···Br hydrogen bond and intermolecular C—H···π interaction are observed (Table 1). These intermolecular interactions may contribute to the stabilization of the crystal packing.

Related literature top

For calix[4]arene chemistry and its applications, see: Gutsche (2008); Ikeda & Shinkai (1997). For the use of calixarenes in crystal engineering, see: Dalgrano et al. (2007). For the modification of calix[4]arenes, see: Asfari et al. (2001); Mandolini & Ungaro (2000).

Experimental top

To a refluxing suspension of calix[4]arene (2.00 g, 4.71 mmol) and caesium carbonate (7.50 g, 23.0 mmol) in dry acetone (200 ml) was added dropwise 1-bromo-3-(methylbromo)benzene (4.80 g, 19.2 mmol) in dry acetone (20 ml). The mixture was stirred and refluxed for 12 h and cooled to room temperature. The solvent was removed under reduced pressure. The residue was neutralized with 10% hydrochloric acid and extracted with dichloromethane. The organic layer was washed three times with water and dried over anhydrous magnesium sulfate. After removal of the solvent under reduced pressure, the residue was recrystallized from dichloromethane-hexane to give the title compound in 27% yield as a white solid. Single crystals suitable for X-ray diffraction were obtained by evaporation of a dichloromethane solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2—H and 0.99 Å for methylene C—H. For all H atoms Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with intramolecular C—H···π interactions shown as dashed lines. Displacement ellipsoids are represented at the 30% probability levels. H atoms not involved in intramolecular interactions have been omitted for clarity. H atoms are presented as a small spheres of arbitrary radius. Cg1is the centroid of the C23–C28 ring. (Symmetry code: (i) -x, -y + 2, -z + 1.)
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular C—H···Br hydrogen bonds, C—H···π interactions and Br···Br contacts shown as dashed lines. H atoms not involved in intra- or intermolecular interactions have been omitted for clarity. Cg1 and Cg2 are the centroids of the C23–C28 and C7–C12 rings, respectively. (Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) -x, y + 1/2, -z + 1/2; (iii) x, -y + 5/2, z - 1/2; (iv) -x + 1, y + 1/2, -z + 1/2.)
25,26,27,28-Tetrakis(3-bromobenzyloxy)calix[4]arene top
Crystal data top
C56H44Br4O4F(000) = 1104
Mr = 1100.55Dx = 1.557 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5179 reflections
a = 13.4377 (8) Åθ = 2.3–27.1°
b = 10.4789 (7) ŵ = 3.48 mm1
c = 17.1666 (12) ÅT = 173 K
β = 103.822 (2)°Block, colourless
V = 2347.3 (3) Å30.21 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
5813 independent reflections
Radiation source: fine-focus sealed tube3929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.529, Tmax = 0.624k = 1310
22506 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0447P)2 + 1.723P]
where P = (Fo2 + 2Fc2)/3
5813 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C56H44Br4O4V = 2347.3 (3) Å3
Mr = 1100.55Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.4377 (8) ŵ = 3.48 mm1
b = 10.4789 (7) ÅT = 173 K
c = 17.1666 (12) Å0.21 × 0.20 × 0.15 mm
β = 103.822 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5813 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3929 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.624Rint = 0.037
22506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
5813 reflectionsΔρmin = 0.91 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.41607 (3)0.68787 (4)0.35182 (2)0.06529 (14)
Br20.48689 (2)1.06993 (6)0.31500 (3)0.0952 (2)
O10.15137 (12)0.85506 (17)0.55860 (10)0.0291 (4)
O20.04423 (11)0.96810 (15)0.38948 (9)0.0242 (3)
C10.07450 (16)0.7816 (2)0.57737 (13)0.0232 (5)
C20.01333 (17)0.7075 (2)0.51741 (14)0.0244 (5)
C30.06427 (18)0.6351 (2)0.53749 (15)0.0288 (5)
H30.10490.58050.49830.035*
C40.08325 (19)0.6411 (2)0.61272 (15)0.0310 (5)
H40.13570.59020.62540.037*
C50.02539 (18)0.7217 (2)0.66956 (14)0.0283 (5)
H50.04050.72820.72070.034*
C60.05422 (17)0.7931 (2)0.65368 (13)0.0249 (5)
C70.04927 (16)0.9096 (2)0.35766 (12)0.0222 (5)
C80.12770 (17)0.9807 (2)0.30901 (13)0.0255 (5)
C90.22207 (18)0.9204 (3)0.28019 (15)0.0336 (6)
H90.27750.96690.24780.040*
C100.23581 (19)0.7942 (3)0.29812 (16)0.0388 (7)
H100.30020.75420.27760.047*
C110.15618 (19)0.7258 (3)0.34591 (15)0.0342 (6)
H110.16620.63860.35730.041*
C120.06149 (17)0.7829 (2)0.37760 (13)0.0245 (5)
C130.02461 (18)0.7085 (2)0.43178 (14)0.0266 (5)
H13A0.02410.61960.41210.032*
H13B0.09120.74740.43010.032*
C140.11303 (18)1.1161 (2)0.28319 (14)0.0284 (5)
H14A0.18171.15330.26090.034*
H14B0.07741.11240.23900.034*
C150.25431 (18)0.8158 (3)0.59555 (16)0.0380 (6)
H15A0.25730.78620.65080.046*
H15B0.30070.89010.59910.046*
C160.29142 (17)0.7103 (3)0.54979 (16)0.0333 (6)
C170.32711 (17)0.7399 (3)0.48246 (16)0.0318 (6)
H170.32720.82590.46500.038*
C180.36244 (19)0.6437 (3)0.44102 (18)0.0412 (7)
C190.3620 (2)0.5183 (3)0.4642 (3)0.0606 (10)
H190.38580.45300.43480.073*
C200.3264 (3)0.4894 (3)0.5308 (3)0.0694 (11)
H200.32540.40320.54770.083*
C210.2918 (2)0.5851 (3)0.5734 (2)0.0536 (8)
H210.26810.56380.61960.064*
C220.11169 (17)0.9651 (3)0.33740 (15)0.0305 (5)
H22A0.08121.01280.28770.037*
H22B0.12260.87580.32260.037*
C230.21228 (17)1.0240 (2)0.37845 (16)0.0306 (5)
C240.28954 (19)1.0230 (3)0.33757 (17)0.0411 (7)
H240.27760.98760.28520.049*
C250.3838 (2)1.0737 (3)0.3736 (2)0.0532 (9)
C260.4038 (2)1.1250 (3)0.4500 (2)0.0551 (9)
H260.46931.15910.47430.066*
C270.3268 (2)1.1255 (3)0.4897 (2)0.0485 (8)
H270.33961.16000.54230.058*
C280.23048 (19)1.0765 (2)0.45464 (17)0.0362 (6)
H280.17751.07890.48270.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04985 (19)0.0996 (3)0.0523 (2)0.00434 (18)0.02381 (15)0.02819 (19)
Br20.03236 (17)0.1775 (5)0.0785 (3)0.0192 (2)0.01840 (17)0.0392 (3)
O10.0268 (8)0.0341 (10)0.0280 (9)0.0023 (7)0.0100 (7)0.0013 (7)
O20.0220 (7)0.0264 (9)0.0235 (8)0.0031 (6)0.0043 (6)0.0022 (7)
C10.0246 (10)0.0223 (13)0.0237 (11)0.0041 (9)0.0081 (9)0.0044 (9)
C20.0309 (11)0.0191 (13)0.0247 (12)0.0048 (9)0.0097 (9)0.0025 (9)
C30.0345 (12)0.0226 (13)0.0292 (12)0.0022 (10)0.0076 (10)0.0014 (10)
C40.0358 (12)0.0264 (14)0.0329 (13)0.0022 (10)0.0126 (10)0.0073 (11)
C50.0359 (12)0.0284 (14)0.0230 (12)0.0035 (10)0.0116 (10)0.0070 (10)
C60.0299 (11)0.0228 (13)0.0219 (11)0.0052 (9)0.0061 (9)0.0036 (9)
C70.0232 (10)0.0287 (13)0.0153 (10)0.0039 (9)0.0058 (8)0.0054 (9)
C80.0268 (11)0.0317 (14)0.0178 (11)0.0006 (10)0.0052 (9)0.0031 (10)
C90.0273 (11)0.0467 (18)0.0246 (12)0.0027 (11)0.0018 (9)0.0032 (11)
C100.0302 (12)0.0511 (19)0.0322 (14)0.0151 (12)0.0019 (10)0.0062 (13)
C110.0396 (13)0.0346 (16)0.0288 (13)0.0142 (11)0.0090 (11)0.0038 (11)
C120.0310 (11)0.0281 (14)0.0157 (10)0.0026 (9)0.0083 (9)0.0040 (9)
C130.0345 (12)0.0227 (13)0.0241 (12)0.0012 (10)0.0100 (9)0.0025 (10)
C140.0321 (11)0.0333 (15)0.0190 (11)0.0037 (10)0.0043 (9)0.0037 (10)
C150.0241 (11)0.0573 (19)0.0321 (14)0.0014 (12)0.0055 (10)0.0067 (13)
C160.0216 (11)0.0373 (16)0.0398 (14)0.0032 (10)0.0048 (10)0.0015 (12)
C170.0255 (11)0.0316 (15)0.0383 (14)0.0007 (10)0.0074 (10)0.0034 (11)
C180.0263 (12)0.0485 (19)0.0482 (17)0.0011 (12)0.0075 (11)0.0144 (14)
C190.0419 (16)0.036 (2)0.103 (3)0.0035 (14)0.0153 (18)0.0216 (19)
C200.059 (2)0.034 (2)0.117 (3)0.0004 (16)0.023 (2)0.011 (2)
C210.0449 (16)0.050 (2)0.068 (2)0.0045 (14)0.0173 (15)0.0152 (17)
C220.0261 (11)0.0352 (15)0.0313 (13)0.0037 (10)0.0091 (10)0.0013 (11)
C230.0252 (11)0.0253 (14)0.0395 (14)0.0013 (10)0.0041 (10)0.0096 (11)
C240.0294 (12)0.0518 (18)0.0410 (15)0.0039 (12)0.0059 (11)0.0169 (14)
C250.0264 (12)0.072 (2)0.060 (2)0.0057 (14)0.0089 (13)0.0288 (18)
C260.0299 (14)0.055 (2)0.070 (2)0.0142 (14)0.0072 (14)0.0151 (18)
C270.0420 (15)0.0365 (18)0.0589 (19)0.0057 (13)0.0041 (14)0.0049 (15)
C280.0309 (12)0.0285 (15)0.0465 (16)0.0027 (11)0.0037 (11)0.0010 (12)
Geometric parameters (Å, º) top
Br1—C181.899 (3)C14—C6i1.515 (3)
Br2—C251.897 (3)C14—H14A0.9900
O1—C11.387 (3)C14—H14B0.9900
O1—C151.437 (3)C15—C161.508 (4)
O2—C71.387 (3)C15—H15A0.9900
O2—C221.417 (3)C15—H15B0.9900
C1—C21.390 (3)C16—C211.373 (4)
C1—C61.406 (3)C16—C171.388 (4)
C2—C31.398 (3)C17—C181.382 (4)
C2—C131.513 (3)C17—H170.9500
C3—C41.376 (3)C18—C191.373 (5)
C3—H30.9500C19—C201.374 (6)
C4—C51.381 (4)C19—H190.9500
C4—H40.9500C20—C211.385 (5)
C5—C61.385 (3)C20—H200.9500
C5—H50.9500C21—H210.9500
C6—C14i1.515 (3)C22—C231.500 (3)
C7—C121.391 (3)C22—H22A0.9900
C7—C81.394 (3)C22—H22B0.9900
C8—C91.397 (3)C23—C241.385 (3)
C8—C141.514 (4)C23—C281.386 (4)
C9—C101.381 (4)C24—C251.376 (4)
C9—H90.9500C24—H240.9500
C10—C111.383 (4)C25—C261.383 (5)
C10—H100.9500C26—C271.367 (5)
C11—C121.394 (3)C26—H260.9500
C11—H110.9500C27—C281.389 (4)
C12—C131.516 (3)C27—H270.9500
C13—H13A0.9900C28—H280.9500
C13—H13B0.9900
C1—O1—C15115.49 (19)H14A—C14—H14B107.2
C7—O2—C22113.41 (16)O1—C15—C16112.5 (2)
O1—C1—C2118.64 (19)O1—C15—H15A109.1
O1—C1—C6119.3 (2)C16—C15—H15A109.1
C2—C1—C6121.7 (2)O1—C15—H15B109.1
C1—C2—C3117.7 (2)C16—C15—H15B109.1
C1—C2—C13122.5 (2)H15A—C15—H15B107.8
C3—C2—C13119.8 (2)C21—C16—C17118.8 (3)
C4—C3—C2121.5 (2)C21—C16—C15121.7 (3)
C4—C3—H3119.2C17—C16—C15119.5 (2)
C2—C3—H3119.2C18—C17—C16119.7 (3)
C3—C4—C5119.4 (2)C18—C17—H17120.2
C3—C4—H4120.3C16—C17—H17120.2
C5—C4—H4120.3C19—C18—C17121.6 (3)
C4—C5—C6121.5 (2)C19—C18—Br1119.7 (2)
C4—C5—H5119.3C17—C18—Br1118.7 (2)
C6—C5—H5119.3C18—C19—C20118.6 (3)
C5—C6—C1117.9 (2)C18—C19—H19120.7
C5—C6—C14i119.6 (2)C20—C19—H19120.7
C1—C6—C14i122.5 (2)C19—C20—C21120.5 (3)
O2—C7—C12118.30 (19)C19—C20—H20119.8
O2—C7—C8118.9 (2)C21—C20—H20119.8
C12—C7—C8122.7 (2)C16—C21—C20121.0 (3)
C7—C8—C9117.6 (2)C16—C21—H21119.5
C7—C8—C14122.9 (2)C20—C21—H21119.5
C9—C8—C14119.4 (2)O2—C22—C23109.6 (2)
C10—C9—C8120.8 (2)O2—C22—H22A109.8
C10—C9—H9119.6C23—C22—H22A109.8
C8—C9—H9119.6O2—C22—H22B109.8
C9—C10—C11120.2 (2)C23—C22—H22B109.8
C9—C10—H10119.9H22A—C22—H22B108.2
C11—C10—H10119.9C24—C23—C28119.8 (2)
C10—C11—C12120.9 (2)C24—C23—C22117.3 (2)
C10—C11—H11119.5C28—C23—C22122.9 (2)
C12—C11—H11119.5C25—C24—C23119.3 (3)
C7—C12—C11117.7 (2)C25—C24—H24120.3
C7—C12—C13121.6 (2)C23—C24—H24120.3
C11—C12—C13120.7 (2)C24—C25—C26121.7 (3)
C2—C13—C12111.12 (19)C24—C25—Br2117.7 (3)
C2—C13—H13A109.4C26—C25—Br2120.7 (2)
C12—C13—H13A109.4C27—C26—C25118.4 (3)
C2—C13—H13B109.4C27—C26—H26120.8
C12—C13—H13B109.4C25—C26—H26120.8
H13A—C13—H13B108.0C26—C27—C28121.4 (3)
C8—C14—C6i117.47 (19)C26—C27—H27119.3
C8—C14—H14A107.9C28—C27—H27119.3
C6i—C14—H14A107.9C23—C28—C27119.4 (3)
C8—C14—H14B107.9C23—C28—H28120.3
C6i—C14—H14B107.9C27—C28—H28120.3
C15—O1—C1—C2112.0 (2)C1—C2—C13—C12105.0 (2)
C15—O1—C1—C674.0 (3)C3—C2—C13—C1271.8 (3)
O1—C1—C2—C3179.4 (2)C7—C12—C13—C297.3 (2)
C6—C1—C2—C35.6 (3)C11—C12—C13—C282.7 (3)
O1—C1—C2—C132.6 (3)C7—C8—C14—C6i44.1 (3)
C6—C1—C2—C13171.2 (2)C9—C8—C14—C6i139.2 (2)
C1—C2—C3—C43.1 (4)C1—O1—C15—C1683.6 (3)
C13—C2—C3—C4173.8 (2)O1—C15—C16—C21100.1 (3)
C2—C3—C4—C50.9 (4)O1—C15—C16—C1780.5 (3)
C3—C4—C5—C62.6 (4)C21—C16—C17—C180.3 (4)
C4—C5—C6—C10.2 (3)C15—C16—C17—C18179.1 (2)
C4—C5—C6—C14i177.7 (2)C16—C17—C18—C190.8 (4)
O1—C1—C6—C5177.8 (2)C16—C17—C18—Br1177.41 (18)
C2—C1—C6—C54.0 (3)C17—C18—C19—C200.7 (5)
O1—C1—C6—C14i0.3 (3)Br1—C18—C19—C20177.6 (3)
C2—C1—C6—C14i173.5 (2)C18—C19—C20—C210.1 (5)
C22—O2—C7—C1295.5 (2)C17—C16—C21—C200.5 (4)
C22—O2—C7—C886.3 (2)C15—C16—C21—C20179.9 (3)
O2—C7—C8—C9177.8 (2)C19—C20—C21—C160.6 (5)
C12—C7—C8—C90.4 (3)C7—O2—C22—C23176.98 (19)
O2—C7—C8—C145.5 (3)O2—C22—C23—C24176.7 (2)
C12—C7—C8—C14176.3 (2)O2—C22—C23—C282.4 (3)
C7—C8—C9—C101.4 (3)C28—C23—C24—C250.3 (4)
C14—C8—C9—C10175.5 (2)C22—C23—C24—C25178.7 (3)
C8—C9—C10—C110.8 (4)C23—C24—C25—C260.5 (5)
C9—C10—C11—C120.8 (4)C23—C24—C25—Br2180.0 (2)
O2—C7—C12—C11179.3 (2)C24—C25—C26—C270.5 (5)
C8—C7—C12—C111.1 (3)Br2—C25—C26—C27180.0 (2)
O2—C7—C12—C130.8 (3)C25—C26—C27—C280.3 (5)
C8—C7—C12—C13179.0 (2)C24—C23—C28—C271.1 (4)
C10—C11—C12—C71.7 (3)C22—C23—C28—C27177.9 (3)
C10—C11—C12—C13178.3 (2)C26—C27—C28—C231.1 (4)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C23–C28 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15B···Br2ii0.992.913.652 (2)132
C17—H17···Cg10.952.743.69175
C5—H5···Cg2iii0.952.683.54151
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC56H44Br4O4
Mr1100.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.4377 (8), 10.4789 (7), 17.1666 (12)
β (°) 103.822 (2)
V3)2347.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.48
Crystal size (mm)0.21 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.529, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
22506, 5813, 3929
Rint0.037
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.02
No. of reflections5813
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.91

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C23–C28 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15B···Br2i0.992.913.652 (2)132
C17—H17···Cg10.952.743.69175
C5—H5···Cg2ii0.952.683.54151
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This research was supported by a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0022675).

References

First citationAsfari, Z., Böhmer, V. & Harrowfield, J. (2001). Calixarenes 2001. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalgrano, S. J., Thallapally, P. K., Barbour, L. J. & Atwood, J. L. (2007). Chem. Soc. Rev. 36, 236–245.  Web of Science PubMed Google Scholar
First citationGutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddart. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationIkeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713–1734.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMandolini, L. & Ungaro, R. (2000). Calixarenes in Action. London: Imperial College Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds